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Abstract 
Bacteriocin synthesis in some Streptococcus thermophilus strains is under the control of a complex blp locus but 
bacteriocin is produced only when a quorum-sensing regulatory mechanism is activated by the protein product of 
the blpC component. To demonstrate the regulatory effect of BlpC in S. thermophilus ST110 (NRRL-B59671), 
which naturally produces bacteriocin, the effect of the 30mer quorum-sensing induction peptide (QSIP) 
embedded in BlpC was tested in a knockout mutant in which the blpC gene was eliminated and was devoid of 
antimicrobial activity. Between concentrations of 30 and 250 ng/ml, the addition of synthetic QSIP to cultures at 
several points of the growth curve resulted in the accumulation of up to 3,200 units/ml of bacteriocin after 8 h of 
growth at 37 ºC. Addition of QSIP to the culture in late log phase (OD660 ≥ 1.0) when the medium pH is already 
4.8 or lower, failed to trigger bacteriocin production. We used synthetic QSIP to survey its impact on 35 strains 
of S. thermophilus that do not display bacteriocin activity by agar diffusion assays. The addition of QSIP (250 
ng/ml) to S. thermophilus cultures in the early or mid-log phase induced bacteriocin production in two strains 
that could be re-classified as bacteriocin producers. The results demonstrated the involvement of a 
quorum-sensing regulatory mechanism in bacteriocin synthesis in S. thermophilus ST110 and also demonstrated 
the utility of the 30 mer QSIP in discovering bacteriocins with potentially novel antimicrobial spectra by 
enhancing bacteriocin production in other strains of S. thermophilus that ordinarily display a 
bacteriocin-negative phenotype. 

Keywords: bacteriocins, Streptococcus thermophilus, blpC gene, quorum-sensing peptide 
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1. Introduction 

Streptococcus thermophilus belongs to a group of food grade lactic acid bacteria (LAB) that are essential starter 
cultures in the production of yogurt and cheeses. Several strains of S. thermophilus have been shown to naturally 
produce bacteriocins that are small, ribosomally produced peptides with narrow and/or broad spectrum 
antimicrobial activity (Villani et al., 1995; Ward & Somkuti, 1995; Marciset et al., 1997; Aktypis et al., 1998; 
Ivanova et al., 1998; Mathot et al., 2003; Gilbreth & Somkuti, 2005; Fontaine & Hols, 2008). Genome 
sequencing of Streptococcus thermophilus strains LMD-9, CNRZ1066 and LMG18311 revealed a cluster of 
genes encoding potential bacteriocin-like peptides (blp) based on genetic similarities to the class II bacteriocin 
locus described for S. pneumoniae (deSaizieu et al., 2000). Genes encoding potential bacteriocins were identified 
based on the presence of peptides containing a double glycine leader sequence: including BlpD, U, E, and F in 
LMD-9; BlpU and K in LMG18311; and BlpK in CNRZ1066; however under standard culturing conditions all 
three strains failed to produce active bacteriocins (Hols et al., 2005). In addition, in all three strains the blp locus 
was also shown to contain genes encoding for a three-component quorum sensing (QS) system, with blpH and 
blpR encoding a putative histidine kinase and response regulator respectively, and blpC encoding the precursor 
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of the quorum sensing induction peptide (QSIP) (Hols et al., 2005). Overexpression of BlpC in S. thermophilus 
LMD-9 resulted in the identification of a 30-mer secreted peptide (3403.7 Da) representing the mature 
pheromone, that plays a key role in the display of bacteriocin activity (Fontaine et al., 2007). Production of an 
active bacteriocin could also be induced in strain LMD-9 when the 30-mer peptide was added to early log phase 
cultures. However, overexpression of BlpC or extracellular addition of the synthetic peptide had no effect on 
bacteriocin production in S. thermophilus strains CNRZ1066 and LMG18311 due to mutations in blpB which 
encodes BlpB, an accessory transport protein required for secretion of the QSIP and bacteriocin peptides 
(Fontaine et al., 2007). Further analysis of the blp locus in strain LMD-9 showed that expression of BlpD alone 
was sufficient to inhibit the growth of most target bacteria, but the overall broad spectrum of activity may require 
expression of multiple peptides (BlpD, U, E, F) and the presence of a thiol-disulfide oxidase encoded by blpG 
(Fontaine & Hols, 2008). In addition, immunity to the bacteriocin was dependent on the products of orf 1 and 
orf2, located immediately downstream of blpD; and orf 7, located immediately downstream of blpE (Fontaine & 
Hols, 2008).  

