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Abstract 

The purpose of this study is to accurately simulate the rheological behaviors of food objects undergoing a 
loading-unloading operation using finite element (FE) model. Due to the presence of residual deformation, it is 
difficult to model rheological behaviors. Especially, it is hard to accurately reproduce both rheological force and 
residual deformation simultaneously. In this study, objects made of food materials were tested. Force and 
deformation measurements were recorded for parameter estimation. Constitutive models were investigated for 
describing rheological behaviors. A parallel five-element model including two dual-moduli viscous elements was 
proposed to accurately predict both rheological force and residual deformation simultaneously. 2D/3D FE model 
was formulated for simulating rheological behaviors. To estimate the parameters, an effective four-step method 
was established based on nonlinear optimization which aimed at minimizing the differences of forces and 
deformation between simulation and experiments. The proposed FE model and parameter estimation method 
were validated in both 2D and 3D cases and good agreements were achieved in both rheological forces and 
deformation between numerically simulated and experimentally measured data. 
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1. Introduction 

The modeling and simulation of deformable objects, such as biological organs and tissues, cloth, clay, and 
various kinds of food products, has been studied more than twenty years. Many important applications have been 
involved, including computer graphics [Terzopoulos & Fleischer (1988)], surgical simulation [Bro-Nielsen 
(1998), Cotin et al. (1999)], robot manipulation [Inoue & Hirai (2006)] and food engineering [Liu & Scanlon 
(2003), Martins (2006)]. Three important issues should be considered during the modeling and simulation of 
deformable objects: 1) the constitutive model, which normally is used to govern the physical behaviors of the 
material, 2) the modeling method, which is used to construct the geometry of the object and formulate the 
dynamic equations, and 3) parameter estimation, which is dedicated to find appropriate physical parameters 
involving in the model. 

Among various constitutive models, the ones consisting of a number of elastic and viscous elements connected 
in a certain configuration were widely used in literatures. Such models have explicit physical meaning, simple 
formulation, and are easy to be constructed, but they are linear models. Conventional modeling methods are the 
mass-spring-damper method (MSD) [Waters (1987)], the finite difference method (FDM) [Terzopoulos et al. 
(1987)], the boundary element method (BEM) [James & Pai (1999)], and the finite element method (FEM) 
[Beo-Nielsen & Cotin (1996)], in increasing order of computation cost and simulation accuracy. Most recently, 
meshfree particle methods, such as smoothed particle hydrodynamics (SPH), have also been used to model solid 
deformable objects [Zhu et al. (2010)]. A combination of a constitutive model and a modeling method can be 
employed to construct a two-dimensional (2D) or three-dimensional (3D) dynamic model. In addition, to 
simulate real-world deformable objects, important physical parameters need to be estimated in advance. So far, 
the optimization-based methods have been the most popular ones for the purpose of parameter estimation. 
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In our definition, we roughly divided deformable objects into three categories: elastic, plastic, and rheological 
objects, depending on their behaviors after a loading-unloading operation. Rheological objects have both elastic 
and plastic properties and always yield residual deformation after unloading. Residual deformation is important 
for some applications, such as manufacture of pottery and food products, where a desired final shape is required 
during forming process. Therefore, it is necessary to investigate the modeling and parameter estimation of such 
rheological objects. 

Early work on the modeling of rheological objects dates back to Terzopoulos et al. (1987) and Terzopoulos & 
Fleischer (1988), who have proposed a four-element model to describe rheological behaviors. Detailed studies on 
the modeling and parameter estimation of rheological objects have been investigated by Noborio et al., who 
employed a three-element model to describe rheological behaviors and an MSD modeling method to construct 
food dough. The authors explored the lattice [Noborio et al. (2003), Nogami et al. (2004a)], the truss [Nogami et 
al. (2004b)], and the hierarchical [Ikawa & Noborio (2007)] structures, with decreased MSD elements connected 
between nodes to reduce the computation cost. Two optimization methods, modified randomized algorithm 
[Noborio et al. (2003)] and genetic algorithm [Yoshida et al. (2005)], were used to estimate the physical 
parameters. The authors successfully captured the deformation behaviors, but failed to reproduce the force 
responses at the same time [Yoshida et al. (2005)]. The MSD modeling method has advantages of simple 
formulation and relatively low computation cost, but the formulation is not based on continuum mechanics and 
the geometrical topology significantly affects the simulation accuracy.  

Two layered Maxwell model [Sakamoto et al. (2007)] and Fung's viscoelastic model [Tsai et al. (2008)] have 
been used respectively to simulate the force response of ‘Norimaki-sushi’ when it was grasped by a robot hand. 
Good agreements of rheological forces were achieved. Unfortunately, both models are 1D cases and the residual 
deformation was not considered during the modeling and parameter estimation. FE method has been utilized to 
model and simulate the indentation of bread crumbs [Liu & Scanlon (2003)]. It has also been used to evaluate 
food quality and safety losses during processing, storage, and distribution [Martins (2006)]. In addition, FE 
simulation has been employed to investigate the dependence of temperature and water content on processing 
time during meat cooking [Purlis and Salvadori (2005)]. It has been reported that the most critical barrier against 
the application of robotics and automation in food industry is a lack of understanding of the food product 
properties as an “engineering” material for handling operations [Chua et al. (2003)]. Therefore, it is necessary to 
investigate the methods for modeling and parameter estimation of rheological objects. 

