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Abstract 

The time-dependent and time-independent rheological properties of Barhi date syrup have been investigated. 
Rheological measurements were performed with a rotational viscometer with parallel plate geometry. The date 
syrup showed thixotropic behavior and a first order exponential decay model characterized the time-dependent 
behavior. The rate constant of the structure breakdown was found to be a function of shear rate. The steady shear 
flow measurements showed that the date syrup is a non-Newtonian material fit the power law model (p <0.001). 
The Arrhenius model described the effect of temperature on consistency coefficient; the estimated parameters 
from the Arrhenius equation were used to develop a prediction rheological model for the apparent viscosity. The 
model accurately predicts the experimental data even when extrapolating beyond parameter estimation 
temperature range. The time-independent viscosity model was satisfactory for modeling date syrup despite the 
presence of thixotropic behavior. 
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1. Introduction 

The fruit of the date palm (Phoenix dactylifera L.) is one of the most economically important fruit in the Middle 
East and North African countries. Dates are important for human nutrition because they are a rich source of 
carbohydrates, proteins, minerals, dietary fiber and some vitamins in addition to being a source of rapid energy 
(Jasim Ahmed, Almusallam, & Al-Hooti, 2013; Al-Hooti, Sidhu, Al-Saqer, & Al-Othman, 2002; Al-Shahib & 
Marshall, 2003; El-Nagga & Abd El–Tawab, 2012). Dates are mostly consumed as a whole fruit or in processed 
form such as date paste or date syrup. Date syrup is one of the major processed forms of the dates. Date syrup is 
not produced like fruit juice by pressing but produced by the addition of potable water to the dates to dissolve 
sugars and other components, which is then subjected to a series of purification and concentration steps. Demand 
for date syrup in the food industry as a natural sweetener packed with nutrients is growing, and there is much 
potential for new food products that contain date syrup.  

Studies on date processing are very limited, Ahmed and Ramaswamy (2005) investigated the effect of 
temperature on viscoelastic properties and visual color degradation kinetics of dates (Lulu cultivar). Recently 
Gabsi, Trigui, Barrington, Helal and Taherian (2013) determined the rheological properties of date syrup from 
three Tunisian cultivars (Menakher, Alligue & Lemsi). The date syrups from the Tunisian cultivars were found to 
follow the power law with a temperature sensitive flow behavior index. Razavi, Habibi Najafi, & Alaee (2007) 
investigated the rheological properties of low fat sesame pastes with blended date syrup as well as fat 
replacement with guar gum, xanthan and starch. They found that all sesame paste/date syrup blends exhibited 
non-Newtonian pesudoplastic behavior at all temperature and levels of fat substitution. The power law model 
was the best model that fitted the shear stress and sheer rate of dates blended with sesame paste with and without 
fat replacer. 

The rheological behavior of syrup such as molasses is an important factor that affects the efficiency of the 
various production and refining processes such as boiling, crystallization, separation and pumping (Leong & 
Yeow, 2002). Rheological properties are an important quality control parameter in food industry during 
production, they provide insight into the food’s physical properties. This will help in understanding the 
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underlying mechanisms of momentum and heat transfer (Kaur, Kaler, & Aamarpali, 2002). Information related to 
the rheological properties of date syrup is quite scares despite the growth in the date processing industry. The 
aim of this work is to develop a complete rheological characterization model for date syrup.  

2. Materials and Methods 
2.1 Materials 

Commercially-certified organic date syrup from Barhi dates produced by the Emirates Date Factory (Al-Saad, 
UAE) was purchased from a local supermarket. The total soluble solids were measured with a digital 
refractometer at 20 oC.  

