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Abstract 

Tremendous land use change has occurred in Lagos in recent times. Modelling urban systems now extends 
beyond the use of geographic information systems models. This research therefore presents a loose coupling of 
geographic information systems and artificial neural network for simulating land use change in Lagos. The 
experiment is based on three land use epochs of Lagos: 1963-1978, 1978-1984, and 1984-2000. Twelve salient 
land use explanatory variables (distance to water, distance to residential structures, distance to industrial and 
commercial centres, distance to major roads, distance to railway, distance to Lagos Island, distance to 
international airport, distance to international seaport, distance to University of Lagos, distance to Lagos State 
University, income potential, and population potential) are used for the simulation. Using the Kappa statistic, the 
result of the simulation in terms of the order of best-fit of the reference data is: 1978-1984, 1984-2000, and 
1963-1978. An evaluation of the simulation using the receiver operating characteristics corroborates the Kappa 
estimates. A non black-box experiment using a one-neuron neural network to assess the performance of the 
spatial independent variables used for the simulation indicates that for all three epochs distance to residential 
structures has the highest impact in the simulation while population potential has the lowest impact.  

Keywords: land use change, GIS, artificial neural network 

1. Introduction 

Lagos (see Figure 1) is usually described as a laissez-faire urban society (Okwuashi, 2011); and the problem of 
urban sprawl in Lagos is generally viewed by most Nigerians as an intractable problem (Abiodun, 1974; Gandy, 
2006).  

Lagos has undergone rapid urban expansion in recent times (see Figure 2); therefore modelling an unregulated 
complex urban environment like Lagos may be unyielding without employing robust predictive tools that can 
realistically model their complexity, dynamism, and growth (Barredo et al., 2004). This research has adopted the 
Cellular Automata (CA) model due to their simplicity, dynamic properties, and inventive bottom-up approach 
(Clarke & Gaydos, 1998). Unlike Geographic Information Systems (GIS) based models, CA models are not 
subject to linear regression assumptions (Okwuashi, 2011). A major advantage of CA models is their 
compatibility with remote sensing and GIS (Torrens & O’Sullivan, 2001). Previous researches have shown that 
coupling GIS and CA models has helped improve dynamic spatial modelling (Park & Wagner, 1997). The 
objective of this research therefore is to explore the loose coupling of the GIS and Artificial Neural Network 
(ANN) based CA model for simulating land use change in Lagos, Nigeria. 
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Figure 1. Lagos in relation to Nigeria 

 

 

Figure 2. Land use of Lagos between 1963 and 2000 
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2. ANN Based CA Calibration 

The ANN consists of three main components: the input layer, hidden layer, and the output layer (Figure 3). The 
hidden layer is the engine room of the neural network; it consists of n neurons (n = 1, 2, 3…). The output layer 
consists of just a single neuron (Almeida et al., 2008). Basically a signal from neuron i of the first input layer of 
a cell x, at time t received by a neuron j of the hidden layer can be expressed as,  


j

ijij txSWtxnet ),(),( '
,                                 (1) 

where ),(' txS i  denotes the site attributes given by variable (neuron) i ; jiW ,  is the weight of the input from 
neuron i to neuron j; ),( txnet j  is the signal received for neuron j of cell x at time t.  

 

 
Figure 3. Generic example of an artificial neural network structure with a single output neuron 

 

The activation of the hidden layer of the signal is,  
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The probability can be expressed as,  
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where, P is the development probability (see Li & Yeh, 2002).  

By introducing the Moore neighbourhood function 33  (Wu, 2002), a coefficient Q, constraints contributions 
ijcons , and a stochastic function  ln1   (   is a uniform random variable; while  controls the 

magnitude of the perturbation) (White & Engelen, 1993), equation 3 can be revised to derive the final 
development probability (Okwuashi, 2011),  
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A threshold probability value ( ) is set as a benchmark for determining undeveloped cells that are eligible to 

transit to developed cells:  
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Q can be used to regulate the value of t
ijP  with respect to  ; in order to either decrease or increase the number 

of iterations required for the simulation.  

3. Application 

3.1 Data 

The land use data of Lagos consist of remotely sensed Landsat Thematic Mapper images, acquired in 1978, 1984, 
and 2000 respectively; and an analogue base map acquired in 1963. The Landsat images were classified with the 
k-means algorithm using the MATLAB software. The analogue map was processed with ArcGIS. The analogue 
and remote sensing data were geo-referenced to ensure both data were in the same coordinate system. Twelve 
salient land use independent variables were used for the experiment. They were grouped into two categories: (i) 
proximity variables: distance to water, distance to residential structures, distance to industrial and commercial 
centres, distance to major roads, distance to railway, distance to Lagos Island, distance to international airport 
(1984-2000 only), distance to international seaport, distance to University of Lagos, distance to Lagos State 
University (1984-2000 only); and (ii) weighted variables: income potential and population potential. The 
proximity variables were extracted in ArcGIS while the weighted variables were extracted in MATLAB. 

