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Abstract 

Carrot has a relatively high content of Vitamin C and it is a major source of natural carotenoids. However, carrot 

has a short shelf-life and is better consumed fresh. A quick assessment of its quality attributes is important to 

preserving its freshness. The objective of this study was to apply Vis-NIR spectroscopy to noninvasively assess 

and predict the various quality attributes of carrot (cv. Nectar), namely color (L*a*b*), moisture content (MC), 

total soluble solids (TSS), firmness, Vitamin C, and β-carotene. Two spectroscopic sensors (400-1,000 nm and 

900-1,700 nm) were utilized and samples included whole root and 25.4 mm thick sliced disc. The best prediction 

models using partial least squares regression yielded correlation coefficient, r, and ratio of performance to 

deviation or r(RPD) of 0.50(0.73), 0.84(0.88), 0.86(2.07), 0.69(0.66), 0.97(1.44), 0.90(1.49), 0.47(1.47), and 

0.92(1.76) for color indices, L* a* b*, firmness, MC, TSS, Vitamin C, and β-carotene, respectively. However, 

using only the wavelengths selected by interval partial least squares, the r(RPD) values for the aforementioned 

attributes improved and are presented as follows: 0.92(1.97), 0.96(2.83), 0.98(5.85), 0.99(6.65), 0.98(3.91), 

0.99(5.93), 0.98(4.16), and 0.98(4.43), respectively. Generally, Vis-NIR region had higher prediction 

performance than NIR region, and whole roots had similar prediction performance as sliced samples. This study 

shows that rapid determination of quality parameters of carrot is possible through non-destructive Vis-NIR 

sensing, which could be useful for quality tracking during carrot supply chain. Moreover, results of this study 

could be improved using a larger sample size.  
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1. Introduction 

Carrot (Daucus carota L.) is an important root vegetable crop and a major source of essential micronutrients 

such as Vitamins A and C. Carrot production worldwide has been on the increase since 1961. The world 

production of carrot in 2014 was 83,840 million tons, while the US production during the same period was 1,440 

million tons obtained from 34,660 hectares (Food and Agriculture Organization [FAO], 2017). Most carrot roots 

have orange-like color, however, other colors such as purple, red, and yellow can also be found in the markets 

(Becaro et al., 2016). Carrot roots, either in fresh or frozen conditions, provide considerable amounts of Vitamin 

C (ascorbic acid) and phenolic compounds that act as antioxidants (i.e. anthocyanin) (Alasalvar, Al-Farsi, 

Quantick, Shahidi, & Wiktorowicz, 2005; Klaiber, Baur, Koblo, & Carle, 2005; Favell, 1998). Additionally, 

carrot is a rich source of provitamin A and more specifically α and β-carotene and carotenoids (lutein, lycopene) 

depending on the root color (Berger, Küchler, Maaßen, Busch-Stockfisch, & Steinhart, 2008). Processed carrot 

foods are among the basic meals for infants and young children (Seidel et al., 2015). Consumption of carrot is 

also linked to decreased risk of prostate cancer and has the potential to improve heart and liver functionality and 

consequently protect against cardiovascular diseases (Xu et al., 2014; Potter, Foroudi, Stamatikos, Patil, & 

Deyhim, 2011; Nicolle et al., 2003). The production of α-tocopherol-β-carotene (ATBC) drinks, also called 

carotenoid drinks, depends on carrot juice as a natural source of provitamin A (Simon et al., 2008; Demir, Acar, 

& Bahçeci, 2004). Quality attributes of carrots that are important indicators of stability and support systems for 

human health include absence of bruises, color, total soluble solid (TSS), provitamin A especially β-carotene and 

carotenoids, Vitamin C, and firmness (Simon et al., 2008; Demir et al., 2004). Carrots are usually consumed as 
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fresh, frozen or as juice. Fresh-cut packaged carrots have gained a lot of interest since 1980’s (Becaro et al., 

2016). The ability to quickly determine carrot’s quality attributes along the supply chain is very important to 

preserving its freshness. Therefore, it is essential to develop systems for quick quality control of carrot, beyond 

the time-consuming laboratory techniques.  

The application of noninvasive techniques for evaluating quality attributes of agricultural products has gained 

significant attention in applied research and the production industry lately (Porep, Kammerer, & Carle, 2015). 

Spectroscopic devices especially those within near-infrared (NIR), are among the early technologies used in 

monitoring the quality of agricultural commodities. NIR systems are fast, nondestructive, reliable, cost effective, 

versatile, and require minimal sample preparation compared to other analytical methods (Burns & Ciurczak, 

2007). Norris (1986) was one of the first studies that applied NIR in the agricultural domain studied the 

feasibility of using NIR spectral absorption for rapid measurement of fat and moisture levels in samples of meat 

emulsions. A correlation was found between the optical density and moisture and fat content with a standard 

error of 2.1 and 1.4% for moisture and fat, respectively. Since then, there has been extensive work on 

investigating the potential of NIR systems in detecting chemical constituent especially with the significant 

improvement in light-fiber optics and detection designs along with the development of effective chemometrics 

algorithms (Siesler, 2008). Estimation of various quality traits of carrot was investigated using rapid and/or 

noninvasive techniques. Zude, Birlouez-Aragon, Paschold, & Rutledgem (2007) investigated the utilization of 

visible Vis-NIR technique to measure carrot quality attributes at different storage and handling conditions. They 

estimated sugar, α- and β-carotene content. Results showed that the levels of the standard error of cross 

validation (SECV) for sugar models were 15.4, 4.6, and 2.3% for sucrose, glucose, and fructose, respectively. 