2.2 Sugars and Minerals Content 

Sugars in the date syrup samples were determined using High-performance liquid chromatography (HPLC) on a 
Waters Alliance 2695 system (Waters Corporation, Milford, MA) using a Waters Refractive Index Detector 
(Waters 2410) and column μ−Βondapack NH2 (300 mm length x 3.9-mm id x 10 μm particle size, Waters 
084040 ) according to AOAC method 977.20. The mineral contents were determined using inductively coupled 
plasma atomic emission spectrometry on a Varian ICP-OES model 710-ES (Varian-Vista-MPX; Varian, Inc., 
Palo Alto, CA, USA) according to the standard operating protocol. Measurements were made in triplicates 

2.3 Rheological Measurements 

An HR-2 Discovery Hybrid Rheometer (TA Instrument, New Castle, DE, USA) equipped with a Peltier heater 
was used for all the rheological measurements. Trios v3.0 software controlled the rheometer and was used for 
data collection and analysis. A parallel plate geometry having 40 mm diameter with a gap of 1000 µm was used 
for all measurements. Dynamic rheological measurements were performed at 25 oC with a strain of 2%, which 
was confirmed to be in the linear region by performing strain sweep testing at 10 rad/s. Measurements of yield 
stress were performed at 25 oC on a concentric cylinder system consisting of a 28 mm vane bob with a length of 
42 mm and a cup diameter of 37 mm. The sample was carefully loaded on the cup to minimize any disturbance 
to the sample structure and allowed to rest for 30 minutes before taking measurements. The rheometer was set at 
a constant speed of 0.27 RPM and span time of 5 minutes; this system was used to record the shear stress and 
shear rate. The steady shear flow runs were performed at 15 oC, 25 oC, 35 oC, 45 oC and 55 oC at a shear rate of 2 
up to 300 1/s. Temperature sweep testing used steady shear flow at a shear rate of 50 1/s and 150 1/s. 
Measurements we performed at least in duplicate, and the average value was reported. 

2.4 Time-Independent Rheological Model 

The shear stress (τ) and shear rate (̇ߛ) data at various temperatures were fitted to the well-known power law 
model given by: 

 ߬ =  ௡  (1)(ߛ̇)݇

where k is the consistency coefficient (Pa sn), and n is the flow behavior index (dimensionless).  

The effect of temperature on consistency coefficient was modeled by the Arrhenius equation given by: 

 ݇ = ݇௢݁(∆ா/ோ்)  (2) 

where ko is a constant, ΔE is activation energy, R is the universal gas constant and T is the temperature in 
absolute unit (K). The parameters of Eq. 2 can be easily determined using the following linearized form of Eq. 2  

 ln(݇) = ln(݇଴) + ∆ாோ்  (3) 

The temperature-dependent of apparent viscosity for a power law fluid can be described by: 

௔ߟ  = 	݇௢݁(∆ಶೃ೅)(ߛ	̇)(௡ିଵ)  (4) 

where ηa is the apparent viscosity (Pa.sn), and ko is a constant representing the consistency coefficient at a 
reference temperature. 
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2.5 Time-dependent Characterization 

To study time-dependency, measurements of shear stress and shear rate were carried out in ascending and 
descending order at 25 oC. Also, measurements of the shear stress at a constant shear rate of 100, 150, 200 and 
300 (1/s) were performed at constant temperatures of 25 oC for about 350 sec. Several models have appeared in 
the literature to describe structure breakdown during constant shearing. These include first order stress decay 
with zero stress value, first order stress decay with non-zero stress value, the Weltman model or structure 
kinetics model (Altan, Kus, & Kaya, 2005; Razavi & Karazhiyan, 2009). In this research work based on 
preliminary testing of the shear stress-time data, the first order stress decay model given below was found to be 
more appropriate for fitting date syrup data: 

  ߬ = ߬௘௤ + (߬௢ − ߬௘௤)݁ିఉ௧  (5) 

where τo is the shear stress at time t=0, τeq is the equilibrium shear stress and β is the structure breakdown rate 
constant. 

3. Results and Discussions 
3.1 Sugars and Minerals Content  

Date syrup is an aqueous extract from date fruits that is concentrated under vacuum commercially to 70 – 78 
oBrix. The sample used in this study is 71 oBrix, and the sugar and mineral content of the date syrup sample is 
shown in Table 1 based on dry basis. Both sugars and minerals were close to what is reported in the literature for 
Barhi date syrup (Al-Hooti et al., 2002).  

