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Abstract 

Amaranth-oat composites were developed using gluten free amaranth flour containing essential amino acids and 

minerals with oat products containing β-glucan, known for lowering blood cholesterol. Amaranth flour and oat 

bran concentrate (OBC) composites (1:4) were processed using different technologies, including dry mixing, 

baking, steaming, cold wet blending, and high speed homogenizing (Polytron PT6000) with cold water or hot 

water. The results showed that water holding capacities, pasting, and rheological properties were dramatically 

increased by wet blending, Polytron with cold water, and Polytron with hot water followed by drum drying. The 

processing procedures created dissimilar physical properties that will enhance the application of ancient grains 

and oat for functional foods that are suitable for people who are gluten-intolerant. In addition, the dietary fiber 

contents of composites were increased by the incorporation of OBC. The composites can be inexpensively 

prepared and processed. The new healthful products will be affordable for people who suffer from celiac disease 

or gluten-intolerant. These innovative gluten-free functional food products will help millions of gluten sensitive 

consumers enjoy heart-healthy functional foods. 
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1. Introduction 

Amaranth (amaranthus caudatus) grains contain about thirty percent more protein than cereals like rice, 

sorghum and rye (Macvean & Pöll, 1997). Amaranth grains are important nutritional sources of thiamine, niacin, 

riboflavin, and folate, and dietary minerals including calcium, iron, magnesium, phosphorus, zinc, copper, and 

manganese that are comparable to common grains such as wheat germ, oats and others; amaranth flour also has 

an unusually rich source of the essential amino acid lysine that is low in other grains (Myers & Putnam, 1988; 

USDA, 2014). Unlike the protein found in wheat and rye, amaranth contains a promising source of protein for 

people that are sensitive to gluten since it is gluten free (USDA, 2014). Amaranth has valuable nutrient contents 

for gluten-free diets compared to buckwheat, corn, millet, wild rice, oats and quinoa (Gallagher et al., 2004). In 

addition, amaranth seed oil may be of benefit for those with hypertension and cardiovascular disease. Moreover, 

regular consumption of amaranth reduces blood pressure and cholesterol levels while improving antioxidant 

status and some immune parameters (Czerwiński et al., 2004; Martirosyan et al., 2007). Amaranth flour has been 

evaluated as a supplement to wheat flour. The different levels of amaranth flour were mixed with wheat flour and 

baking ingredients that were fermented, molded, pan-proved and baked. The loaf volume decreased with 

increasing amounts of amaranth grain flour. Loaf volumes were significantly decreased for breads containing 

over15% amaranth flour compared to wheat flour bread on sensory qualities (Ayo, 2001).  

Although amaranth has excellent nutritional value, it has low viscosity in contrast to oats that have high viscosity 

and water holding capacity. Oat products, such as whole oat flour (WOF) and oat bran concentrate (OBC), 

contain β-glucan that has beneficial health effects on reducing serum cholesterol and postprandial serum glucose 

levels (Klopfenstein, 1988). In addition, the phenolic and other antioxidant compounds in oat provide health 

benefits (Madhujith & Shahidi, 2007; Inglett et al., 2011; Inglett & Chen, 2012). Oat hydrocolloid products 
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containing 𝛽-glucan have numerous functional food applications to reduce fat content and calories in a variety 

of foods (Lee et al., 2004); control the rheology and texture of food products (Rosell et al., 2001); modify starch 

gelatinization and retrogradation (Lee et al., 2005); and also provide freezing/thawing stability (Lee et al., 2002). 

Rheological and physiochemical evaluations of jet-cooked oat bran have been studied in low calorie cookies by 

replacing 20% of the shortening with oat -glucan hydrocolloids (Lee & Inglett, 2006).  

Besides viscosities, amaranth flour and oat products complement each other due to their nutrition. Amaranth 

grains are short of some essential amino acids, such as leucine and threonine (Bressani et al., 1989; Kaufmann & 

Weber, 1990) whereas these are abundant in oats (Pisarikova et al., 2006). Thus, oat products were used to 

produce composites containing -glucan in combination with amaranth’s distinctive protein profile along with its 

gluten free uniqueness.  

