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Abstract 

During the past two decades, metabolic dysfunction and concomitant reduction-oxidation reaction (redox) 

imbalances (i.e., oxidative stress) have been suggested to be associated with numerous age-related chronic diseases. 

One profound result of metabolic imbalances is endothelial dysfunction, a pathophysiological condition that 

increases risk of downstream chronic disease consequences. Healthy endothelial function has been positively 

associated with elevated levels of circulating nitric oxide (NO). Consequently, a natural, plant-based material that 

may safely increase endogenous NO levels, reduce redox imbalance, and promote improved metabolic response 

could be of significant interest and benefit. In this first study of its kind, we conducted a longitudinal, randomized, 

double-blind, placebo-controlled study of S7, a proprietary polyphenol-rich fruit, vegetable, and herb-based material 

previously reported to reduce reactive oxygen species (ROS) and to increase NO. Specifically, we measured changes 

in real-time cellular generation of ROS and changes in levels of bioavailable NO (measured as circulating NOHb) in 

42 overweight or slightly obese individuals who were recruited into one of three groups: placebo, 25mg of S7, and 

50mg of S7. Results suggest that after 90 days of once-daily supplementation, the 25mg and 50mg S7 groups 

exhibited diminished mitochondrial ROS generation (~54% and ~75%, respectively) compared to placebo, which 

exhibited a slight increase (>12%) (p = 0.049). Furthermore, circulating NOHb levels significantly increased in the 

25mg and 50mg S7 groups (33.87% and 53.43%, respectively) compared to placebo (p < 0.001). Together, these 

results suggest that long-term daily supplementation of S7 may provide potential benefits related to healthy 

endothelial function and reduced mitochondrial dysfunction. 

Keywords: endothelial dysfunction, metabolic syndrome, circulating NOHb, cellular metabolic activity, ROS, FMD, 

Alx 75%, dietary supplement S7 

1. Introduction 

Obesity is a worldwide epidemic that has significant economic and health consequences. In 2008, an estimated $147 

billion U.S. dollars were spent on obesity-related healthcare costs (www.cdc.gov/obesity/data/adult). Additionally, 

obesity predisposes individuals to many diseases and disorders, including stroke, cardiovascular disease, diabetes, 

and certain types of cancer costs (www.cdc.gov/obesity/data/adult). In fact, for the first time, some models predict 

that children in America and Europe could have a shorter life expectancy than their parents (Olshansky et al., 2005). 

A large part of this risk is because obesity is a central factor in the development of Type 2 diabetes and metabolic 

syndrome, which have become one of the deadliest cardiovascular risk constellations (Reaven, 2011).  

Metabolic syndrome is characterized by endothelial dysfunction, reduction-oxidation reaction (redox) imbalance, 

hypertension, impaired glucose tolerance, and dyslipidemia, many of which are coupled with the natural aging 
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process (Reaven, 2011; Rask-Madsen & Kahn, 2012; Yates, et al., 2012; Carrier, 2016; Spahis, Borys & Levy, 2016; 

McCracken et al., 2018; Kotkowski et al., 2019; Vona et al., 2019). Given that the constellation of symptoms 

describing metabolic syndrome varies substantially, many researchers have sought physiological biomarkers capable 

of measuring widespread dysfunction. For example, redox processes pervade practically all fundamental processes, 

from bioenergetics to metabolism, making them ideal candidates because of their ability to have system-wide effects. 