In this study, three kinds of rheological food materials: commercial available clay (food-like), Japanese sweets, 
and bacon, were tested with a loading-unloading operation. Rheological force and deformation, including the 
residual deformation, were recorded. To find an appropriate model for describing these behaviors, the 
constitutive laws of generalized models were formulated and theoretical analysis was done. A parallel 
five-element model with two dual-moduli viscous elements was proposed to accurately predict both rheological 
force and residual deformation simultaneously. The 2D/3D FE model was then formulated by imposing a 
five-element model onto each triangle (2D) or tetrahedron (3D) to govern its behaviors. Based on the analytical 
expressions of rheological forces, an efficient approach was proposed to estimate the physical parameters 
involving in the FE model. This method aimed at minimizing the difference in both force and deformation 
between simulation results and experimental measurements. The proposed FE model and parameter estimation 
method were then evaluated through a series of comparisons of experimental measurements and predicted results 
from FE simulation. 

There are some potential applications of this research in food industry. Using the proposed model and method, 
we are able to estimate the physical properties of food products and then establish a relationship between the 
physical parameters and the taste of the food product. As we know, the taste of a food product includes not only 
the flavor but also the chew feeling, such as the hardness and the viscosity of the product. We can use the 
estimated parameters to evaluate the taste of food products. The second potential application is to simulate and 
predict the deformed shape of food product. For example, we may need to perform a pick-and-place operation in 
a sushi manufacturing line. In order to grasp the sushi stably, a certain grasping deformation is required. On the 
other hand, large deformation may affect the final appearance of the product. There is a compromise between 
enough grasping deformation and appropriate final appearance. We can determine an appropriate grasping 
deformation by performing a series of experiments which may be time-consuming and troublesome. Instead, we 
are able to use the FE model of the sushi product to simulate such grasping operation to find an optimal grasping 
deformation. In addition, the developed FE model can be also utilized to establish a virtual scenario of food 
making process with haptic feedback since good reproduction of force response can be achieved using the 
proposed parameter estimation method. Such a virtual scenario can serve as a digital demonstration to show the 
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skillful making process of some traditional food products. 

2. Materials and Methods 

The goal of this study is to develop an FE model and establish a parameter estimation method to accurately 
predict rheological force and deformation behaviors simultaneously. To this end, indentation experiments were 
performed using typical rheological materials. Experimental measurements of force and deformation were used 
to estimate the physical parameters. The FE model and estimated parameters were then used to predict 
rheological behaviors of same materials. 

2.1 Experimental materials 

Three typical rheological materials, i.e., commercial available clay, Japanese sweets, and bacon, as shown in 
Figure 1, were used in our indentation experiments. Clay is made of flour, salt, and water and supposed to be 
played by children over 3 years old. Three kinds of sweets materials were provided by OIMATU (a sweets 
company in Kyoto) and used to make traditional Japanese sweets products. Each sweets material is made of flour, 
water, and one kind of bean powder mixed at a specific ratio. Bacon was bought from a supermarket and 
normally was cut in pieces and eaten with bread for breakfast. Several object samples made from each material 
were prepared and indented by a linear stage. 

2.2 Indentation experiments 

For each material, two kinds of indentation experiments were performed. The first kind is for parameter 
estimation. The sample object was indented from one side using a motorized linear stage (KX1250C-L, 
SURUGA SEIKI Co.), as shown in Figure 2a. A push-keep-release displacement function, as shown in Figure 2b, 
was used to deform the object. The input deformation is assumed to be plane stress. The force response on the 
other side of the object was recorded using a tactile sensor (I-SCAN100L, NITTA Co.). Three static images, 
which denote the initial, keep, and final shapes respectively, were recorded using a digital camera (EOS Kiss X2, 
Canon Inc.). The deformation during keep phase and residual deformation were then calculated based on these 
images. As an example, Figure 3 shows the measured rheological behaviors of object made by clay material. 
These measurements of force and deformation were used to estimate the physical parameters. 

The purpose of the second kind of experiments is to evaluate the performance of estimated parameters for 
predicting the behaviors of each material with different indentation operations, non-homogeneous, and 
irregular-shaped objects respectively. For clay material, sample objects were indented from the center part of one 
side (Figure 4a) instead of the entire side. Such an operation may often be used in the grasping of an object. In 
terms of Japanese sweets materials, non-homogeneous three-layered objects were deformed from both entire and 
center part of the side (Figure 4b). Irregular shaped objects (Figure 4c) were used to evaluate the parameters of 
bacon material. A push-keep-release procedure was also used in these experiments. Detailed information of all 
experimental trials is given in Table 1. In addition, it is worth to be mentioned that we performed the 
deformation measurements in 2D scenario and ignored the buckling or bulging behaviors which slightly 
happened during the deformation. 