Although amaranth and oat composites were studied previously (Inglett et al., 2014), the information on 

processed amaranth and oat composites were not scientifically studied and reported. In this exploratory study, the 

amaranth-oat composites (1:4) were processed using different technologies, and their physical properties were 

evaluated. The objectives of this study were to develop innovative amaranth-oat composites using different 

technologies that keep the original physical and nutritional values; and to find effect of thermo-mechanical 

processing on physical properties of composites. The physical properties of processed amaranth-oat composites 

using different technologies could provide useful information for new functional food products.  

2. Materials and Methods 

2.1 Ingredients 

Organic gluten free amaranth flour was purchased from Dakota Prairie Organic Flour Co. Harvey, ND, USA. Oat 

bran concentrate (OBC) was supplied by Quaker Oats (Chicago, IL, USA).  

2.2 Processing Procedures 

Treatment 1: dry mixing. The amaranth-oat composite was prepared by combining amaranth flour with 20% 

OBC. The amaranth flour (960 g) was mixed with 20% (w/w) OBC (240 g) for 5 min using a wire whip 

(K5AWW) by a Kitchen Aid mixer (Benton Harbor, MI) to obtain a dry blended composite, and passed through 

a 50 mesh screen. 

Treatment 2: baking. Amaranth-oat composite (200 g) from treatment 1 was roasted at 375 C for 10 min in a 

conventional oven, and then passed through a sifter with 50 mesh screen.  

Treatment 3: steaming. Amaranth-oat composites (200 g) from treatment 1 was wrapped in cloth and steamed at 

100 C for 20 min, passed through a sifter with 50 mesh screen, oven dried at 45C, and passed through a 50 

mesh screen. 

Treatment 4: blend with cold water. Amaranth-oat composite (200 g) from treatment 1 was added gradually and 

mixed in water (2.5 L, 80 g kg-1 solids, w/w) by a commercial heavy duty Waring blender (Model 37BL84, 

Dynamics Corporation of American, New Hartford, Connecticut) for 5 min at 3000 rpm. The collected slurries 

were subsequently dried on a pilot-scale double drum dryer (model 20; Drum Dryer and Flaker Company, South 

Bend, IN) heated with steam at 308 kPa (30 psig) and 135 °C. The drum dried material was ground by an IKA 

mill (M20, IKA® Works, Inc., NC, USA), and passed through a sifter with 50 mesh screen. 

Treatment 5: Polytron with cold water. Polytron is a homogenizer that was used in this study because the 

rotor/stator principle of Polytron is ideal for grinding tough tissues by sonically disrupting the cells as well as 

mechanically. Amaranth-oat composite (200 g) from treatment 1 was added gradually to water (2.5 L, 80 g kg-1 

solids, w/w) in a 4-L container while being stirred, and then sheared using a Polytron (PT6000, Kinematica AG, 

Littau, Switzerland) at about 3,000 rpm before increasing the rpm to about 5000 for 10 min. The collected 

slurries were subsequently dried on a pilot-scale double drum dryer (model 20; Drum Dryer and Flaker Company, 

South Bend, IN) heated with steam at 308 kPa (30 psig) and 135 °C. The drum dried material was ground by an 

IKA mill (M20, IKA® Works, Inc., NC, USA), and passed through a sifter with 50 mesh screen.  

Treatment 6: Polytron with hot water. Amaranth-oat composite (200 g) from treatment 1 was added gradually to 

hot water at 90C (2.5 L, 80 g kg-1 solids, w/w) in a 4-L container, and cooked at 100 C for 5 minutes on a hot 

plate, and then sheared using a Polytron (PT6000, Kinematica AG, Littau, Switzerland) at about 3,000 rpm 

before increasing the rpm to about 5000 for 10 min. The collected slurries were subsequently dried on a 

pilot-scale double drum dryer (model 20; Drum Dryer and Flaker Company, South Bend, IN) heated with steam 

at 308 kPa (30 psig) and 135°C. The drum dried material was ground by an IKA mill (M20, IKA® Works, Inc., 

NC, USA), and passed through a sifter with 50 mesh screen. 
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2.3 Water Holding Capacity (WHC) 

The WHC was determined according to a previous procedure with minor modifications (Ade-Omowaye et al. 