Signaling molecules, such as nitric oxide (NO●) and superoxide radical (O2
●), have fundamental implications in 

biology and represent biosignatures related to metabolic syndrome and its role in the development of subsequent 

pathology, ranging from cardiovascular disease to dementia (Coleman, 2001; Laroux et al., 2001; Korhonen et al., 

2005; Stephan et al., 2017; Yuyun, Ng & Ng, 2018). One of the mechanisms through which NO● serves as a marker 

of endothelial dysfunction is through its interaction with superoxide and the subsequent formation of further 

downstream reactive oxygen and nitrogen species (ROS/RNS) (Laight et al., 1998; Kojda & Harrison, 1999; Zalba et 

al., 2001; Bauersachs & Widder, 2008; Schulz, Gori & Munzel, 2011). These are relevant for the cardiovascular 

system since the cardiovascular endothelial homeostasis relies on an equilibrium between these two factors. For 

example, decreases in NO● concomitant with increases in ROS cause endothelial dysfunction and increased risk of 

cardiovascular disease (Yuyun, Ng & Ng, 2018), one of the most prevalent conditions associated with obesity and 

metabolic syndrome. 

Furthermore, increased ROS production has been posited to be associated with the generation of adipokines. 

Adipokines are bioactive substances found in adipose tissue that induce generation of ROS (Fernández-Sánchez et al., 

2011). In any event, increased ROS production also leads to diminished availability of NO● and endothelial 

dysfunction (Fernández-Sánchez et al., 2011). Thus, NO and ROS, when measured simultaneously, may serve as a 

robust indicator of underlying processes that significantly contribute to morbid outcomes in obesity and metabolic 

syndrome.  

The role of ROS and NO in oxidative stress is expansive, and pivotal cellular mechanisms have been proposed. For 

example, mitochondrial dysfunction is associated with increased ROS formation in diabetics (Wu et al., 2018), while 

also being implicated as a leading factor in heart failure and obesity (Zhou & Tian, 2018; de Mello, Costa, Engel & 

Rezin, 2018). Interestingly, research has already suggested that combinations of polyphenols (i.e., colorful 

compounds commonly found in fruits and vegetables that have been shown to have protective biological effects) 

present in diets rich in fruits and vegetables may be of particular interest in connection with antioxidant properties 

(Han, Shen & Lou, 2007; Mullen et al., 2011; Yashin et al., 2013; Hussain et al., 2016; Arulselvan et al. 2016; 

Sarubbo et al., 2018). In vitro, these compounds have demonstrated robust ROS scavenging capabilities while ex 

vivo studies have demonstrated their effectiveness at reducing oxidative stress (Niu et al., 2015; Serino & Salazar, 

2018; Nemzer et al., 2018). Additionally, a recent review suggests that polyphenols may improve mitochondrial 

function while also improving antioxidant capacity through their disruption of cellular senescence, a process in 

which cells become dysfunctional and secrete messengers, such as ROS (Serino, & Salazar, 2018). Furthermore, 

flavonoids, one of the largest categories of polyphenols, have been postulated to increase NO●, although the exact 

mechanisms are not yet well understood (Duarte et al., 2014). 

In this study, we utilized technological advancements related to the assessment of NO● and ROS in order to conduct 

a double-blind, placebo-controlled, longitudinal study designed to determine the physiological effects of S7, a 

plant-based, phenolic-rich dietary supplement. Contributing to the novelty of the study, we used scientifically 

well-recognized electron spin resonance (ESR) spectroscopy (Hawkins & Davies, 2014; Dikalov, Griendling & 

Harrison, 2007) for direct real-time observation of the physiological levels of cellular, mitochondrial, peroxidase- 

and NADPH-oxidase dependent ROS formation in whole blood (Nemzer et al., 2018) and for measurement of 

concentrations of circulating bioavailable NO● (NOHb) that reflects the relative extent of endothelial function (Fink, 

Dikalov & Fink, 2006). Additionally, we assessed mitochondrial function using a technique previously developed by 

our laboratory (Nemzer et al., 2018). Advances in instrumentation (a bench-top ESR spectrometer NOXYSCAN 

System) provided an opportunity to uniquely investigate the bioactivity of S7 on overweight or slightly obese older 

adults who potentially have an increased susceptibility to metabolic imbalances. S7 is a proprietary formulation of 

botanical materials high in phytochemicals (Table 1). 
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Table 1. Phytochemical composition of the nutritional supplement S7 per 25 and 50 mg serving dose 