Although we previously reported the apparently constitutive production of bacteriocins in two S. thermophilus 
strains (Ward & Somkuti, 1995; Gilbreth & Somkuti, 2005), information was still needed on the role of various 
components of the blp cluster of genes in bacteriocin synthesis. The purpose of this study was to test the 
involvement of the blpC subunit in bacteriocin production by a mutant culture (blpC-) of S. thermophilus strain 
ST110 and to evaluate the response of other, apparently non-bacteriocin producing strains to the addition of 
synthetic 30-mer QSIP that was identical to the active peptide present in BlpC of strain LMD-9. 

2. Methods 
2.1 Synthesis of Quorum-Sensing Induction Peptide (QSIP) 

The 30-mer QSIP (N’-SGWMDYINGFLKGFGGQRTLPTKDYNIPQA-C’) present within the gene product of 
blpC in S. thermophilus LMD-9 (Fontaine et al., 2007) was prepared by microwave-assisted solid phase peptide 
synthesis with Fmoc (N-(9-fluorenyl) methoxycarbonyl)-protected amino acids, using a CEM Liberty 
synthesizer, according to the manufacturer’s recommended protocol (CEM Corp., Matthews, NC). The peptide 
was cleaved in the CEM microwave chamber using a 95:2.5:2.5 mix of TFA:triisopropyl-silane:H2O for 30 min 
at 35 ºC and 10 W power setting. After repeated precipitations in ice cold ether, the peptide was dissolved in 
H2O and analyzed by HPLC (C18 peptide column). The molecular mass of the peptide product (3,403.7 Da) was 
confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/TOF 
MS). 

2.2 Bacterial Strains 

S. thermophilus strains were maintained in tryptone-yeast extract-lactose (TYL) medium at 37 ºC (Somkuti & 
Steinberg, 1986). Escherichia coli DH5α, used as interim host for subcloning plasmid constructs, was grown in 
BHI medium. When needed, media was supplemented with erythromycin (Em) at 150 µg/ml (E. coli) or 15 
µg/ml (S. thermophilus) or kanamycin (Km) at 150 µg/ml. Pediococcus acidilactici F (gift from B. Ray, 
University of Wyoming) was maintained in deMan, Rogosa and Sharpe (MRS) broth and inoculated into MRS 
agar when used as the target organism. 

2.3 Antimicrobial Assays  

Bacteriocin activity of cell-free culture fluids of S. thermophilus ST110 (NRRL- B59671, Agricultural Research 
Service Culture Collection, NCAUR-USDA, Peoria, IL, http://nrrl.ncaur.usda.gov), and its blpC- knockout 
mutant were tested by an agar diffusion method with Pediococcus acidilactici F as the target organism in MRS 
agar, in which each well was filled with 50 µl of sample (Gilbreth & Somkuti, 2005). The amount of bacteriocin 
produced was estimated by the spot-on-the-lawn method (Henderson et al., 1996), after a twofold dilution of 
each sample with sterile distilled H2O and depositing 5 µl on the surface of 2-mm deep MRS agar plates 
inoculated with P. acidilactici F. The highest dilution showing an inhibition zone was designated as 1 
bacteriocin activity unit (AU). Total bacteriocin activity was calculated as the reciprocal of the highest dilution 
multiplied by a factor of 200 and expressed as AU/ml. In evaluating the effect of QSIP on S. thermophilus strains 
with blp- phenotype, filtrates of cultures grown for 16 h without or with added QSIP were tested for bacteriocin 
activity against S. thermophilus ST113 (NRRL-B59386) which was previously noted for high sensitivity to 
bacteriocins produced by other S. thermophilus strains (Ward & Somkuti, 1995).  

2.4 Conditions for Evaluating Synthetic QSIP 

The presence of the various components of the blp gene cluster in S. thermophilus ST110 with possible role in 
bacteriocin production was checked by PCR (Perkin-Elmer Thermal Cycler, Model 9700), cycling conditions: 95 
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ºC for 5 min, followed by 30 cycles of (95 ºC for 1 min, 50 ºC, 55 ºC or 60 ºC for 1 min, 74 ºC for 1 min, 
followed by 1 cycle of 74 ºC for 7 min and a 4 ºC soak. Forward and reverse primers for each blp component 
tested (Table 1) were designed using the blp locus in S. thermophilus LMD-9 (ATCC BAA-491, American Type 
Culture Collection, Rockville, MD) as the model (Hols et al., 2005).  