2003). Each sample (2 g, d.b. weight) was mixed with 25 g of distilled water and vigorously mixed for 1 min to a 

homogenous suspension using a Vortex stirrer, held for 2 h, and centrifuged at 1,590 g for 10 min. Each 

treatment was replicated twice. Water-holding capacity was calculated by the difference between the weight of 

water added and decanted on dry basis. 

2.4 Pasting Property Measurement 

The pasting properties of samples were evaluated using a Rapid Visco Analyzer (RVA-4, Perten Scientific, 

Springfield, IL, USA). Each sample (2.24 g d.b.) was made up to a total weight of 28 g with distilled water in a 

RVA canister (80 g kg-1 solids, w/w). The viscosity of the suspensions was monitored during the following 

heating and cooling stages. Suspensions were equilibrated at 50°C for 1 min, heated to 95°C at a rate of 

6.0°C/min, maintained at 95°C for 5 min, and cooled to 50°C at rate of 6.0°C/min, and held at 50°C for 2 min. 

For all test measurements, a constant paddle rotating speed (160 rpm) was maintained throughout the entire 

analysis except for 920 rpm in the first 10 s to disperse sample. Each sample was analyzed in duplicate. The 

results were expressed in Rapid Visco Analyser units (RVU, 1 RVU =12 centipoises). 

2.5 Rheological Measurements 

Samples from the RVA were cooled to 25C, equilibrated overnight, and loaded on a rheometer (AR 2000, TA 

Instruments, New Castle, DE, USA) with a 6 cm diameter parallel acrylic plate with 1 mm gap to the surface. The 

outer edge of the plate was sealed with a thin layer of mineral oil (Sigma Chemical Co., St Louis, MO, USA) to 

prevent dehydration during the test. All rheological measurements were carried out at 25°C using a water 

circulation system within ± 0.1C. A strain sweep experiment was conducted initially to determine the limits of 

linear viscoelasticity; and then a frequency sweep test was carried out to obtain storage modulus (G') and loss 

modulus (G") at frequencies from 0.1 to 10 rad s-1 using a fresh sample. A strain of 0.5%, which was within the 

linear viscoelastic range, was adopted for the dynamic experiments. The steady shear viscosity of the paste was 

measured as a function of shear rates from 1 to 100 s-1. The steady shear measurements apply varying steady 

shear deformation on sample material, with magnitude of each deformation depending on user-specified shear 

rates. All rheological measurements for samples were performed in duplicate. 

2.6 Dietary Fiber Assay 

The enzymes for assay were provided by Megazyme (Megazyme International, Ireland). The determination for 

dietary fiber is based on the methods of Lee et al. (1999) and Prosky et al (1998) with minor modification.  

2.7 Statistical Analysis 

Data from replicated samples were analyzed by SAS (Cary, NC) software using analysis of variance with 

Duncan’s multiple comparison adjustment to determine significant differences (P< 0.05) between treatments 

(SAS Institute, 1999). 

3. Results 

3.1 Water-Holding Capacity 

Water-holding capacity (WHC) is an important physical property of food products. Even at very low 

temperatures, absorbed water influences the mechanical performance in unexpected ways (Baschek et al., 1999). 

The water-holding capacities (WHC) of the starting materials and their composites are shown in Fig. 1. Overall, 

the WHC of amaranth-oat composites were all higher than that of amaranth (128.02 %). The composites blended 

with cold water had the highest water-holding capacity (724.73%) whereas the composite processed using 

Polytron with cold water had the second highest WHC (607.7%) among all the samples tested. The shearing 

forces of blending to promote molecular breakdown that contributed to increased water absorption. Interestingly, 

the WHC of the composite using Polytron with hot water was only about half of the WHC for the composite 

using Polytron with cold water. Water is considered to be active only when attached to polymer chains by 

hydrogen bonds. The properties can be changed by water in different ways at low and high temperatures 

(Baschek et al., 1999). The possible reason is that heat may denature a protein by disrupting hydrophobic and 

hydrogen bonds, resulting in reducing WHC by Polytron with hot water. Amaranth–oat composites can be 

widely used in different applications in the food industry because of their ability to retain water compared to 

amaranth flour alone, also notable for their thickening and gelling properties, synthesis control, and emulsion 

stabilization.  
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Figure 1. Water holding capacity of amaranth, oat, and processed amaranth and oat bran composites 