3.2 Modelling 

The ANN experiment was implemented in MATLAB with the method of backpropagation (Rumelhart et al., 
1986) using a two-layer feed-forward neural network. A backpropagation network has an input layer, an output 
layer, and one or two hidden layers; however, there is no limit to the number of hidden layers (Anderson, 1995; 
Chauvin & Rumelhart, 1995). It is very important to first choose the random seed number and the required 
number of neurons in the hidden layer. A neural network is initialised with initial weights; hence different results 
are always obtained every time the ANN model is run. To ensure the results remain the same at every run of the 
neural network the random seed number must be set. The random seed number is an arbitrary constant chosen by 
trial-and-error. After the random seed number is set, the ANN neurons then remain the only parameter that can 
be adjusted to vary the simulation results of the ANN. The training of the neural network is simply the 
adjustment of the number of neurons in the hidden layer in order to minimise the training error. The training 
error is the discrepancy between the predicted and the actual value. The adjustment of the number of neurons is 
sustained until a training error that falls below a pre-determined threshold is found (Wang, 1994).  

The experiment was based on three epochs of urban change: 1963-1978, 1978-1984, and 1984-2000. Based on 
the stratified random sampling, one thousand training points were selected for each of periods 1963-1978, 
1978-1984, and 1984-2000. The modelling was based on the k-fold cross-validation procedure (where k=10). 
Since there is no precise technique for selecting an optimal number of neuron required for training the network 
(or optimising the number of neurons in the hidden layer), 14 designated number of neurons: 1, 2, 3, 4, 5, 10, 15, 
20, 25, 30, 35, 40, 45, and 50 were used for optimising the number of neurons in the hidden layer. The dependent 
variables were represented as developed = +1, and undeveloped = -1. The ‘random seed number’ was set at 
3558583436. Results of the computed Kappa coefficient for each designated neuron for k=1,2,…,10 are depicted 
in Figures 4a, 4b, and 4c; while the overall mean Kappa coefficient for each designated neuron is given in Figure 
4d.  

From Figure 4d for period 1963-1978, 3 neurons yielded the highest overall mean kappa coefficient while 50 
neurons yielded the lowest. For 1978-1984, 2 neurons yielded the highest overall mean kappa coefficient while 
50 neurons yielded the lowest. For 1984-2000, 1 neuron yielded the highest overall mean kappa coefficient while 
50 neurons yielded the lowest.  

Since the appropriate number of neurons for the modelling has been selected, equation 4 was used to simulate 
the maps for 1978, 1984, and 2000. The modelling is stochastic; therefore two hundred designated iterations 
thresholds were run to determine where the most accurate maps for the three periods will lie by running each 
iteration threshold ten times and comparing the simulated maps with the actual maps (Figure 5a). For 1978-1984 
and 1984-2000, the highest mean kappa coefficients were yielded at the 130th iterations, while for 1963-1978, the 
highest mean kappa coefficient was yielded at the 120th iterations (Figure 5a). A modelling performance 
assessment was done using the Receiver Operating Characteristics (ROC) plot (Figure 5b). 
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Cross-validation result for selecting an optimal "number of neurons" for 1963-1978
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Cross-validation result for selecting an optimal "number of neurons" for 1978-1984
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Cross-validation result for selecting an optimal "number of neurons" for 1984-2000
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Figure 4. (a), (b), & (c) Cross-validation result: Mean Kappa coefficients for 1963-1978, 1978-1984, and 
1984-2000 respectively; (d) Overall cross-validation result for appropriate choice of ‘number of neurons’ in the 
hidden layer 
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Figure 5. (a) Overall mean Kappa and standard deviations for 200 designated iteration thresholds; (b) Plotted 
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mean sensitivity versus 1-specificity and standard deviations 

The ROC is a plot of sensitivity against 1-specificity. Figure 5b presents plots computed from 10 ROC curves, 
sampled at fixed 1-specificty points: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 (see Fawcett, 2004). The 
computed Area Under Curve (AUC) resulting from the ROC plots and their respective standard deviations were 
0.7574   0.0304, 0.7850   0.0308, and 0.7613   0.0288, for 1963-1978, 1978-1984, and 1984-2000 
respectively. The higher the AUC value the more accurate the simulation. Therefore 1978-1984 was the most 
accurate simulation while 1963-1978 was the least accurate simulation. The simulated maps in 1978, 1984, and 
2000 are given in Figure 6.  