 

Table 1. Sugars and minerals content of Barhi date syrup 

Components Value* 

Sugar (g/100g) 

Fructose 44.93 ± 1.37 

Glucose 41.73 ± 0.17 

Minerals (mg/100g) 

Potassium 607.67 ± 24.00  

Phosphorus 82.67 ± 2.13  

Calcium 53.33 ± 1.33 

Magnesium 78.93 ± 1.86 

Sodium 9.33 ± 0.53 

*Mean ± standard deviation; n = 3  

 

3.2 Dynamic Flow Measurement 

Dynamic flow measurements were performed to examine the viscoelastic behavior of the date syrup, Figure 1 
shows elastic modulus (Gʹ) and loss modulus (Gʺ) as a function of frequency. Both Gʹ and Gʺ appear to be 
frequency dependent with nonlinear behavior with respect to frequency. However, the value of the Gʺ is much 
higher compared to Gʹ indicating that the date syrup behaves more as a viscous fluid than as an elastic material. 
The ratio of the loss modulus to storage modulus is given by tan (ߜ) where ߜ is the phase angle between 
dynamic stress and strain. A phase angle of 90o indicates perfect viscous behavior with all shearing energy 
dissipated while a phase angel of 00 indicates perfect elastic behavior with all shearing energy stored. A material 
with a phase between 00 and 900 shows some viscoelastic behavior. For date syrup, the phase angle ߜ ranged 
from 45 to 720 at 25 oC, which indicates that the date syrup behaves more as a viscous material than as elastic 
material. 
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Furthermore, nearly all thixotropic materials have yield stresses, and the close link between thixotropy and yield 
stresses have been reported by earlier studies (Mewis & Wagner, 2009). As shown earlier, the measured value of 
the yield stress for date syrup is very low. This illustrates that although thixotropy is present, its effects might not 
be of significance for date syrup.  

3.7 Time-independent Rheological Model 

Because the date syrup was non-Newtonian, the viscosity becomes a function of the shear rate and is better 
expressed as apparent viscosity. Table 3 showed that the flow behavior index at different temperatures are not 
significantly different (p < 0.05) therefore an average value was used and incorporated into Eq. 4 resulting in the 
following model for predicting apparent viscosity of date syrup.  

௔ߟ	   = 10ିଽ݁(లయఱవ೅ݔ7.34	  ଴.ଶହ  (6)ି(̇	ߛ)(

 
Table 3. Parameters of the first order stress decay model (Eq. 5) 

Shear rate (1/s) τo τeq τo/ τeq β(1/s) R2 

100 615.19 579.90 1.06 0.020 0.96 

150 581.19 533.81 1.09 0.025 0.99 

200 1004.91 913.12 1.10 0.035 0.98 

300 938.69 838.61 1.11 0.067 0.99 

 

3.8 Model Validation 

Figures 5a) and 5b) show the predicted and measured viscosity as a function of temperature at a shear rate of 50 
(1/s) and 150 (1/s) respectively. The model prediction fall very well within the 95% confidence interval over a 
wide temperature range including outside the parameter estimation temperature range of 15 to 55 oC. The 
time-independent model predicts viscosity very well despite the presence of thixotropy, which is not significant 
as explained before. This model could be a useful contribution to food industry because it may help in the design 
of flow systems and heat transfer operations especially for applications where date syrup is used as an ingredient. 
Furthermore, such a model could be used in quality control of the date syrup because viscosity is an important 
food quality parameter. The models have the capability to predict viscosity as a function of temperature and 
shear rate. 
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Figure 5b 

Figure 5. Predicted and experimental viscosity as a function of temperature: a) shear rate 50 1/s, b) shear rate 150 
1/s 

 

4. Conclusions 

Dynamic rheological measurements showed that date syrup exhibited a liquid-like rheological behavior with a 
loss modulus (Gʺ) much higher than the storage modulus (Gʹ); the phase angle was 45 to 72o at 25 oC. Date syrup 
showed non-Newtonian behavior, and the power law model fit the shear stress and shear rate data from 15 to 55 
oC. The Arrhenius model described the effect of temperature on consistency coefficient very well. Date syrup 
exhibited thixotropic behavior, and the first order stress decay model fit the shear stress/time data very well. The 
time-independent rheological model developed for apparent viscosity was validated using a temperature from 50 
1/s to 150 1/s, the model predicted the apparent viscosity as a function of temperature and shear rate very well 
versus the measured viscosity at two different shear rates. The time-independent viscosity model showed that the 
presence of thixotropic behavior does not produce significant error as shown by the good fit of the experimental 
viscosity data. 
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