3.2 RVA Pasting Properties 

As shown in Fig.2, the pasting curves of all samples had dissimilar patterns indicating different pasting 

properties. The viscosity of OBC increased gradually (7 RVU/min) to the initial peak (100 RVU) after the 

temperature reached 95C, remaining nearly constant viscosity during heating, and then increased sharply (10 

RVU/min) during cooling resulting in the highest final viscosity (210 RVU) among all samples. The OBC 

viscosity increasing during the heating and shearing which is possibly due to starch gelatinization and interaction 

with β-glucan in OBC, resulting in an entanglement of molecules during cooling. This high final viscosity 

indicated the matrix formation with greater stability under heat and shear. The steamed composite had the 

highest sharp initial peak (84 RVU) at 95C among composites. The high initial peak suggested starch 

gelatinization of composites. The initial peaks of dry mixed (55) and amaranth flour (50) composites were 

lower than the steamed composite (84 RVU). The viscosity pattern from the steamed composite was similar to 

dry mixed and amaranth flour. The pasting curve for baked composite was increased during heating, and reached 

the same high final peak as steamed composite. No sharp initial peak was observed for baked composite as 

observed for steamed and dry mixed composites. It may be caused by heating over 100C baking temperature, 

causing denatured protein or changed structures of starch, and influencing starch gelatinization. For blended 

composites with cold water, the pasting curve increased gradually during heating reaching a final peak (81 

RVU). The final peak ( 81 RVU) of blended composites with cold water was slightly lower than the steamed ( 

97 RVU) and the baked (95 RVU) composites but it was higher than the composite using Polytron with cold 

water (23 RVU) and hot water (5 RVU). No visual distinguishing initial peaks were observed for composites by 

blender and Polytron. The high shearing by blender or Polytron may break hydrogen bounds and denature 

proteins resulting in low initial viscosities. Also, the composites using blender and Polytron were drum dried. It 

is known that the viscosity of completely gelatinized starch slurry will not increase during heating (Guha et al. 

1998). The viscosity of amaranth showed the initial peak (50 RVU) at 95C, and then the viscosity was kept 

constant until reached a final viscosity (57 RVU). Overall, all composites had higher final viscosities than that 

of amaranth, in exclusion of composites using Polytron. The high final viscosities most likely were caused by the 

beta glucan in OBC. The high final viscosities could be related to the stability of products after heating. These 

results suggested that those composites would be suitable for food products receiving heating and shearing 

treatments. 

Improvement in the textural properties of food using oat β-glucan hydrocolloids has been reported (Inglett et al., 

2014). The RVA data can provide useful information for food processing and product development. Composites 

with low pasting viscosity can be used in food formulations, such as beverages or instant porridge. Composites 

with high viscosity may be suitable for products with improved texture quality and health benefits, such as 

breads, nutritional bars, muffin, and cookies.  
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Figure 2. Pasting curve of amaranth, oat and processed amaranth-oat composites 

3.3 Rheological Properties 

The dynamic viscoelastic properties have been related to the product quality (Lee & Inglett 2006). The G’ and G” 

against frequency for all the sample materials are displayed in Fig. 3. The G', an elastic (storage) modulus, 

represents the non-dissipative component of the mechanical properties of a material and reflects its elastic 

characteristics. On the other hand, the viscous (loss) modulus (G") characterizes the dissipative part of the 

mechanical properties and represents the viscous flow of the material. The moduli (G' and G") of all samples 

exhibited slight frequency dependence, representing the gel properties of samples. Moreover, all elastic moduli 

G' were greater than viscous G" throughout the measured frequency range at different levels implying more 

solid-like behaviors, with the exception of the composites using Polytron with hot water (Fig.3). Particularly, the 

large differences between G' and G" were observed for OBC, which suggested that the material should be 

classified rheologically as elastic gels (Lee & Inglett 2006; Lai & Cheng, 2004). It is known that if G' > G", the 

materials exhibited a viscoelastic solids behavior and the deformation on the linear range will be essentially 

elastic or recoverable (Gravier et al., 2004). The highest storage G' and loss G" moduli values were observed for 

OBC among all samples, indicating OBC had the greatest viscoelastic properties, which were contributed by the 

network forming with strong amylose and amylopectin interactions of OBC. The elastic (storage) and viscous 

(loss) moduli of steamed and baked composites are nearly identical, suggesting similar rheological properties. 