Phytochemical components Units 25 mg 50 mg Amount (%) 

Catechins mg 9.2 18.4 36.8 

Chlorogenic acids mg 6.6 13.2 26.2 

EGCG mg 4.6 9.2 18.4 

Curcumin mg 1.1 2.1 4.2 

Caffeine mg 0.9 1.7 3.4 

Anthocyanins µg 26.3 52.5 0.001 

Trigonelline µg 27.6 55.1 0.001 

Vitamin C ng 2.6 5.2 1x10
-4

 

Vitamin E ng 0.075 0.15 3x10
-6

 

 

Given that previous clinical trials have suggested that acute nutraceutical interventions may be effective in 

attenuating the generation of ROS as well as atherosclerotic events and disease progression (Nemzer, Fink & Fink, 

2014; Nemzer et al., 2018) this current longitudinal assessment of NO●, ROS levels, and mitochondrial function 

represents a logical next-step contribution to the literature. We hypothesized that long-term supplementation of S7 

would lead to reduced ROS and increased NO● with concurrent improvement in mitochondrial function. 

2. Methods 

This study was designed to be a 90-day, randomized, longitudinal, double-blind, placebo-controlled investigation of 

the long-term effects of S7, a proprietary, plant-based dietary supplement that is the hypothesized to new effect of 

long-term supplementation on NO/ROS. 

As such, we sought to recruit individuals who were overweight or slightly obese and therefore at risk for 

compromised ability to maintain healthy oxidation-reduction levels, but who were not diabetic or otherwise 

specifically diagnosed with any metabolic condition. The study protocol was registered with and approved by the 

ethics committee of the Federal Medical Association of Baden-Wuerttemberg (F-2017-030) and was conducted 

according to provisions of German law, ICH-GCP guidelines, and the general principles of the original World 

Medical Association‘s Declaration of Helsinki.  

2.1 Participants 

Forty-eight participants were initially recruited and randomly assigned, after matching for age and gender, to one of 

three groups: placebo (―placebo‖), 25mg S7 (―25mg‖), or 50mg S7 (―50mg‖). Participants were initially screened 

during a baseline laboratory visit, at which time they were told about the study, provided informed consent, and had 

basic health parameters collected to determine eligibility for the study. To be eligible for the study, participants 1) 

had to be between 40 and 70 years of age, 2) had to be overweight BMI > 25 or slightly obese BMI ≤ 34.9, 3) had to 

be willing to refrain from making any lifestyle changes or altering their diet/exercise regimen for the duration of the 

study (Fitbit tracker has been used to monitor the exercise level of participants), and 4) had to have an HbA1c < 

6.5%. Other exclusion criteria included: smokers, diagnosed Type I or Type II diabetics, any liver/kidney 

impairments, acute or chronic psychiatric, gastrointestinal, pulmonary, renal, neurological, or cardiovascular 

disorders, known allergies to foods or other ingredients, used supplements or vitamins, or were taking medications 

known to affect endothelial function (e.g., ACE-inhibitors or -blockers). Additionally, participants were excluded if 

they participated in another clinical trial within 90 days of enrolling. Five participants dropped out of the study, for 

an attrition rate of 10.4%, and 1 participant was excluded from further analysis because they did not meet inclusion 

criteria (HbA1c > 6.5%), leaving a total of 42 participants (n = 13, 16, and 13 for the placebo, 25mg, and 50mg 

groups, respectively). Groups were equivalent on key health measures (Table 2).  
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Table 2. Demographic and health information for the three study groups, and univariate ANOVA results (with ‗group‘ 

as a fixed factor and each variable as the dependent measure) confirming that the groups did not differ on any 

parameter at T1. Data represented in the table are mean ± SEM 

 Placebo (n=13,  

8 women) 

25mg (n=16,  

8 women) 

50mg (n=13,  

7 women) 

Group  

Differ. (F) 

Group Differ.  