Whilst the SEVC value for α- and β-carotene content models were <1%. In another study conducted by 

Quilitzsch, Baranska, Schulzm, & Hoberg (2005), where they used UV-Vis, NIR and IR spectroscopic sensors 

(FT-NIR spectrometer) within 833-2,500 nm, where they evaluated α and β-carotene, the total carotenoids, and 

dry matter. The cross-validation results showed high values of the coefficient of determination (R2) of 0.70-0.96. 

In the same study, fructose, glucose, sucrose, and the total sugar were also estimated using FTIR in the 

attenuated total reflection (ATR) mode and the best models had R2 values of 0.62-94. It is important to state that 

results obtained in the previous two studies were based only on a training data set using cross validation, and no 

separate test-sets were used to evaluate the calibration models. Other methods tested to predict carrot quality are 

Raman spectroscopy (Krähmer, Böttcher, Rode, Nothnagel, & Schulz, 2016; Lawaetz et al., 2016; Schulz, 2014; 

Keller, Löchte, Dippel, & Schrader, 1993), nuclear magnetic resonance (NMR) (Schneider, 1997), and 

fluorescence spectroscopy (Ahmad, Sahar, & Hitzmann, 2017). The major drawback to these methods is that 

they produce significant amount of data that would not allow their application for quick online/inline assessment. 

Our objectives in this research were to determine the effectiveness of using Vis-NIR diffuse reflectance 

technology and multivariate statistical analysis to evaluate several quality attributes of carrot roots, and also 

obtain the most effective wavelengths associated with such quality parameters.  

2. Materials and Methods 

2.1 Samples Preparation 

Organic carrot (cv. Nectar) used for the study was bought from a local certified organic farm in Lexington, 

Kentucky, USA. Carrot samples were cleaned from dirt and decayed or bruised roots were discarded. Samples 

were then stored at 4 °C and a relative humidity of 95% (Luo, Suslow, & Cantwell, 2016). An initial sampling 

with six replicates was conducted after receiving the samples. Further sampling then took place over a period of 

8 weeks in a weekly basis. After the eighth week, the stored samples showed severe shriveling and started to 

sprout. The purpose of studying stored sample was to create a relatively wide range of the measured quality 

attributes and consequently obtain more conclusive prediction models and stimulate the real cases for storage. A 

total of 30 carrot roots were used, which included whole intact roots and sliced samples (discs). Three replicates 

were tested at each sampling time. After scanning the whole root 2 times with 180° apart, three slices were cut 

from the stem end, root end and in the middle. Each slice was approximately 25.4 mm thick and both sides of 

each slice were scanned. CIE L*a*b* color parameters were first measured for each sample followed by 

measuring the firmness. Samples were then crushed and each of total soluble solids (TSS), moisture content, 

Vitamin C, and β-carotene was then estimated. To account for the spatial variation for each constituent, several 

readings were acquired for each replicate. In the case of color and firmness, six readings were acquired. Whereas, 

in the case of moisture and β-carotene, two readings were obtained. Finally, three readings were obtained for 

TSS and Vitamin C. The average of such readings was then recorded. Fig. 1 shows a schematic diagram for the 

sequence of experiments.  
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Figure 1. Schematic diagram for the experiment sequence for evaluating carrot quality using Vis-NIR 

spectroscopy 

 

2.2 Optical System 

The optical system used to acquire spectral information of carrot roots is a Vis-NIR spectroscopic system 

operating in the diffuse reflectance mode. The system, as shown in the schematic diagram in Fig. 2, consists of 

two different spectrometers. The first spectrometer (model no. HR4000, Ocean Optics Inc., Dunedin, FL, USA) 

detects light in the Vis-NIR region between 195 - 1,100 nm and has, a 3,648-element linear silicon CCD array 

with a spectral resolution of 0.02-8.4 nm (full width high maximum or FWHM), and signal to noise ratio (SNR) 

of up to 300:1. The second spectrometer (model no. NIRQUEST512 Ocean Optics Inc., Dunedin, FL, USA) 

works in the NIR region of 900-1,700 nm and has an InGaAs linear array detector with optical resolution of 3.1 

nm (FWHM), SNR of up to 3000:1. The light source is a tungsten halogen lamp with a nominal output power of 

20 W (model no. HL-2000-HP-FHSA, Ocean Optics Inc., Dunedin, FL, USA). The integrated reflectance probe 

(model no. QR400-7-Vis-NIR, Ocean Optics Inc., Dunedin, FL, USA) has 400 μm diameter with 6 illuminating 

fibers around two read fibers to obtain the spectrum for each spectrometer. The integrated probe is comprised of 

a fiber cable receiving the incident light and two output fibers using splitter fiber (SPLIT400-Vis-NIR, Ocean 