Also, elastic (storage) moduli of steamed and baked composites were higher than other composites, suggesting 

they have greater elastic properties than the remaining composites. Both G' and G" for the composites using 

Polytron with hot water were considerably lower than other composites; the curves of the moduli were more 

frequency dependent; and the G” were higher than G’ at high frequencies. This implied that the composites using 

Polytron with hot water exhibited viscoelastic fluid behaviors. The hydrothermal shearing by Polytron resulted in 

breaking down hydrogen bonds. Overall, elastic modulus G' for the steamed, baked, dry mixed, and blended 

composites were all higher than that for amaranth flour, with the exclusion of two composites using Polytron. It 

suggested that the elastic behaviors of amaranth-OBC composites were improved by OBC.  

Furthermore, these rheological patterns of the amaranth-oat composites were clearly described by the tan δ 

values (loss modulus G"/storage modulus G') (Fig. 4). The values of tan δ indicate the ratio of energy lost to the 

amount of energy stored during a test cycle. The phase shift  is defined by  = tan-1(G"/G'), which indicates 

whether a material is solid (= 0), liquid (= 90), or between (0 < < 90). Therefore, the values of tan  are 

from zero to infinity; and tan  = 1 means G' = G", tan  <1 represents G'>G", and tan  >1 indicates G'<G". The 

tan δ has been used for food products to indicate the strong relationship between the viscous behavior and the 

degree of casein hydrolysis (Gravier et al. 2004). Except the composite using Polytron with hot water, all tan δ 

values were smaller than 1, representing elastic properties over viscous properties (G'>G"). The tan δ values of 

amaranth and amaranth-OBC composites were also slightly increased with frequencies. Specially, tan δ values 

for the composites using Polytron with hot water increased considerably with increased frequencies (Fig.4), 

representing more viscous behaviors than elastic properties at higher frequencies. In contrast, tan δ was 
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decreased with increasing frequency for OBC (Fig.4). This elastic property of OBC was contributed by the 

components and structures of OBC. Tan  of steamed and baked amaranth-OBC composites were lower than 

amaranth flour, indicating improved elastic properties by OBC and amaranth interactions. The enhanced elastic 

property can provide better shape retention during cooking and handling.  

The apparent viscosities of the samples verses shear rate were illustrated in Fig. 5. Non-linear Rheological 

properties of food products, specifically apparent viscosity, have been used as references for predicting their 

processing performance. Most food processing and mastication occur in a shear rate range of 1 to 100 s-1 

(Bloksma, 1998). All of the samples exhibited shear thinning behavior over the entire measured shear rates at 

25°C; the apparent viscosities of amaranth, OBC and its composites were decreased with the shear rate (Fig.5). 

Shear-thinning behavior can be observed in many food materials such as soy, rice, and wheat flour. This type of 

shear-thinning behavior can be attributed to the disruption of random coil polymers and/or their parallel 

alignment alone with flow stream during shearing (Salamone, 1996). The OBC had the highest apparent 

viscosity while the composite using Polytron with hot water had the lowest apparent viscosity. All composites 

had higher apparent viscosity than amaranth with the exceptions of composites prepared with Polytron. The 

apparent viscosities of baked, steamed, and blended composites were very close to each other suggesting those 

composites could have a similar thickening-effect in food processing (Fig.5). Shear-thinning behaviors of 

materials have several potential advantages in food applications. This behavior is favorable in industrial 

operations such as mixing and pumping. In addition, it was reported that the polysaccharide solutions in which 

viscosity decreases rapidly at shear rates are easily and quickly swallowed (Szczesniak & Farkas, 1962). Hence, 

the shear-thinning behavior can contribute to a light and non-slimy mouthfeel for food products.  