(Sig.) 

Age 57.8 ± 1.4 58.4 ± 1.4 57.7 ± 1.7 0.14 0.88 

Waist (cm) 109.5 ± 2.8 110.3 ± 1.8 106.2 ± 2.6 0.39 0.68 

Weight (kg) 89.5 ± 3.2 92.9 ± 3.1 92.7 ± 3.5 0.72 0.50 

BMI 31.5 ± 1.0 31.8 ± 1.0 31.4 ± 0.6 0.26 0.78 

HDL (mg/dl) 53.6 ± 3.1 59.7 ± 4.4 55.9 ± 3.5 0.89 0.42 

Triglyceride (mg/dl) 136.7 ± 14.0 179.9 ± 47.6 184.7 ± 19.3 0.48 0.62 

Fasting glucose (mg/dl) 88.9 ± 2.2 90.8 ± 1.8 92.0 ± 2.4 0.12 0.89 

sBP (mmHg) 138.5 ± 4.1 137.6 ± 4.7 142.4 ± 4.9 0.15 0.87 

dBP (mmHg) 89.3 ± 2.4 87.5 ± 2.5 88.8 ± 2.1 0.71 0.50 

HR (bit/min) 66.1 ± 2.1 66.8 ± 2.8 63.8 ± 2.7 0.34 0.72 

CMA (nmol/sec) 282.1 ± 8.4 277.6 ± 9.5 275.8 ± 8.1 0.07 0.93 

NOHb (nmol) 77.4 ± 6.6 86.2 ± 6.4 97.8 ± 6.4 0.33 0.72 

 

2.2 Study Design 

After the initial consenting visit, participants were sent home with instructions to return in a fasted condition for 

Time 1 (T1) assessments, which were performed within two days from the initial contact. T1 assessments included a 

general health evaluation performed by a study physician, cognitive assessments, a venous capillary blood draw, and 

cardiovascular parameters, which were recorded using the AngioDefender (Everist Health, USA) and the 

SphygmoCor XCEL (AtCor Medical Inc., USA). At the end of the T1 visit, study participants received encapsulated 

materials corresponding to their group assignment (placebo, 25mg S7, or 50mg S7), and given explicit instructions 

regarding ingestion. Specifically, participants were instructed to take 1 capsule every morning with food at 

approximately the same time every day. After the 90-day study period, participants were scheduled for Time 2 (T2) 

assessments, which were identical to T1. 

2.3 Assays 

2.3.1 Cellular Metabolic Activity (CMA) 

The extended CMA assay, developed by Noxygen Science Transfer & Diagnostics GmbH (Elzach, Germany), is 

based upon the monitoring of cellular ROS generation, as well as mitochondrial, peroxidase (H2O2), and 

NADPH-oxidase (O2
-) dependent generation of ROS (patent pending). The CMA assay is performed using a 

bench-top ESR spectrometer equipped with a Temperature and Gas Controller (Noxygen Science Transfer & 

Diagnostics GmbH, Germany) and a permeable cell membrane spin probe (CMH, 200 µM). For the measurement of 

extended CMA we added superoxide dismutase SOD (50 U/ml) or catalase (50 U/ml) or Antimycin A (10 µM) to a 

portion of the freshly drawn capillary blood (36 µL) diluted with the same volume Krebs-Hepes buffer containing 

100 U/ml heparin and 10 µM of oxygen label in order to perform all four types of analyses under controlled 

temperature and oxygen concentration (t = 37°C, pO2 = 110 mm/Hg) (Nemzer, Centner, Zdzieblik, Fink, Hunter, & 

König, 2018). The addition of an oxygen label (NOX-15.1 - 5 µM) to the blood sample allowed for assessment of 

oxygen concentrations, as well as cellular and mitochondrial oxygen consumption (Komarov et al., 2012). 