2.3 Constitutive models 

The constitutive models, such as Maxwell and Voigt models, were widely used to describe the behaviors of 
deformable objects. In such models, we commonly utilize an elastic element (denoted by Young's modulus E) 
and a viscous element (denoted by viscous modulus c) to describe the elastic and viscous behaviors, respectively. 
By connecting several such elements into different configurations, we can construct various models for 
simulating rheological behaviors, such as the three-element and four-element models used in [Wang et al. (2009), 
Wang & Hirai (2009)]. In order to investigate the capability of the constitutive models and to establish a criterion 
for selecting appropriate models, we have summarized such models into two categories: serial and parallel 
models, as shown in Figure 5. The constitutive laws of generalized serial and parallel models were derived in 
[Wang & Hirai (2010a)] and summarized in Table 2. We found that the constitutive laws of serial and parallel 
models have the same forms and therefore yield the same behaviors. In other words, for a certain serial model A, 
we are always able to find a corresponding parallel model B, which has the same constitutive law and yields the 
same behaviors with model A, and vice versa. In addition, we can always obtain analytical expressions of strain 
(displacement) over time by solving the constitutive laws of serial models due to the serial connections between 
elements. On the other hand, parallel models always result in straightforward calculation of analytical stress 
(force) expressions due to the parallel connection. This suggests us the way to select appropriate one from serial 
and parallel models. If we are interested in the deformation, it is better to choose a serial model. On the contrary, 
we should go with parallel model if the force is of concern.  
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In our case, we are more interested in rheological force since deformation measurements only include static 
images. We have therefore chosen parallel models. In [Wang & Hirai (2009)], we also found that at least two 
exponential terms in force expressions are necessary to accurately reproduce force relaxation behavior during 
keep phase (Figure 3a). Consequently, we need at least two Maxwell elements in the constitutive model, e.g., a 
parallel five-element model (the bottom one in Figure 5b with n = 2). By using such a model, we are able to 
accurately reproduce the rheological force behaviors. However, we failed to predict the residual deformation at 
the same time. We found a contradiction between the reproductions of rheological force and residual deformation 
simultaneously because the linear viscous elements (denoted by parameter ci in Figure 5b) affected both force 
and residual deformation [Wang & Hirai (2010a)]. One single set of parameter ci can guarantee a good 
reproduction of either force or residual deformation. However, it cannot cover both at the same time. We have 
therefore proposed a dual-moduli viscous element, as shown in Figure 6a, to solve this problem. The governing 
equation of this element can be formulated as 

( ) ( ) ( )dual dualt c t     ,                                 (1) 

where dual  and dual  are stress and strain vectors generated on the element, scalars   and c are parameters 

to be determined, switch variable   takes the following values 

1   criterion is satisfied,

1 otherwise.


 


                           (2) 

The dual-moduli viscous element works as a switch to change the viscous coefficient from one value to another 
during simulation whenever a criterion is satisfied. The physical meaning of this element can be explained as the 
property change of a material during loading and unloading operations. For example, elastic materials experience 
a hysteresis phenomenon during which the material properties are slightly changed. Some metal materials also 
demonstrate strain hardening behavior when they are strained beyond the yield point [Shames & Cozzareli 
(1992)]. The properties of the materials also changed after strain hardening. In rheological materials, both 
hysteresis and strain hardening may also happen and may be in a stronger way. In other words, the physical 
parameters of rheological object may be continuously changing during loading and reach another set of values 
once loading operation finishes. Unfortunately, continuous change of parameters brings troubles in parameter 
estimation. Therefore, we suppose that the parameters take one set of values during loading operation and switch 
to another set once the operation finishes. 

The criterion used in Eq. 2 has different options depending on applications. If the operation time is available, the 
simulation time can be a criterion. In some applications, the simulation time may be not available in advance. 
Fortunately in most cases, an interaction often happens between the object and external instruments. This 
interaction can also serve as a criterion for switching parameters, as presented in [Wang & Hirai (2010b)]. By 
introducing the dual-moduli viscous elements, we finally end up with an effective model (Figure 6b) for 
predicting both rheological force and residual deformation simultaneously. 

2.4 FE dynamic model 

The FEM is the most successful method for numerical computation of object deformation. In FE modeling, an 
object is described by a set of elements (e.g., triangles in 2D and tetrahedra in 3D cases). Dynamic behaviors of 
the object are then determined by analyzing the behaviors of individual element. In this paper, we assume that 
the behaviors of individual element are governed by the model given in Figure 6b. Note that the constitutive law 
of a Maxwell model with a dual-moduli viscous element located at the first row of the five-element model 
(Figure 6b) is formulated as 

1
1 1 1 1

1 1

E
E

c
  


 


 .                                 (3) 

By performing a series of replacements as done in [Wang & Hirai (2011a)], Eq. 3 can be transformed to 2D/3D 
force-displacement relationship as 

 1
1 1 1 1

1 1

ela ela
N

E

c
  


  


F F J J v ,                         (4) 
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where 1F  is the force vector generated on the first row of the five-element model, vector Nv  consists of 
velocity components of all nodes in the FE mesh, J  and J  are referred to as connection matrices that are 
constant matrices and only depend on geometric quantities, say, initial coordinates of nodes, scalars 1

ela  and 
1
ela  denote Lamé’s constants and can be calculated as: 

    
1 1

1 1,
1 1 2 2 1

ela elaE E 
  

 
  

,                       (5) 

where parameter E1 is Young’s modulus and   is Poisson's ratio which denotes the compressibility of the 
material. For an incompressible material, parameter   usually takes a value smaller than but very close to 0.5, 
e.g., 0.499  . For compressible materials, parameter γ should take a value much smaller than 0.5. Similarly, 
the force-displacement relationships at the second and third row of five-element model (Figure 6b) can be 
formulated as 

 

 

2
2 2 2 2

2 2

3 3 3

,

,

ela ela
N

vis vis
N

E

c
 

 

 


 

  


 

F F J J v

F J J v

                      (6) 

where parameters 3
vis  and 3

vis  describe the model's viscosity and are defined as 

    
3 3

3 3,
1 1 2 2 1

vis visc c 
  

 
  

.                     (7) 

Due to the parallel connections, the total force rheoF  generated on the model can be calculated by summing up 

the contributions of each row as 

1 2 3
rheo   F F F F .                               (8) 

Supposing that one side of the object is fixed on the ground and the other side is pushed downward with a 
displacement function of ( )td . Two constraints on the nodes of both sides are formulated as follows using the 
constraint stabilization method (CSM) [Baumgarte (1972)] 

 

      

T T 2

T T 2

2 0,

2 0,

N N N

N N N

 

 

  

              



  

A v A v u

B v d t B v d t u d t
                 (9) 

where matrices A and B denote the nodes to be constrained on each side, respectively, scalar   is a 

predetermined angular frequency and is set to 2000 for both constraints. 