The rheological trends of the samples were in agreement with the RVA data (Fig.2 & Fig 5). Because the 

experimental conditions we adopted were similar to actual processing situations, all our findings on rheological 

characteristics could be beneficial for processing and developing amaranth-OBC composites for new food 

applications.  

 

Figure 3. Dynamic viscoelastic properties of amaranth, oat and processed amaranth-oat composites 
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Figure 4. Values of tan δ versus frequency (rad/s) for amaranth, oat and processed amaranth-oat composites 

 

Figure 5. Apparent viscosity versus shear rate for amaranth, oat and processed amaranth-oat composites 

 

3.4 Dietary Fiber Content 

Of the under-consumed nutrients, calcium, potassium, dietary fiber, and vitamin D are considered nutrients of 

public health concern because low intakes are associated with health concerns (Health and Human Services Dept. 

and Agriculture Dept., 2015). In the United States, the recommended dietary fiber intake is 14g/1,000kcal. For 

an average adult, this means a daily intake of 25g (female) or 38g (male). Most Americans only consume about 

half of the recommended intake (13.5 and 18g, respectively). This shortage in our diet is called the fiber gap.  

The dietary fiber contents of composites were displayed in Table 1. The dietary fiber ranged from 8.85% to 

10.25%, 4.83% to 5.50 %, and 14.09 to 15.95% for insoluble, soluble, and total dietary fiber, respectively. The 

steamed composite had the highest insoluble (10.25%) and total (15.35%) dietary fiber content whereas dry 

mixed composite had the highest soluble dietary fiber (5.50%) among all composites. The dry mixed composites 

and the steamed composites were processed with temperature under 100 °C. The volatized compounds of dietary 
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fibers in dry mixed and steamed composites will not be lost as baked composites at 375°C. The total dietary fiber 

contents for composites using blender and Polytron with cold or hot water were slightly lower than steamed 

composites. Some dietary fibers may be lost on the hot drum at 135°C during drum drying. The effect of 

different heating methods on dietary fiber content was reported previously (Angrade et al., 2014). Amaranth 

contains about 6.7 % of total dietary fiber (USDA Nutrition Database, 2017). OBC contained 12.4% soluble 

fiber beta glucan (Kim et al. 2008). Thus, dietary fibers contents in composites were greatly improved by the 

addition of oat bran concentrate. 

Table 1. Dietary fiber contents of composites 

Treatment Insoluble (%) Soluble (%) Total 

Dry Mix 8.85 ± 0.06 b 5.50 ± 0.05 a 14.36 ± 0.01 b 

Baked 9.45 ± 0.42 b 4.83 ± 0.16 c 14.65 ± 0.58 ab 

Steamed 10.25 ± 0.35 a 4.96 ± 0.04 bc 15.35 ± 0.31 a 

Blended 9.18 ± 0.11 b 5.22 ± 0.37 abc 14.39 ± 0.48 b 

Cold Polytron 9.01 ± 0.20 b 5.31 ± 0.01 ab 14.35 ± 0.20 b 

Hot Polytron 8.90 ± 0.25 b 4.99 ± 0.03 bc 14.09 ± 0.21 b 

Means ± standard deviation; n=3; means followed by the same letter within the same column are not significantly different (P>0.05). 

 

4. Conclusion 

Amaranth-oat composites combined the oat soluble fiber β-glucan from oat bran and special amino acids of 

amaranth along with gluten free quality. Amaranth flour and oat bran concentrate (OBC) composites (1:4) 

processed with different technologies revealed some interesting physical properties. The results showed that 

water holding capacities, pasting, and rheological properties were dramatically increased by wet blended, cold 

wet Polytron, hot wet Polytron followed by drum drying. Also, the different processing procedures created 

dissimilar functional properties for enhancing various nutritional food applications, such as bakery, beverage, 

and instant porridge. These composites were prepared using simple and low-cost procedures and methods. It is 

predicted that the costs of these new commercial products would not be expensive for people having celiac 

disease, other gluten-intolerance, and poor diet. Innovated gluten-free functional food products could potentially 

impact millions of Americans’ health and wellbeing who are sensitive to gluten; this in turn can potentially help 

reduce the increase in medical care costs. 
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