Optics Inc., Dunedin, FL, USA). The reflectance measurement for each sample was calibrated by the spectrolan 

diffuse reflectance standard disc (WS-1-SL, Labsphere, Inc., North Sutton, NH, US). The relative reflectance 

was then calculated as follows: 

Relative reflectance =  
𝐼𝑠 −𝐼𝑏 

𝐼𝑟 −𝐼𝑏 
                                (1) 

where Is is the intensity of reflected light for sample, Ir is the intensity of reflected light for the reflectance 

standard disc, and Ib is the intensity of reflected light for background. 

 

Figure 2. Schematic diagram of the UV-VIS-NIR spectroscopic system used to acquire spectral information for 

carrot roots 

Carrot root 
Scan the whole root 

2 times (180o apart)  
Obtain 3 slices and scan each slice on each side 

Measure L*a*b* color 

parameters  
Measure firmness 

Crush and measure moisture content, 

TSS, Vitamin C, and β-carotene  
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2.3 Measurement of Quality Attributes of Carrots 

2.3.1 Color Measurement 

Samples color was measured in the CIELAB color space (Commission Internationale de l'Eclairage) where L* 

represents lightness (0-100), a* represents red/green coordinate, and b* represents yellow/blue coordinate 

(McGuire, 1992). The color measurement was performed using the CR400 Chroma Meter (Konica Minolta, 

Chiyoda, Tokyo, Japan). For each carrot, six readings were recorded at different locations and the average value 

was reported.  

2.3.2 Firmness Measurement 

Firmness measurement was carried out using the TA-X7 plus texture analyzer (Stable Micro Systems, 

Godalming, Surrey GU7 1YL, United Kingdom). The outer surface of each sample was tested for firmness using 

the TA-10 probe (Stable Micro Systems, Godalming, Surrey GU7 1YL, United Kingdom) that has 12.5 mm 

diameter and 35 mm length. The experiment configurations included head speed of 1 mm.s-1 and a penetration 

depth of 5 mm. The maximum force was recorded as the firmness in Newton. For each sample, firmness was 

measured at six different locations and the average value was reported. 

2.3.3 Moisture Content Measurement 

Moisture content was measured following the Association of Official Agricultural Chemists official method 

984.25 (AOAC, 2010a). Samples were weighed, then dried in an air-forced convection oven at 105 °C for 16 h 

and the final weight was recorded. The final moisture content was calculated using the difference between 

samples weights before and after drying and the original sample weight before drying.  

2.3.4 Total Soluble Solids Measurement 

Total soluble solids (TSS) was measured using a digital refractometer (HI 96801, Woonsocket, RI, USA) and the 

TSS value was obtained in oBrix unit.  

2.3.5 Vitamin C Measurement 

Estimation of Vitamin C in the carrot samples was performed using the AOAC official method 967.21 (AOAC, 

2010b) with slight modification. Metaphosphoric acid (HPO3)-acetic acid (CH3COOH), 1N, was used as an 

extraction solution and prepared by dissolving, with shaking, 15 g of HPO3 pellets in 40 mL CH3 COOH and 200 

mL distilled water. The HPO3-CH3COOH solution was prepared before each experiment and stored at 10 °C for 

no longer than 7 days. Ascorbic acid (AA) standard, 1 mg.mL-1 was prepared by dissolving 50 mg of ascorbic 

acid reference standard into 50 mL of HPO3-CH3COOH. Indophenol solution (dye) was prepared by dissolving 

50 mg of 2,6-dichloroindophenol in NaHCO3 solution (prepared by dissolving 42 mg in 50 mL of distilled water) 

and dilute to 200 mL using HPO3-CH3COOH. Each sample, 10 g, was first crushed of sample using a mortar and 

pestle, then blended with 50 mL of HPO3-CH3COOH for 1 min, then diluted into 100 mL and filtered. Titration 

process was conducted using three-50 mL flasks for each sample. For standard replicates, 5 mL of 

HPO3-CH3COOH was added to 2 mL of standard AA then titrated using the dye until distinct rose color lasts for 

5 s or longer. For blank replicates, 7 mL of HPO3-CH3COOH was added to a volume of distilled water equal to 

the average dye volume for standard titration then titrated. Each sample replicate was titrated by adding 5 mL of 

HPO3-CH3COOH to 2 mL of sample extract. Ascorbic acid content (mg.100g-1) was then estimated using the 

following equation: 

𝐴𝑠𝑐𝑜𝑟𝑏𝑖𝑐 𝑎𝑐𝑖𝑑 (
𝑚𝑔

100𝑔
) = (𝑋 − 𝐵) ∗ (

𝐹

𝐸
) ∗ (

𝑉

𝑌
) ∗ 100                    (2) 

Where X and B are the dye volume for sample and blank respectively (mL), F is the mg AA equivalent for 1 mL 

of dye. E is sample weight (5 g), V is the final volume of solution extracted from sample (mL), Y is the sample 

volume used in titration (5 mL). F value is calculated as follow: 

𝐹 =  
𝑤𝑒𝑖𝑕𝑡 𝑜𝑓 𝐴𝐴 𝑖𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 (0.05𝑔)

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 ( 50𝑔)∗(𝑆−𝐵)
∗ 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑡𝑖𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (2 𝑚𝐿)   (3) 

where S is the dye volume for standard (mL).  