Let M be an inertia matrix and 1λ  and 2λ  be the Lagrange multipliers that denote a set of constraint forces 
corresponding to both geometric constraints (Eq. 9). Applying Lagrange equations of motion, a set of dynamic 
equations of nodes is formulated as 

1 2 0rheo
N    F Aλ Bλ Mv .                           (10) 

Combining Eqs. 4, 6, 8, 9, 10 and considering N N v u , we have a set of differential equations for simulating 
the dynamic behaviors of a rheological object. Note that the above formulations are applicable in both 2D and 
3D scenarios. The main difference between the 2D and 3D models is the calculation of connection matrices J  
and J , which depend on the geometrical meshes. 

2.5 Parameter estimation 

In order to accurately predict the behaviors of real-world objects, physical parameters involved in the FE model 
need to be determined. The FE model presented in the previous section includes the following eight physical 
parameters: Young's moduli E1, E2, viscous moduli 1 , 2 , c1, c2, c3 and Poisson's ratio  . In [Wang & Hirai 
(2010a)], we found that parameter c3 accounts for attenuating the vibration in both force and deformation during 
object recovery. Simulation showed that a small value of c3 is sufficient to attenuate the vibration and without 
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significantly affecting the amplitudes of force and deformation. Therefore, we preassigned a value of 102 Pa·s to 
c3. It is quite small comparing with c1 and c2 which normally have a magnitude around 106 Pa·s. After 
determining parameter c3, we have seven physical parameters to be estimated. We therefore propose an 
estimation method based on inverse FE optimization, which aims at minimizing the difference in force and 
deformation between simulation or theoretical calculation and experimental measurements. The measurements 
used here include force data during loading (includes push and keep phases) and three static images denoting the 
initial, keep, and final shapes of the object. The parameter estimation method proposed in this paper is 
summarized into the following four steps: 

.⑴  Estimation of parameter   by optimizing the keep-shapes,  

. ⑵ Estimation of parameters E1, E2, 1
loadc , and 2

loadc  by minimizing the force difference during loading, 

. ⑶ Estimation of parameters 1
relc  and 2

relc  by optimizing the final-shapes, 

. ⑷ Calculation of parameters 1 , 1c , 2 , and 2c  based on estimated 1
loadc , 1

relc , 2
loadc , and 2

relc . 

2.5.1 Estimation of Poisson's ratio   

In [Wang & Hirai (2009)], we found that only Poisson's ratio   affects the keep-shape and all the other 
parameters do not have contributions to keep-shape. This coincides with the definition of Poisson's ratio which 
indicates a ratio of lateral strain over normal one and it happens in all constitutive models constructed by linear 
elements shown in Figure 5. Therefore, we are able to estimate Poisson's ratio   separately by minimizing the 
difference in keep-shapes. The objective function is formulated as 

    2

1

m
sim keep
i i

i

E x x 


  ,                            (11) 

where  sim
ix   and keep

ix  are the displacement vectors in the keep phase from simulation and experiment, 
respectively. Scalar m=2N with N being the total number of nodes in the FE mesh. The optimization is 
terminated when the tolerance on function value  E   is less than 121 10  or the tolerance on parameter   
is less than 61 10 . 

2.5.2 Estimation of parameters E1, E2, 1
loadc  and 2

loadc  

Considering the force response during loading, let variable   in Eq. 2 take 1 and we have 1 1 1
loadc c   and 

2 2 2
loadc c  . Thanks to the parallel configuration of the constitutive model, we are able to derive the analytical 

expression of rheological force during loading. By solving Eq. 4 in push phase ( p0 t t  ), we have the force 
expression at the first row of the five-element model as 

   
1

1
1 1 p1 , 0

load

E
t

cload push
Nt c e t t

 
    
 
 

F M v ,                    (12) 

where 

    
1

1 1 2 2 1
  


  

 
  

M J J . 

Vector push
Nv  consists of velocities of all nodes in push phase. We assume that it consists of constant values if 

the object was deformed with a small and constant velocity. Therefore, it can be easily calculated using the 
displacements of nodal points divided by time period pt . 

Similarly by solving Eq. 6, we can formulate the force expressions at the second and third row as 

 

 

2

2
2 2

3 3

1 ,

.

load

E
t

cload push
N

push
N

t c e

t c





 
  
 
 



F M v

F M v

                          (13) 

Combining the forces of three rows, the rheological force generated on the five-element model during the push 
phase ( p0 t t  ) is then given by 
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 
2

3
1

1
i

load
i

E
t

load pushc
i N

i

t c e c 





  
    

    
F M v .                     (14) 

In the keep phase ( p p kt t t t   ), solving Eqs. 4 and 6 with 0N v , we can formulate the force as 

 
 p p2

1

1
i i

load load
i i

E E
t t t

load pushc c
i N

i

t c e e 

  



 
  
 
 

F M v ,                   (15) 

Using Eqs. 14 and 15, we are able to calculate the forces in both push and keep phases. The difference between 
the calculated forces and experimentally measured ones is then minimized to estimate the parameters. The 
objective function is formulated as 

    2exp

1

n
cal

i i
i

E


 θ F θ F ,                           (16) 

where vector T
1 2 1 2[ , , , ]load loadE E c cθ  consists of the parameters to be determined. Vector exp

iF  is the 
force measurements from experiments at the i-th sampling time and vector  cal

iF θ  is the calculated forces. 
The termination threshold is the tolerance on  E θ  or θ  less than 61 10 . Instead of using the calculated 
forces, we can also obtain a set of rheological forces by running FE simulations during the optimization process. 
However, the optimization will become very time-consuming since four unknown parameters are involved and 
the FE simulation has to be iterated many times. 