2.3.2 Bioavailable Nitric Oxide Concentration (NOHb) 

Venous blood was taken from a cubital vein using vacutainer containing L-Heparin without upper arm compression 

and was transferred into a 1ml insulin syringe and spun down (1600 x g) for 5 minutes at room temperature. 

Afterward, the sample was frozen in liquid nitrogen and kept at –80°C. Measurement of NOHb content was 

performed at 77°K with liquid nitrogen-filled quartz finger dewar. ESR spectrometer (NOXYSCAN equipped with a 

newly designed cavity and operating at 86 kHz field modulation) was used to collect ESR spectra at the 9.7 GHz X 

band using the settings described in Fink et al., 2006 (Fink, Dikalov, & Fink, 2006). The amount of detected NO●, a 

second crucial signaling molecule of vascular physiology (Dikalov, & Fink, 2005; Pisaneschi et al. 2012) was 

determined by comparison to the calibration curve for the intensity of the EPR signal of erythrocytes that were 

treated with known concentrations of nitrite (1–25 μM). 
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2.4 Chemicals 

The spin probes 1-hydroxy-3-methoxycarbonyl-2.2.5.5-tetramethyl-pyrrolidine (CMH), 

1-hydroxy-4-phosphono-oxy-2.2.6, the metal chelators deferoxamine (DF) and diethyldithiocarbamate (DETC), 

Krebs–Hepes buffer (KHB), and the oxygen label NOX-15.1 were obtained from Noxygen Science Transfer & 

Diagnostics (Elzach, Germany). All other chemicals and reagents used were of analytical grade and were purchased 

from Sigma–Aldrich (St. Louis, MO. USA) unless otherwise specified. 

2.5 Analytic Plan 

Prior to performing statistical analyses, descriptive statistics were determined for each dependent variable and 

normality was assessed. Outliers were determined using a Tukey fences approach ((Q1 – 1.5*(IQR)) and 

(Q3+1.5*(IQR)), where Q1 is the first quartile, and Q3 is the third quartile). Outliers exceeding these boundaries were 

excluded from analysis. Repeated measures ANOVAs were performed with group as the between-subjects factor and 

dependent measurements at T1 and T2 as within-subjects factors. Post-hoc comparisons were evaluated for 

significant effects. In the case of interactions, univariate ANOVAs were performed to determine the nature of the 

interaction to establish appropriate inferences. Statistical significance was determined at the p < 0.05 level.  

3. Results 

3.1 CMA 

3.1.1 Mitochondrial CMA 

Descriptive statistics were determined for each group and each time point. Two participants were excluded from the 

analysis because of missing data, and 1 outlier was determined from the 50mg group, leaving group sizes of n = 13, 

15, and 11 (placebo, 25mg, 50mg, respectively). A repeated-measures ANOVA was conducted with the two-time 

measurements (T1, T2) as within-subjects factors, and group as a between-subjects factor. Results indicated a 

significant main effect of time (F(1,36) = 7.252, p = 0.011, partial η2 = 0.168) and a significant time by group 

interaction (F(2,36) = 3.313, p = 0.048, partial η2 = 0.155) ( Figure 1). A main effect of group was not found (F(2, 36) 

= 1.311, p = 0.282). To better understand the interaction, we conducted univariate ANOVAs on the T1 and T2, 

separately. There were no significant differences at T1 (F(2, 36) = 0.236, p = 0.791). T2 differences were significant 

(F(2, 36) = 3.285, p = 0.049), with least significant difference (LSD) posthoc comparisons suggesting that the 

placebo group was significantly different from both the 25mg group (p = 0.046) and the 50mg group (p = 0.025). The 

two S7 groups were not significantly different from each other (p = 0.663). Given these results and that the direction 

of mitochondrial ROS generation differed between placebo and S7 groups (i.e., placebo increased over 12%, while 

the 25mg and 50mg S7 groups decreased almost 54% and over 75%, respectively), it is likely that the interaction was 

driven by S7 supplementation.  