2.3.6 β-carotene Measurement 

Evaluation of β-carotene was conducted using the spectroscopy technique described by Scott (2001). Around 10 

g of carrot, 3 g celite and 25 mL of cold acetone were poured into a clean mortar and the mixture was crushed 
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until a coarse paste was formed. The crushed mixture was then filtered using a Buchner funnel (lined with 

Whatman #1 filter paper) attached to a 500 mL flask wrapped in aluminum foil. The extraction and filtration 

process was repeated five times until a colorless extract was obtained and the residue was white. The mortar and 

pestle were washed with 10 mL of acetone and the rinsate passed through the funnel. The filtrate was added 

slowly to a 500 mL separatory funnel with 40 mL petroleum ether (PE). Deionized water (300 mL) was added 

slowly via the sides of the separatory funnel without shaking. The apparatus was sit for 15 min before discarding 

the lower phase. This process was repeated 3 times adding ≈200 mL of deionized water (Nanopure diamond) 

each time. In the last washing the lower phase was discarded completely. The upper phase was collected in a 

round bottom flask after passing it through 15 g of Na2SO4. The separator funnel was then washed with 3 mL of 

petroleum ether and also passed through the funnel with Na2SO4. The PE extract was concentrated using rotary 

evaporator (Buch model R-215) at 35 °C without rotation. After 15 min the extract was then dried using a gentle 

ultra-high pure N2 stream. The sample was then re-dissolved in 4 mL petroleum ether and filtered through a 0.5 

µm PTFE syringe filter into a dry cuvette. β-carotene standard in petroleum ether was prepared using a serial 

dilution. 0.01 g of Type 1 β-carotene ≥ 93% (Sigma C9750) standard was added to 10 mL of PE in a clean 125 

mL bottle wrapped in aluminum foil. The solution was made up to a 100 mL using PE and filtered through a 0.5 

µm PTFE filter. This solution was successively diluted to obtain 1-7 µg.mL-1 β-carotene standards. A standard 

curve was obtained by measuring the absorbance at 450 nm of each standard solution using a spectrophotometer 

(Genesys 10S UV-Vis, Thermo Fisher Scientific, Waltham, MA, USA) and plotting against its respective 

concentration. Samples were diluted appropriately to achieve absorbance readings in the linear portion using 

Beer-Lamberts law. The total carotenoid content was calculated using the formula:  

𝛽 − 𝐶𝑎𝑟𝑜𝑡𝑒𝑛𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (
𝜇𝑔

100𝑔
) =  

𝐴×𝑉(𝑚𝑙)×104

𝐴1%×𝑃(𝑔)
× 100                      (4) 

Where A is the absorbance, V is the total extract volume (mL), A1% is the absorbance at a given wavelength of a 

1% solution in 1 cm light-path spectrophotometer cuvette, P is the sample weight (g). 

2.4 Data Analysis 

Partial least squares regression (PLSR) was implemented to obtain calibration models for quality attributes 

studied. PLSR is known for its capability of handling collinear data such as that obtained from spectroscopic 

systems (Varmuza & Filzmoser, 2009). The SIMPLS algorithm version of PLSR created by De Jong (1993) was 

used. Noise associated with spectroscopic signals is somewhat common. Such noise results from electronic 

components (i.e. A/D converter, detector), scatters from samples, or yielded from sample variation (Varmuza & 

Filzmoser, 2009). Thus, it is often necessary to pretreat spectroscopic data before building the calibration model. 

Several preprocessing techniques were then applied to the raw spectroscopic data including, in addition to 

non-processed data, smoothing using first derivative, smoothing using second derivative, multiplicative signal 

correction (MSC), standard normal variate (SNV), normalization, and weighted baseline. Data was divided into a 

calibration set (80% of the data) and prediction set (20% of the data). Preprocessing was conducted on two 

stages as stated by Rady, Guyer, Kirk, & Donis-González (2014). A 4-fold cross validation technique was 

performed on the calibration set to choose the optimal calibration model based on the root mean square error of 

cross validation (RMSEcv) for the calibration model. The optimal calibration model was then applied on the 

separate set of data to obtain the best prediction model based on the root mean square error of prediction 

(RMSEP) and the ratios of performance to deviation (RPD). 