2.5.3 Estimation of parameters 1
relc  and 2

relc  

In [Wang & Hirai (2010a)], we found that it is hard to accurately predict both rheological force and the 
final-shape simultaneously by using a linear FE model. There is a contradiction between the reproduction of 
force and the approximation of final-shape. We have therefore introduced a dual-moduli viscous element (Figure 
6a) to deal with this issue. This element switches the viscous moduli from one value ( load

ic ) to the other ( rel
ic ) 

during simulation. To accurately reproduce the final-shape, two more parameters 1
relc  and 2

relc  need to be 
estimated. Since force is out of concern after releasing, we only focus on the deformation and we can determine 
these two parameters by minimizing the difference in final-shapes between simulation and experiment. The 
objective function is formulated as 

    2

1 2 1 2
1

, ,
m

rel rel sim rel rel final
i i

i

E c c x c c x


  ,                      (17) 

where  1 2,sim rel rel
ix c c  and final

ix  are the residual displacement vectors from simulation and experiment, 
respectively. The optimization is terminated when the tolerance on the function  1 2,rel relE c c  is less than 

121 10  or the tolerance on parameter 1 2[ , ]rel relc c  is less than 61 10 . 

2.5.4 Calculation of parameters 1 , 1c , 2 , and 2c  

After having load
ic  and rel

ic , we can easily calculate 1 , 1c , 2 , and 2c  using the following equations: 

,

, 1, 2.

load
i i i

rel
i i i

c c

c c i





 

  
                              (18) 

For some applications, we may only concern about the forces but not residual deformation. In such cases, it is 
not necessary to include the dual-moduli viscous elements in the constitutive model and we should also skip the 
third and fourth steps during parameter estimation. Note that the parameter estimation method proposed in this 
section can be applied in both 2D and 3D models. 

3. Results 

3.1 Parameter estimation results 

Generally, the material property of an object will not differ even though the object may be subjected to different 
operations or has different shapes or sizes. This feature allows us to use regular-shaped objects with simple 
loading operations to estimate their parameters. As a result, the estimated parameters should be able to simulate 
arbitrary shaped objects with any operations. In our experiments, we used flat-squared objects pushed from one 
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side with constant velocity to estimate the parameters. Using the method proposed in Section 2.5, we estimated 
the physical parameters for the experimental trials given by Table 1 with ‘Est-’ in the trial names. Estimation 
results are listed in Table 3. 

Note that all objects made of clay material are supposed to have the same properties since they were bought in 
the same pack and at the same time. The tendency of estimated parameters relative to different compressing 
velocities is shown in Figure 7. We found that there is no clear tendency of parameters  , E1, and E2 relative to 
compressing velocities. On the other hand, parameters c1 and c2 are slightly increased along with the decreasing 
of compressing velocities. This is reasonable since the viscous moduli are normally used to describe the velocity 
related behaviors. 

Because three kinds of sweets materials are made of different bean powders and with different mixture ratios, the 
estimated parameters are also quite different among one another. For the bacon material, due to the 
non-homogeneous and anisotropic properties, different compressing directions affected the physical parameters, 
which can be seen from the estimated parameters of bacon trials listed in Table 3. 3D mesh information and time 
cost for estimating parameters of two bacon trials are given in Table 4. We can see that time cost in the second 
step is very low comparing with the first and third steps by taking the advantage of analytical expressions of 
rheological force. In the first and third steps, the FE simulation was iterated several times and it costs longer time 
to reach an optimal solution. Comparing with the first step, two variables ( 1

relc , 2
relc ) are involved in the third step 

and yield higher cost in parameter estimation. The estimated parameters listed in Table 3 will be evaluated in the 
next subsection by predicting unknown behaviors of each material under different operations and with different 
shaped object. 

3.2 Evaluation results of clay material 

Evaluation trials of clay materials were performed using white colored objects with compressing from the 
top-center area and different compressing velocities. Detailed experimental information of these trials is given in 
Table 1 with ‘Eva-’ in the beginning of the trial names. The average values of estimated parameters are used to 
predict the rheological behaviors of these trials. Simulation results comparing with experimental measurements 
are shown in Figure 8. We found that both keep-shapes and final-shapes are pretty well matched between 
simulations and experiments but the predictions of rheological forces showed some errors in all trials. 

3.3 Evaluation results of sweets material 

To evaluate the estimated parameters of sweets materials, several non-homogeneous layered objects were tested. 
Each of them consists of three layers with two different kinds of sweets materials. Two kinds of compressing 
operations were performed on these objects. One is from entire top side of the objects and the other one is from 
the center area of the top side. The FE modeling of non-homogeneous rheological object was presented in [Wang 
& Hirai (2011b)]. The idea is to virtually separate a non-homogeneous object into several homogeneous ones 
with their own physical properties. The behaviors of the non-homogeneous object were then simulated by 
combining the behaviors of individual homogeneous ones using a set of boundary constraints. The estimated 
parameters for each sweets material listed in Table 3 are used to simulate the non-homogeneous objects. 

Simulation results comparing with experimental measurements are shown in Figures 9 and 10. Figure 9 shows 
that both deformed shapes and forces are pretty well matched between simulation and experiment. In Figure 10, 
however, the force profiles experience certain errors comparing with the results in Figure 9. This is because the 
compressing operation. In Figure 9, the objects were compressed from the entire top sides which are the same 
with the operation used for parameter estimation. On the other hand, the compressing operation in Figure 10 is 
different from the one used in parameter estimation. Therefore, we can conclude that similar operations used for 
parameter estimation will yield better performance in prediction. Even with different operations as shown in 
Figures 8 and 10, we still can obtain acceptable prediction results, which denote that our FE model and 
parameter estimation method are able to predict both rheological force and deformation behaviors 
simultaneously, even for non-homogeneous object with different operations. 