 

Table 1. Primers used to detect components of the blp locus in S. thermophilus 

Target gene Forward primer, 5’-3’ Reverse primer, 5’-3’ 

blpA/blpBa ACGCTATTGAAGGTGCCATT  

blpC TTTGTTGGAAGCGTTCTTTG CACTTGATAACCACGCTCTTGA 

blpD CTACTAACACCCCACCGACAG TGGCAACTCAAACAATTGAAA 

blpU TCACCACCAGCATGTTGCTC AAGGTGGTGGATGTAGCTGGG 

blpK CATTACCTCCAAACGCTCCT TGGCAACTCAAACAATTGAAA 

blpE TGCACCTACTGCACCAGTTC ACACCCTCGACCTTGAAACA 

blpF ACCATGGGATAGGCTTCACC TCAAGGTGGTGCTGTTTGTC 

blpH TTGGGATGGAGACTCTGGAC TCCCTTGTTGGAGACACCTC 
a sequences determined by primer walking. 

 

PCR products were cleaned up for sequencing using Ampure reagent (Agencourt, www.agencourt.com). 
Sequencing was performed in an ABI 3730 DNA Analyzer (Applied Biosystems), and sequences were trimmed 
and aligned using Sequencher software (Genecodes Corp., Ann Arbor, MI). Nucleotide sequences were 
compared to sequences in the NCBI database using BLASTn at http://www.ncbi.nlm.nih.gov/.  

A control strain of S. thermophilus ST110 lacking blpC (knockout mutant) was developed by a gene inactivation 
technique using the integrative vector pKS1, which contains a temperature-sensitive origin of replication and 
genes encoding for erythromycin and kanamycin resistance (Shatalin & Neyfakh, 2005). DNA fragments 
corresponding to the 3’ ends of blpB (708 bp) and blpH (701 bp) were amplified by PCR followed by the 
purification of fragments using the QIAquick PCR purification kit (Qiagen Inc, Valencia, CA) and cloned into 
pKS1 at the corresponding restriction endonuclease recognition sites. The resulting vector pSTKOC was 
transformed into freshly prepared E. coli competent cells by a standard heat-shock method (Sambrook et al., 
1989) and propagated at 37 ºC. Plasmid was recovered from E. coli by alkaline lysis followed by CsCl/ethidium 
bromide ultracentrifugation (Stougaard & Molin, 1981) and introduced by electrotransformation into S. 
thermophilus ST110 according to a previously described protocol (Somkuti & Steinberg, 1988). Chromosomal 
integration of the vector was accomplished by a two-step homologous-recombination protocol (Renye & 
Somkuti, 2012).  

The effect of QSIP on bacteriocin production was tested by adding QSIP (250 ng/ml) at different time intervals 
to cultures of S. thermophilus ST110 and its knockout mutant growing in TYL. QSIP was also added to a 
growing culture of the knockout mutant to evaluate the effect of QSIP concentration (30-250 ng/ml) on 
bacteriocin production with Pediococcus acidilactici F as the test organism. 

The effect of QSIP was also tested in a group of 35 laboratory strains of S. thermophilus with blp- phenotype 
with no antimicrobial activity against S. thermophilus ST113. QSIP was added at 250 ng/ml final concentration 
at different times during growth and after 16 h at 37 ºC, culture filtrates were tested by the agar diffusion assay 
for activity against S. thermophilus ST113. 

2.5 Real-time PCR Analysis 

S. thermophilus strains were grown in TYL medium until the culture reached an OD660 between 0.8 and 1.0. 
RNA was extracted using the RiboPureTM-Bacteria kit (Ambion-Life Technologies, Grand Island, NY). Residual 
DNA was removed with DNase I treatment (Ambion) for 30 minutes at 37 ºC. RT-PCR was performed using an 
Applied Biosystems 7500 Fast RT-PCR system (Life Technologies). Cycling conditions were: 40 cycles of 95 
ºC for 30 s, 45 ºC for 30 s and 60 ºC for 30 sec., and a melt curve analysis was performed from 60-95 ºC with 
fluorescence readings taken continuously after a 1% increase in temperature. cDNA synthesis and RT-PCR were 
carried out in a single step using the SuperScript III Platinum SYBR Green One-Step qRT-PCR kit (Life 
Technologies) with a total RNA concentration of 1 µg for amplification of blp components, and 10 ng for 16 S 
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rRNA as the reference. The ABI 7500 Fast software was used to determined CT values, and the relative 
quantification of gene expression was determined using the 2-ΔΔCT method (Livak & Schmittgen, 2001), where 
ΔCT = CT (target) – CT (reference), and ΔΔCT = CT (+QSIP) - CT (-QSIP). Results are reported from a minimum 
of three independent RT-PCR reactions (±standard deviation).  