Reducing the number of wavelengths (independent variables) in the calibration models developed by the PLSR 

technique has the advantage of minimizing both interfering wavelengths and computational time (Heise & 

Winzen, 2002). Additionally, in relatively high dimensional data such as spectroscopic spectra, using selected 

variables in building calibration models helps overcome overfitting and collinearity problems, hence, more 

robust models can be obtained (Benoudjit, Cools, Meurens, & Verleysenet, 2004). In this study, the interval 

partial least squares (IPLS) method was utilized to obtain the most influencing wavelengths. IPLS implements a 

sequential and exhaustive algorithms to deduce the optimum subset of variables (Rady & Guyer, 2015; 

Ekramirad, Rady, Adedeji, & Alimardani, 2017). Based on preliminary analysis, the applied IPLS method in this 

study contained the following configurations: sequential forward mode, window width value of 1 variable, and 

15 latent variables. 

3. Results and Discussion 

3.1 Distribution of Constituents and Spectral Data 

The summary of several descriptive statistics for the measured quality attributes for Nectar carrot roots is shown 
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in Table 1. The level of Vitamin C from this study are lower than those reported by Favell (1998) who reported 

values of 3.7-4.4 mg/100 g. Values of β-carotene in this study were less than those stated in some former studies 

(Zude et al., 2007; Quilitzsch et al., 2005) and higher than those stated by Krähmer et al. (2016). Values of the 

color space, L*, a*, and b* show a strong orange color for samples illustrated by the positive values of a* (more 

into red color) and b* (more yellowness). Values of color parameters deduced in this study showed similar 

values to those reported by Zieliñska, Zapotoczny, & Markowski (2005). Firmness values demonstrated 

significantly higher hardness than previous studies in contrast to TSS and moisture content values that were 

close to what stated in the literature (Favell, 1998). Differences between the values of various attributes obtained 

in this study and those listed in the literatures mainly resulted from the difference in cultivars, growing 

conditions and sampling procedures. 

 

 

Figure 3. Average reflectance spectra for carrot samples after scanned using spectroscopic system in a) Vis-NIR 

region and b) NIR region 

 

Table 1. Summary of the measured quality attributes of carrot roots (cv. Nectar) 

Carrot characteristics Mean ± standard deviation 

L* 51.78±2.00 

a* 18.10±1.79 

b* 41.65±2.52 

Firmness (N) 116.00±12.75 

Total soluble solids (oBrix) 10.59±1.39 

Moisture content (% wet basis) 88.08±1.94 

Vitamin C (mg/100 g) 0.90±0.52 

β-carotene (μg/100 g) 1907.8±484.1 

 

The relative reflectance data acquired from the carrot roots of the whole and sliced samples in the Vis-NIR and 

NIR regions are shown in Fig. 3a-b. In general, whole roots resulted in higher relative reflectance values than 

sliced samples in Vis-NIR and NIR regions which is possibly due to the relatively non-uniform surface of the 

whole roots compared to the slices which yielded more interfering spectra and consequently less absorbed light 

in the former case (i.e. more reflected light). In the case of Vis-NIR region, it was found that only the spectra in 
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the range of 420-895 nm (1901 wavelengths) can be considered valuable for further analysis. An absorption peak 

was observed around 470 nm which has been stated to be related to the carotenes pigment (Liu et al., 2016). 

Another absorption peak was observed around 650 nm which is due to absorption of chlorophyll II (Zude et al., 

2007). In the case of NIR range, only the spectra in the range of 900-1650 nm (470 wavelengths) were carried 

out to the next level of analysis due to the considerable noise levels outside that range. Several absorption peaks 

were observed around 970, 1200, and 1470 nm which were due to the O-H stretching overtone related to 

moisture content (Liu et al., 2016; Workman & Weyer, 2008). It was also observed that NIR spectra showed 

more ripples than the Vis-NIR spectra which illustrated the need for spectral preprocessing.   

3.2 Results of PLSR Models Using All Effective Wavelengths 

The optimal PLSR prediction models obtained are shown in Tables 2 and 3, using all effective wavelengths 

mentioned in section 3.1, and Tables 4-5 using selected wavelengths. The best models are shown by shading in 

all the tables. In the case where all effective wavelengths were used, it was noted that L* color parameter and 

β-carotene were not efficiently predicted. In the case of whole samples, data obtained from the Vis-NIR sensor 

yielded the best prediction models having r(RPD) values of 0.51(0.67) for firmness, 0.90(1.49) for TSS, and 

0.74(1.47) for Vitamin C. Whereas, the data obtained from the NIR sensor yielded the best prediction models for 

a* (r(RPD) = 0.84(0.88)), b*(r(RPD) = 0.86(2.07)), and moisture content (r(RPD) = 0.92(1.76)). In the case of 

the sliced samples, the majority of quality attributes of the prediction models were best predicted using the NIR 

sensor and the prediction performance was close to that obtained for the whole roots. The best prediction models 

for L*, a*, b*, firmness, and moisture content were obtained from the NIR data with (RPD) values of 0.50(0.73), 

0.71(0.86), and 0.78(1.68), 0.69(0.66), and 0.97(1.44), respectively. Whereas, the best models for TSS, Vitamin 

C, and β-carotene were yielded using the Vis-NIR data with r(RPD) values of 0.87(1.55), 0.74(1.47), and 

0.92(1.76), respectively. It is worth stating that color parameters significantly indicate the presence and variation 

of pigments in carrots (Liu et al., 2016; Zude et al., 2007). 