3.4 Evaluation results of bacon material 

Evaluation results presented above are all based on 2D FE model. To validate our model and method in 3D cases, 
we performed 3D parameter estimation and evaluation using bacon material. Two flat-squared bacon slices were 
firstly tested with a push-keep-release procedure for estimating the parameters. Experimental data consist of 
force and static images, which are same with 2D case. However during parameter estimation, 3D FE model was 
used instead of the 2D one. 3D tetrahedra meshes are generated using an open-source mesh generator named 
‘TetGen’ [Si (2009)], which creates a 3D mesh based on the information of the object boundary. The estimated 
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parameters are listed in Table 3. 

Two experimental trials were performed with irregular shaped (trapezoid and diamond) bacon slices for 
evaluating the estimated parameters. The muscle fiber textures of trial ‘Eva-B-V-T’ and ‘Eva-B-P-D’ are vertical 
and parallel to the compressing direction respectively. To show the effects of the muscle fiber texture, both sets 
of estimated parameters are used to simulate the two evaluation trials. Simulation results comparing with 
experimental ones are shown in Figures 11 and 12, respectively.  

Figure 11 shows that the simulated deformation behaviors matched the experimental ones quite well with both 
sets of estimated parameters. Unfortunately, the force experiences certain errors with both sets of parameters. We 
can see that the simulated force profiles are quite similar for both sets of parameters but the force amplitudes are 
quite different. The parameter set ‘Est-B-V’ yields larger force amplitude (Figure 11b-1) comparing with 
‘Est-B-P’. From Table 3 we also found that the parameter set ‘Est-B-V’ has larger values than parameter set 
‘Est-B-P’. This means that we feel harder if we compress the bacon slice in a direction vertically to the muscle 
fiber texture. From Figure 11, it is hard to say which set of parameters is better for predicting the force profile. 

On the other hand, from Figure 12 we can easily tell that the parameter set ‘Est-B-P’, whose muscle texture 
direction is the same with the evaluation trial ‘Eva-B-P-D’, yields much better predictions of force profile. This 
tells us that the compressing direction affects the parameter estimation results for anisotropy objects and further 
affects the prediction results as well. Therefore, it would be better if we could perform the experiments for 
estimation using the same operation, especially the compressing direction, with the one using in prediction. 

The simulated deformation behaviors shown in Figures 11 and 12 are 2D surface view projected from 3D 
simulations for the convenience of comparison. Figure 13 shows the 3D simulation snapshots for both evaluation 
trials. The 3D views of keep-shapes for both trials are shown in Figures 13a and 13b. Figures 13c and 13d are 
used to demonstrate the change in object thickness of both trials. To accurately approximate the experimental 
condition (Figure 2), one surface of the objects (left sides in Figures 13c and 13d) is constrained to make sure no 
deformation happens during simulation and only the other side of the objects is allowed to deform freely. 
Evaluation results shown in Figures 11, 12, and 13 suggested that our FE dynamic model and parameter 
estimation method are applicable in 3D cases as well. 

4. Conclusions 

In this paper, we presented 2D/3D FE dynamic model and a parameter estimation method for accurately 
simulating the behaviors of rheological objects. Due to the presence of residual deformation, modeling of 
rheological object is more difficult than doing an elastic one. Especially, it is hard to accurately predict both 
rheological force and residual deformation simultaneously. Therefore in this paper, we proposed a parallel 
five-element model with two dual-moduli viscous elements to deal with this issue. The dual-moduli viscous 
element has an ability to switch the viscous coefficient from one value to the other during simulation. This 
makes the object behave differently under loading and unloading operations, which can be physically explained 
as property change caused by the deformation. By imposing a parallel 5-element model onto each triangle or 
tetrahedron to govern its behaviors, 2D/3D FE dynamic model was formulated to simulate homogeneous objects 
and it can be easily extended to simulate non-homogeneous objects as well. There are 7 unknown physical 
parameters in this model. To determine these parameters, a four-step method for parameter estimation was 
proposed. This method aims at minimizing the difference in rheological force and deformation between 
simulation and experiments. By taking the advantage of parallel configuration of the constitutive model, we can 
analytically solve the force expressions. Consequently, the efficiency of the estimation method was improved 
significantly. It can reach an optimal solution in the second step within several seconds. This method can be also 
applied in other FE models as long as a parallel model is used. 

Three typical rheological materials: clay, Japanese sweets, and bacon, were tested to validate the proposed FE 
model and parameter estimation method. Several square-flat shaped objects made of each material were indented 
and the measurements of force and deformation were recorded. Parameter estimations were performed with 2D 
FE model for clay and Japanese sweets materials and with 3D model for bacon material. Estimated parameters 
show that the indentation displacement and velocity do not affect the estimation results much but the indentation 
directions for an anisotropic object do affect the estimated parameters. To evaluate the estimated parameters, 
indentation experiments were performed for each material with different compressing operations, 
non-homogeneous, and irregular-shaped objects, respectively. Evaluation results show that we can predict the 
deformation quite well but the predictions of rheological forces experience certain errors for some trials. Using 
same compressing operations and same indentation directions in both estimation and evaluation always yield 
better prediction results. Due to the difference in object shapes, properties, and compressing operations, we think 
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the prediction errors in rheological forces shown in Figures 8, 9, 10, 11, and 12 are acceptable and the prediction 
results are accurate enough for some applications, such as haptic display of object manipulation. Evaluation 
results finally suggested us that our FE model and parameter estimation method are suitable for simulating 
rheological objects and can successfully reproduce both rheological force and deformation behaviors 
simultaneously, even for non-homogeneous, anisotropic, and 3D objects. 