3. Results and discussion 
3.1 Detection of Blp Components in S. thermophilus ST110  

Bacteriocin production in S. thermophilus is dependent on the presence of the blp gene cluster that was 
previously described in several strains, including LMD-9, LMG18311 and CNRZ1066 (Hols et al., 2005) and the 
functionality of its various components was studied in several strains (Fontaine et al., 2007). Based on PCR 
analysis and nucleotide sequence data, gene products containing a double glycine leader sequence and qualifying 
as potential bacteriocins include BlpD, U, E and F in strain LMD-9 (ATCC, BAA-491), BlpU and K in strains 
LMG18311 (ATCC, BAA-250) and S. thermophilus ST110 (NRRL-B59671), and BlpK in strain CNRZ1066 
(Hols et al., 2005)(Table 2).  

 

Table 2. Blp components with gly-gly leader peptides in S. thermophilus strains 

Peptide ST110 LMD-9 LMG18311 LMD-9 

BlpD  +   

BlpU + + +  

BlpK   + + 

BlpE  +   

BlpE  +   

 

Based on research on the functionality of various blp components in knockout mutants of S. thermophilus 
LMD-9, it was previously concluded that the blpD component alone may be responsible for bacteriocin activity 
(Fontaine & Hols, 2008). However, the absence of blpD in S. thermophilus ST110 as shown by PCR analysis 
indicated that bacteriocin synthesis in this strain is controlled by other components of the blp locus.  

According to the LMD-9 model (Fontaine et al., 2007), the product of blpC, a 53-mer protein (BlpC) includes 
the 30-mer QSIP peptide N’-SGWMDYINGFLKGFGGQRTLP-TKDYNIPQA-C’ that plays a key role in 
activating the cascade of events leading to bacteriocin synthesis. It was also found that although some S. 
thermophilus strains (e.g. LMD-9) have a functional blpC component, the amount of BlpC gene product is not 
adequate to activate bacteriocin synthesis (Fontaine & Hols, 2008) but externally supplied QSIP induced 
bacteriocin production.  

3.2 Restoration of Bacteriocin Production in S. thermophilus ST110 blpC- knockout mutant 

Following electrotransformation with the pSTKOC integrative vector, S. thermophilus ST110 transformants 
were resistant to both erythromycin and kanamycin when grown at 32 ºC (permissible temperature for plasmid 
replication). Subsequent transfers at 42 ºC resulted in a single homologous recombination event with the entire 
plasmid inserted into the blp gene cluster. Clones confirmed by PCR to have the single crossover within the blp 
gene cluster were further transferred at 30 ºC which allowed for the second recombination event to occur, 
replacing blpC with the kanamycin marker gene. Removal of blpC from the blp gene cluster resulted in the loss 
of bacteriocin activity as indicated by the absence of an inhibition zone in agar diffusion assays. However, when 
the mutant culture lacking blpC was supplemented at various time intervals with QSIP at 250 ng/ml, bacteriocin 
production was restored (Figure 1 and Figure 2). The optimum time of QSIP addition to induce bacteriocin 
production was between 0 and 4 h after the start of incubation and the amount of bacteriocin produced after 8 h 
of incubation was estimated at 3,200 AU/ml (Figure 1). 
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Induced expression of blpK was also tested since it may encode a unique bacteriocin component in strains ST106 
and ST118, and was shown to increase by 198 (±15) and 24 (±3) fold, respectively. The high level of expression 
observed for blpK in ST106 suggests that it may be required for optimal production of the ST106 bacteriocin(s). 
Expression of the blpRH operon was also tested in all three strains, but as reported previously its expression was 
not significantly altered (≤2) in response to the addition of exogenous QSIP (Fontaine et al., 2007).  

5. Conclusions 
The results confirmed the pivotal role of blpC in the production of bacteriocins in S. thermophilus ST110 
(NRRL-B59671). Since S. thermophilus is designated as food grade and various strains are used as essential 
biocatalysts in the industrial production of fermented dairy foods, the capacity to produce antimicrobial 
peptide(s) imparts them added value and may improve the level of protection against bacterial contamination. 
The results also demonstrated that QSIP is a valuable screening tool in identifying S. thermophilus strains that 
may produce potentially novel bacteriocins by restoring or improving the functionality of a compromised blpC 
component of the blp cluster of genes. 
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