Table 2. Results of the PLSR for the best prediction models using all effective wavelengths for predicting several 

quality attributes of whole carrot samples scanned by Vis-NIR and NIR spectroscopic sensors (shaded rows 

represent prediction models with better performance) 

Sensor Attribute (Y) Preprocessing method for: spectral data 

in stage 1, stage 2, and for attribute (Y) 

Calibration modela Prediction model 

rcal RMSEcv rp RMSEp  RPDp 

Vis-NIR L* Median, 1st derivative, no 0.72 3.09 0.33 2.92 0.76 

a* Median, 1st derivative, no 0.86 3.05 0.71 1.25 1.02 

b* Median, 2nd derivative, power 0.83 4.05 0.75 1.93 1.25 

Firmness (N) Mean, Weighted baseline, no 0.59 0.12 0.51 0.14 0.67 

Moisture content (%wb) Median, 2nd derivative, no 0.77 1.04 0.46 3.51 1.09 

TSS (oBrix) Median, median, power 1.00 0.07 0.90 0.03 1.49 

Vitamin C (μg/g) Median, 2nd derivative, no 0.78 0.74 0.74 0.44 1.47 

β-carotene (μg/100g) Median, median, log 0.65 0.39 0.25 0.40 1.07 

NIR 

 

L* Median, 1st derivative, no 0.68 3.19 0.43 1.64 0.89 

a* Median, no, no 0.99 0.10 0.84 0.11 0.88 

b* Median, no, no 1.00 3.10 0.86 1.24 2.07 

Firmness (N) Median, no, log 0.45 0.14 0.24 0.13 0.61 

Moisture content (%wb) Median, snv, no 0.81 1.12 0.58 3.94 0.97 

TSS (oBrix) Median, normalization, no 0.99 2.41 0.62 1.26 0.85 

Vitamin C (μg/g) Medina, no, log 0.94 0.51 0.71 0.70 0.73 

β-carotene (μg/100g) Median, 2nd derivative, log 0.44 0.40 0.28 0.42 1.04 
a rcal: correlation coefficient for calibration, rp: correlation coefficient for prediction model, RMSEcv: root mean square of error for calibration 

using cross validation, RMSEp: root mean square of error for prediction, RPDp: ratio between performance to deviation for prediction. 
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Table 3. The results of PLSR for the best prediction models with all effective wavelengths for predicting listed 

quality attributes of sliced carrots scanned with Vis-NIR and NIR spectroscopic sensors (shaded rows represent 

prediction models with better performance) 

Sensor  Attribute (Y) Preprocessing method for: spectral data  

in stage 1, stage 2, & for attribute (Y) 

Calibration modela Prediction model 

rcal RMSEcv  rp RMSEp  RPDp 

Vis-NIR L* Median, 1st derivative, log 0.72 0.06 0.34 0.06 0.74 

a* Median, 1st derivative, log 0.88 0.17 0.69 0.08 0.94 

b* Median, 2nd derivative, no 0.83 4.05 0.75 1.93 1.25 

Firmness (N) Mean, 1st derivative, no 0.67 10.42 0.53 14.06 0.64 

Moisture content (%wb) Median, 2nd derivative, no 0.77 1.04 0.46 3.51 1.09 

TSS (oBrix) Mean, median, no 1.00 1.30 0.87 0.55 1.55 

Vitamin C (μg/g) Median, 2nd derivative, no 0.78 0.74 0.74 0.44 1.47 

β-carotene (μg/100g) Median, median, log 0.97 0.35 0.92 0.24 1.76 

NIR 

 

L* Mean, no, no 0.58 0.04 0.50 0.06 0.73 

a* Median, median, no 0.86 3.05 0.71 1.02 0.86 

b* Median, 2nd derivative, power 1.00 0.08 0.78 0.03 1.68 

Firmness (N) Median, 2nd derivative, log 1.00 0.10 0.69 0.12 0.66 

Moisture content (%wb) Median, 2nd derivative, log 1.00 0.01 0.97 0.03 1.44 

TSS (oBrix) Median, snv, log 0.56 0.11 0.40 0.09 1.12 

Vitamin C (μg/g) Medina, median, log 1.00 0.55 0.72 0.39 1.54 

β-carotene (μg/100g) Mean, no, log 0.85 0.33 0.82 0.23 1.86 
a rcal: correlation coefficient for calibration, rp: correlation coefficient for prediction model, RMSEcv: root mean square of error for calibration 

using cross validation, RMSEp: root mean square of error for prediction, RPDp: ratio between performance to deviation for prediction. 

 

The performance of color prediction parameters in this study is comparable to that reported by Zude et al. (2007) 

that had r values of 0.51, 0.55, and 0.76 for L*, a*, and b*, respectively. Firmness measurements are important 

for assessing the shelf life of stored carrot (Mastromatteo, Conte, & Del Nobile, 2012). To our knowledge, no 

one has estimated carrot firmness, Vitamin C, or TSS using a noninvasive method using Vis-NIR spectroscopy 

with cross validation of test set. Results of moisture content are similar to those observed by Liu et al. (2016) in 

which the r value was as high as 0.99 which illustrates the efficacy of the current study for evaluating moisture 

content. The deduced values for β-carotene are comparable to those obtained by previous studies. Zude et al. 