This paper is a study on methodology of object modeling but not on particular application. The proposed FE 
model and parameter estimation method can be easily applied in various applications as long as the measurement 
data of force and deformation field are available. They are also not limited to model rheological objects but can 
be used to model elastic, viscoelastic, and plastic objects as well with slight change in the constitutive model. 
Note that the dual-moduli viscous element is not necessary to be used in modeling elastic or viscoelastic objects 
since there is no residual deformation happens in such objects. Accordingly, the third and fourth steps in 
parameter estimation method can be skipped for dealing with elastic or viscoelastic objects. 

In this paper, only compression loadings and isotropic properties were considered. In the future, tensile loading, 
orthotropic, and anisotropic properties will be considered as well to better understand the behaviors of 
rheological objects. 
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Table 1. Detailed information of all experiments trials 

Material Trial 
Thickness 

of object (mm) 

Type 

of push 

Velocity 

of push (mm/s) 

Time 

tp (s) tk (s) 

Clay 

Est-C-R-06 12.0 

top 

0.5 

12.07 303.78 

Est-C-R-08 10.5 16.10 304.78 

Est-C-R-10 10.5 20.12 311.82 

Est-C-B-06 10.0 

0.2 

30.17 311.83 

Est-C-B-08 10.0 40.24 321.88 

Est-C-B-10 10.0 49.29 342.00 

Est-C-Y-06 11.0 

0.1 

58.34 502.94 

Est-C-Y-08 10.0 79.46 500.94 

Est-C-Y-10 11.5 98.58 609.57 

Eva-C-W-t1 12.0 

center 

0.5 16.09 369.16 

Eva-C-W-t2 10.5 0.2 40.24 400.34 

Eva-C-W-t3 10.0 0.1 79.46 601.52 

Sweets 

Est-S-W 12.0 

top 

0.2 

28.87 182.06 

Est-S-Y 11.0 29.68 181.26 

Est-S-P 11.0 29.97 181.46 

Eva-S-Y+P 11.0 49.49 181.47 

Eva-S-W+P 11.0 49.49 181.97 

Eva-S-W+Y-C 11.0 
center 

49.69 181.86 

Eva-S-Y+P-C 11.0 39.13 182.07 

Bacon 

Est-B-P 14.0 

top 0.1 

8.0 97.60 

Est-B-V 14.0 8.0 95.80 

Eva-B-P-D 10.5 7.3 92.80 

Eva-B-V-T 11.0 6.8 69.00 

The first term in the trial name denotes that the trial is used to estimate the parameters (‘Est-’) or evaluate the 
parameters (‘Eva-’), respectively. The second term denotes different materials with ‘-C-’ standing for clay, ‘-S-’ 
for sweets, and ‘-B-’ for bacon materials, respectively. The third term in clay and sweets trials denotes the object 
color with ‘-R-’ for red, ‘-B-’ for blue, ‘-W-’ for white, ‘-Y-’ for yellow, and ‘-P-’ for purple, respectively. The 
third term in bacon trials denotes that the pushing direction is parallel (‘-P-’) or vertical (‘-V-’) to the texture of 
muscle fiber. The remaining terms in different trials are some parameters used to distinguish between one 
another, for example, the numbers (‘-06’, ‘-08’, and ‘-10’) in the clay trials for parameter estimation denote 
rough indentation displacements during experiments, the letters (‘-D’ and ‘-T’) in last two trials of bacon denote 
that the objects have irregular shapes of diamond and trapezoid, respectively. 
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Table 2. The constitutive laws of generalized models 

Models Type The constitutive law 

Serial 

1 (no free elastic) 
1

1
1

0 1

j in n
s
j ij i

j i

B A
t t

 


 

 


    

2 (free elastic) 
1 1

2
1

0 1

j in n
s
j ij i

j i

B A
t t

  


 

 


    

Parallel 

1 (free viscous) 
1

1

0 1

i jn n
p

i ji j
i j

A B
t t

 

 

 


    

2 (no free viscous) 
2

0 1

i jn n
p

i ji j
i j

A B
t t

 
 

 


    

In serial models, ‘free elastic’ indicates that an elastic element appears without a viscous element connected in 
parallel. In parallel models, ‘free viscous’ indicates that a viscous element appears without an elastic element 
connected in serial. 

 

Table 3. Estimated parameters for trials with ‘Est-’ in the trial names 

Material Dim. Trial name   
E1 

(Pa) 

E2 

(Pa) 

c1 

(Pa·s) 

c2 

(Pa·s) 

1  

(Pa·s) 

2  

(Pa·s) 

Clay 2D 

Est-C-R-06 0.2672 2.8650×104 6.0364×104 4.4433×106 2.7411×105 4.3890×106 2.7408×105

Est-C-R-08 0.2902 3.1753×104 7.2147×104 6.6600×106 3.5334×105 6.6310×106 3.4397×105

Est-C-R-10 0.2367 2.1954×104 6.7528×104 4.2494×106 3.4789×105 4.2225×106 3.3506×105

Est-C-B-06 0.2537 1.6582×104 4.2801×104 3.0272×106 3.1220×105 3.0032×106 2.9812×105

Est-C-B-08 0.2292 2.2164×104 6.0319×104 4.4116×106 4.8374×105 4.3764×106 4.7677×105

Est-C-B-10 0.2602 2.2424×104 7.1494×104 4.6666×106 6.2660×105 4.6432×106 6.1250×105

Est-C-Y-06 0.2593 1.7273×104 3.6229×104 5.3295×106 4.3810×105 5.3065×106 4.1135×105