 

     

TN

FP

FN

TP  

Simulated 1978   Simulated 1984    Simulated 2000   

Figure 6. The simulated maps (TN=true negative; FP=false positive; FN=false negative; and TP=true positive) 

 

Tables 1-3 were derived from the simulated maps given in Figure 6. The computed Kappa coefficients for 
1963-1978, 1978-1984, and 1984-2000 resulting from the confusion matrices in Tables 1-3 were 0.5900, 0.7825, 
and 0.7161 respectively. ANNs are insintrically called black-box models because information about the 
independent variables is obscured by the model. It is important to assess the impact of each independent variable 
in the model. A one-neuron neural network furnishes information about the actual weights of the independent 
variables in the model. A one-neuron ANN is not a black-box because its input weights can be equated with the 
logistic regression coefficients. The result of the experiment using a one-neuron neural network is presented in 
Table 4. From Table 4, a variable with the highest magnitude had the most impact in the model; while a variable 
with the lowest magnitude had the least impact in the model.  

 

Table 1. Confusion matrix for period 1963-1978  

 Reference data 1978 

 Developed Undeveloped 

Predicted data 1978   

Developed 1609 1092 

Undeveloped 183 4116 
 

Table 2. Confusion matrix for period 1978-1984 

 Reference data 1984 

 Developed Undeveloped 

Predicted data 1984   

Developed 2232 434 

Undeveloped 276 4058 
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Table 3. Confusion matrix for period 1984-2000 

 Reference data 2000 

 Developed Undeveloped 

Predicted data 2000   
Developed 2996 558 

Undeveloped 436 3010 
 

Table 4. Input weights from a one neuron neural network 

Variables 1963-1978 1978-1984 1984-2000 

 Input weights Input weights Input weights 
Distance to water -0.9023 -0.4545 0.13579 

Distance to residential -10.5806 -35.6294 20.3025 
Distance to industrial and commercial -2.5625 -0.8232 3.2947 

Distance to major roads -4.0632 -0.6593 1.04639 
Distance to railway -4.8828 -0.2645 0.6693 

Distance to Lagos Island -0.5946 -0.0060 0.1587 
Distance to international airport Not applicable Not applicable 0.0745 
Distance to international seaport -0.2302 -0.1045 0.1877 
Distance to University of Lagos -0.4228 0.0577 0.0308 

Distance to Lagos State University Not applicable Not applicable 0.5797 
Income potential 0.2682 0.2062 -0.0791 

Population potential 0.1141 0.0034 -0.0206 
    

Input weight bias -21.8324 -36.3103 25.0515 
Model bias 0.0396 0.0765 0.1394 

 

4. Conclusion 

The computed Kappa coefficients of the simulated maps indicated that the order of best fit of the reference data 
for the three periods was: 1978-1984, 1984-2000, and 1963-1978. The calculated AUC estimates implied that the 
order of best fit of the observed data was: periods 1978-1984, 1984-2000, and 1963-1978; which corroborated 
the results from the Kappa estimates. According to Landis and Koch (1977), the computed Kappa coefficients of 
the simulated maps can be appraised based on the interpretation given in Table 5. The computed Kappa 
coefficients for periods 1963-1978, 1978-1984, 1984-2000 were 0.5900, 0.7825, and 0.7161 respectively; 
therefore using Table 5, the 1963-1978 simulated map had a moderate agreement with the reference data; while 
the 1978-1983 and 1984-2000 simulated maps had a substantial agreement with the reference data. The 
computed weights of the independent/explanatory variables from the one-neuron ANN indicated that distance to 
residential had the highest impact in the model while population potential had the lowest impact in the model for 
all the three periods. The one-neuron neural network is therefore not a black-box, since it can furnish information 
regarding the impact of each independent variable in the model. The result of this experiment will be useful to 
urban planners for understanding the spatial dynamics responsible for rapid urbanisation in Lagos.  

 

Table 5. Interpretation of Kappa statistic 

Kappa Interpretation 

< 0 No agreement 
0.0 - 0.20 Slight agreement 

0.21 – 0.40 Fair agreement 
0.41 – 0.60 Moderate agreement 
0.61 – 0.80 Substantial agreement 
0.81 – 1.00 Almost perfect agreement
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