(2007) reported r value of 0.98 using Vis-NIR (350-1,100 nm) or NIR (800-1,700 nm) spectroscopy, whereas 

Quilitzsch et al. (2005) obtained 0.94 r value using FTIR spectrometer (800-2500 nm).  

Table 4. PLSR results for the best prediction models from selected wavelengths used for predicting listed quality 

attributes of whole carrot samples scanned by Vis-NIR and NIR spectroscopic sensors (shaded rows represent 

prediction models with better performance) 

System  Attribute 

(Y) 

Preprocessing method for: spectral data 

in stage 1, stage 2, and for attribute (Y) 

Calibration modela Prediction model 

rcal RMSEcv  rp RMSEp  RPDp 

Vis-NIR L* Median, normalization, power 0.91 0.07 0.65 0.06 0.43 

a* Median, no, log 1.00 0.05 0.91 0.03 2.66 

b* Median, weighted, log 0.93 0.04 0.32 0.10 0.62 

Firmness (N) Median, median, power 1.00 0.08 0.98 0.02 4.80 

Moisture content (%wb) Median, no, log 0.89 0.04 0.80 0.03 1.62 

TSS (oBrix) Median, no, log 1.00 0.11 0.99 0.02 5.93 

Vitamin C (μg/g) Median, median, no 1.00 0.26 0.98 0.11 4.16 

β-carotene (μg/100g) Median, msc, power 0.99 0.55 0.97 0.25 4.51 

NIR 

 

L* Median, 2nd derivative, power 0.93 0.07 0.52 0.06 0.49 

a* Median, median, log 1.00 0.08 0.89 0.05 1.83 

b* Median, median, no 1.00 2.03 0.98 0.44 5.85 

Firmness (N) Mean, median, power 1.00 0.10 0.97 0.04 2.45 

Moisture content (%wb) Median, no, log 0.99 0.01 0.75 0.03 1.47 

TSS (oBrix) Median, median, log 0.96 0.19 0.86 0.08 1.27 

Vitamin C (μg/g) Medina, , msc, no 0.95 0.68 0.82 0.26 1.73 

β-carotene (μg/100g) Median, no, power 0.99 0.43 0.97 0.39 2.92 

rcal: correlation coefficient for calibration, rp: correlation coefficient for prediction model, RMSEcv: root mean square of error for calibration 

using cross validation, RMSEp: root mean square of error for prediction, RPDp: ratio between performance to deviation for prediction.  
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3.3 Results of PLSR Models Using Selected Wavelengths 

After including only the selected wavelengths, results for the best prediction models are shown in Tables 4-5 for 

whole and sliced samples. While prediction models for L* and moisture content were not considerably improved, 

it was obvious that most quality parameters evaluated in this study were significantly improved. For whole 

tubers, prediction of b* was best achieved by NIR sensor with r(RPD) values of 0.98(5.85), whereas, the 

Vis-NIR sensor secured the optimal prediction models for a*, firmness, TSS, Vitamin C, and β-carotene with 

r(RPD) values of 0.91(2.66), 0.98(4.80), 0.99(5.93), 0.98(4.16), and 0.97(4.51), respectively. Better performance 

for prediction models for sliced samples was also noticed when using selected wavelengths. Color parameters 

were best predicted using the NIR sensor with r(RPD) values of 0.92(1.97), 0.96(2.83), and 0.86(1.25) for L*, a*, 

and b*, respectively. The Vis-NIR sensor, however, yielded the best prediction models for other parameters with 

r(RPD) values of 0.99(6.65), 0.98(3.91), 0.97(2.03), 0.98(4.05), and 0.98(4.43) for firmness, moisture content, 

TSS, Vitamin C, and β-carotene respectively. Liu et al. (2016) used a multispectral imaging system to evaluate 

several quality parameters during carrot drying. The wavelengths implemented in such study had close value to 

those obtained in the current study using IPLS. In the case of the Vis-NIR sensor, wavelengths selected for the 

color parameters and firmness for the sliced samples showed close values to those used by Liu et al. (2016). 

Whereas for whole roots, all studied quality attributes except Vitamin C showed close values for selected 

wavelengths to the aforementioned study. In the case of the NIR sensor, fewer wavelength showed common 

trend with the previous study compared to the Vis-NIR sensor with Firmness and Vitamin C having such 

similarity for the sliced samples, and the firmness, a*, and moisture content for the whole roots.  