Est-C-Y-08 0.2479 2.1804×104 4.2930×104 9.7251×106 6.9993×105 9.7039×106 6.6577×105

Est-C-Y-10 0.2494 1.5206×104 4.1475×104 7.3118×106 7.5971×105 7.2902×106 7.1849×105

Average 0.2549 2.1979×104 5.5032×104 5.5361×106 4.7729×105 5.5073×106 4.5957×105

Sweets 2D 

Est-S-W 0.3746 1.3468×104 2.4695×104 1.4820×107 5.3855×104 1.4811×107 1.8527×104

Est-S-Y 0.3353 1.0553×104 3.7276×104 6.6096×106 7.8271×104 6.6034×106 3.7659×104

Est-S-P 0.3267 9.1565×103 5.0802×104 4.0958×106 8.2198×104 4.0851×106 5.2072×104

Bacon 3D 
Est-B-P 0.4928 5.8250×104 1.1640×104 2.8537×107 1.8828×104 2.8513×107 1.7652×104

Est-B-V 0.4923 6.7607×104 1.2988×104 3.7292×107 2.4118×104 3.7243×107 2.2872×104

Parameters of clay and sweets materials were estimated using 2D FE model and parameters of bacon were 
estimated using 2D measurements but 3D FE model. 

 

Table 4. 3D mesh information and time cost for parameter estimation of bacon trials 

Trial name Node number 
Tetrahedra 

number 

Time cost (s) 

Step 1 Step 2 Step 3 

Est-B-P 171 492 1898 1.5495 14530 

Est-B-V 147 414 725 1.1635 18315 
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             (a) Clay                          (b) Sweets                   (c) Bacon 

Figure 1. Objects made by three typical rheological materials used in experiments 

The black dots on the surface of the objects were manually drawn before experiments for the convenience of 
making FE meshes and clearly capturing the deformation. 

 

 

     

           (a) Experimental setup                     (b) Displacement input 

Figure 2. Experimental setup (a) and input displacement function (b) for the indentation experiments 

The object is pushed from time 0 to tp by the linear stage with a constant velocity and this time period is called 
push phase. During time tp to tp+tk (keep phase), the linear stage is stopped and keep the deformation unchanged. 
Accordingly, the deformed shape during this period is called keep-shape. After time tp+tk, the linear stage is 
moved back to the original position and the deformation generated inside the object is allowed to recover freely 
and finally reach a permanent shape, which is called final-shape in this paper. 
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                 (a) Rheological force                              (b) Deformed shapes 

Figure 3. Experimental measurements of rheological behaviors 

During push phase, the rheological force is increasing in an almost linear manner. During the keep phase, the 
deformation is kept unchanged (keep-shape) but the force response is decreasing in a nonlinear manner, which is 
referred to as force relaxation. After releasing, the rheological force goes to zero but the deformation starts to 
recover and finally reach a permanent shape called final-shape. 

 

 

   

            (a) Clay                   (b) Sweets                   (c) Bacon 

Figure 4. Different pushing operations and different shaped objects used in evaluation experiments. 

In clay case, the square-shaped objects were deformed from the center part of the top sides instead of entire top 
sides in estimation trials. In the case of Japanese sweets, non-homogeneous layered objects were used instead of 
homogeneous objects in estimation trials. In bacon case, irregular-shaped objects were used instead of 
regular-shaped objects in estimation trials. 
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                    (a) Serial models                    (b) Parallel models 

Figure 5. Two categories of rheological constitutive models: the serial (a), and parallel (b) models. 

Firstly, we introduce four basic elements: the elastic, viscous, Maxwell, and Kelvin elements, as presented in 
[Wang & Hirai 2010a]. Then, the serial model can be defined as a model consisting of a set of basic elements 
connected in serial. Similarly, the parallel model is defined as a model consisting of a set of basic elements 
connected in parallel. 

 

 

Figure 6. The dual-moduli viscous element (a) and the parallel five-element model (b) with two dual-moduli 
viscous elements, which is used in this paper to model rheological objects 

 

 

Figure 7. Tendency of estimated parameters relative to different compressing velocities 

Different line types denote different compressing velocities and different markers denote different parameters. 
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Figure 8. Evaluation results of clay objects with a compressing velocity of (a) 0.5m/s, (b) 0.2m/s, and (c) 0.1m/s, 
respectively 

Because the deformation behaviors are complicated (especially in the contact corners), a triangular mesh with 
17×17 nodal resolution was used in simulations, but only quadrilateral meshes (each quadrilateral consists of 
eight triangles) were demonstrated for the convenience of comparisons. 
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Figure 9. Evaluation results of non-homogeneous sweets objects with a top-side compression 

 

Figure 10. Evaluation results of non-homogeneous sweets objects with a center compression 

The objects were simulated with triangle mesh in a nodal resolution of 17×33, but only displayed as quadrilateral 
meshes (each quadrilateral consists of eight triangles) for the convenience of comparison. 
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Figure 11. 3D evaluation results of bacon object with a trapezoid shape (Eva-B-V-T). The estimated parameters 
used in both (a) and (b) are from 3D estimation results of trial Est-B-P and Est-B-V, respectively 

 

 

 
Figure 12. 3D evaluation results of bacon object with a diamond shape (Eva-B-P-D). The estimated parameters 

used in both (a) and (b) are from 3D estimation results of trial Est-B-P and Est-B-V, respectively 
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                           (a)                               (b) 

   

                          (c)                              (d) 

Figure 13. 3D simulation snapshots: (a) trial Eva-B-V-T in 3D view, (b) trial Eva-B-P-D in 3D view, (c) trial 
Eva-B-V-T in 2D lateral view, and (d) trial Eva-B-P-D in 2D lateral view 