Table 5. The results of PLSR for the best prediction models using selected wavelengths for predicting several 

quality attributes of sliced carrot samples scanned with Vis-NIR and NIR spectroscopic sensors (shaded rows 

represent prediction models with better performance) 

System 

type 

Attribute 

(Y) 

Preprocessing method for: spectral data  

in stage 1, stage 2, and for attribute (Y) 

Calibration modela Prediction model 

rcal RMSEcv  rp RM

SEp  

RPDp 

Vis-NI

R 

L* Mean, weighted baseline, power 1.00 0.04 0.81 0.09 0.45 

a* Median, weighted baseline, log 0.99 0.10 0.59 0.26 0.27 

b* Median, weighted baseline, log 1.00 0.14 0.71 0.24 0.25 

Firmness (N) Mean, no, power 1.00 0.02 0.99 0.01 7.08 

Moisture content (%wb) Median, median, no 1.00 1.61 0.98 0.98 3.91 

TSS (oBrix) Median, median, no 1.00 1.09 0.97 0.42 2.03 

Vitamin C (μg/g) Median, no, power 1.00 0.08 0.98 0.04 4.05 

β-carotene (μg/100g) Mean, no, log 1.00 0.27 0.98 0.10 4.43 

NIR 

 

L* Mean, no, power 0.89 0.05 0.92 0.02 1.97 

a* Median, no, power 1.00 0.03 0.96 0.02 2.83 

b* Median, no, log 0.97 0.04 0.86 0.05 1.25 

Firmness (N) Median, 2nd derivative, log 0.97 0.10 0.73 0.10 0.72 

Moisture content (%wb) Mean, 1st derivative, log 0.79 0.01 0.70 0.03 1.25 

TSS (oBrix) Mean, median, log 0.85 0.11 0.84 0.05 1.61 

Vitamin C (μg/g) Medina, median, no 0.90 0.90 0.85 0.35 1.83 

β-carotene (μg/100g) Mean, no, log 0.92 0.34 0.97 0.14 3.15 

rcal: correlation coefficient for calibration, rp: correlation coefficient for prediction model, RMSEcv: root mean square of error for calibration 

using cross validation, RMSEp: root mean square of error for prediction, RPDp: ratio between performance to deviation for prediction 

 

Table 6. Number of selected Wavelengths using IPLS for predicting quality attributes of carrot samples (whole 

and sliced) that were scanned using Vis-NIR and NIR sensors 

Attribute  
Vis-NIR sensor NIR sensor 

Whole samples Sliced samples Whole samples Sliced samples 

L* 16 19 24 10 

a* 17 15 23 19 

b* 11 17 17 11 

Firmness 16 16 20 20 

Moisture content 16 16 14 11 

TSS 16 15 17 12 

Vitamin C 17 17 13 14 

Beta-carotene 16 19 12 15 

 

The number of wavelengths selected from each sensor to predict various constituent for sliced and whole 
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samples are shown in Table 6. It was clearly shown that the wavelengths required to improve prediction models’ 

performance were significantly decreased using the IPLS. The selected wavelengths from the Vis-NIR sensor for 

whole carrots were almost similar for all constituents. Whereas, those wavelengths were slightly larger in the 

case of sliced samples. In the case of the NIR sensor, selected wavelengths for whole roots were larger than for 

sliced samples for most constituents. Additionally, the selected wavelengths are also illustrated in Figure 4 for 

Vis/NIR system and Figure 5 for NIR system. In the case of Vis/NIR spectra, selected wavelengths for 

β-carotene showed agreement with results presented by Liu et al. (2016) where there was an absorption peak 

around 470 nm for sliced samples or whole roots. In the case of NIR spectra of sliced samples, selected 

wavelengths for moisture content included 1474 nm which is close to the common absorption peak of moisture 

(1470 nm) as showed by Zude, Birlouez-Aragon, Paschold, & Rutledgem (2007). For whole roots, there was a 

selected wavelength of 968 nm which is also close to 970 nm, the common absorption peak for water. 

Additionally, TSS-selected wavelengths include 1061 nm which is close to one of the wavelengths listed in the 

last study, 1054 nm.  

 

 

Figure 4. Number of selected wavelengths obtained using IPLS and Vis/NIR spectroscopy for different quality 

characteristics of carrot samples, a) sliced samples, b) whole roots 
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Figure 5. Number of selected wavelengths obtained using IPLS and NIR spectroscopy for different quality 

characteristics of carrot samples, a) sliced samples, b) whole roots 

 

4. Conclusions 

In this study, several quality characteristics of carrot roots were evaluated using spectroscopic data obtained from 

Vis-NIR and NIR sensors. Results obtained from the PLSR analysis proved the use of Vis-NIR spectroscopy as a 

noninvasive rapid method for quick and accurate estimation of quality constituents of carrots that are associated 

with aesthetic appeal for the consumers such as color, firmness, moisture content or those which are related to 

internal quality such as TSS, and micronutrients (Vitamin C and β-carotene). IPLS method allowed feature 

selection (the reduction of wavelengths associated with prediction) for each of the quality attribute. Obtaining 

high quality and nutritionally rich carrot juice is dependent on maintaining a high quality carrot roots during its 

supply chain. This is better done if there is a means for quick and continuous tracking of the physiological status 
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and chemical constituent of the carrots after harvest, and shortly before processing. The approach proved in the 

study can serve that purpose. Future work will consider larger data set for model building with the possibility of 

increasing the robustness and stability of the prediction models.  
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