 

Figure 1. A) Bar graph representing the differences between T1 (Day 1) and T2 (Day 90) (MSEM). B) Violin plots 

demonstrating the raw data. Violin plots were created with open-source software ggplot2 to visualize the distribution 

and kernel probability density of the data within each group at each timepoint. Black circles with connected lines 

represent the M2*SEM 
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3.1.2 H2O2 CMA 

Descriptive statistics were determined for each group and each time point. Two participants were excluded for 

missing data, and two outliers were determined, leaving group sizes of n = 13, 14, and 11 (placebo, 25mg, 50mg, 

respectively). A repeated-measures ANOVA indicated no effect of time (F(1,35) = 0.824, p = 0.370), nor was there a 

time by group interaction (F(2, 35) = 0.092, p = 0.912). There was, however, a significant main effect of group (F(2, 

35) = 3.393, p = 0.045, partial η2 = 0.162). LSD post-hoc comparisons indicated that the placebo group was 

significantly different from both the 25mg (p = 0.026) and the 50mg (p = 0.038) groups. The 25mg and 50mg groups 

were not different from each other (p = 0.969). These effects are likely driven by qualitative differences in baseline 

measures, as all three groups demonstrated similar decreases over time (16.38%, 7.92%, and 17.36% for placebo, 

25mg, and 50mg, respectively).  

3.1.3 NADPH-oxidase CMA 

Descriptive statistics were determined for each group and each timepoint. Two participants were excluded for 

missing data, and one outlier was determined, leaving group sizes of n = 13, 15, and 11 (placebo, 25mg, 50mg, 

respectively). A repeated-measures ANOVA indicated no effect of time on NADPH-oxidase ROS generation (F(1, 36) 

= 0.918, p = 0.344), no effect of group (F(2, 36) = 0.781, p = 0.465), and no group by time interaction (F(2, 36) = 

2.396, p = 0.105). 

3.2 NOHb 

Descriptive statistics were determined for each of the two timepoints and data were checked for normality. One 

participant‘s data was incomplete, and 1 outlier was determined from the 50mg group, leaving group sizes of n = 13, 

15, and 12 (placebo, 25mg, 50mg, respectively). A repeated-measures ANOVA was conducted with the 2 NOHb 

measurements (T1 and T2) as within-subjects factors and group as a between-subjects factor. Results indicated a 

significant effect of time (F(1, 37) = 36.629, p < 0.001, partial η2 = 0.497) (Figure 2). Additionally, there was a time 

by group interaction (F(2, 37) = 7.520, p = 0.002, partial η2 = 0.289), as well as a main effect of group (F(2, 37) = 

10.559, p < 0.001, partial η2 = 0.365). LSD post-hoc comparisons revealed significant differences between all three 

groups (placebo < 25mg, p = 0.024; placebo < 50mg, p < 0.001; 25mg < 50mg, p = 0.019). To determine the nature 

of the interaction, we conducted univariate ANOVAs at T1 and T2. Results indicated that there were no differences at 

T1 (F(2, 37) = 1.595, p = 0.216), but, and as expected, there were differences at T2 (F(2,37) = 15.792, p < 0.001, 

partial η2 = 0.461). LSD post-hoc tests revealed that placebo was significantly different from the 25mg (p = 0.005) 

and 50mg (p < 0.001) groups. Additionally, the 25mg group was significantly different from the 50mg group (p = 

0.006). Specifically, the placebo group exhibited the least NOHb concentration (MSEM: 84.3547.961) compared 

to the 25mg group (MSEM: 116.4537.411) and the 50mg group (MSEM: 148.9178.286). Because the groups 

were not significant at T1 but exhibited differences at T2, these data provide strong support that the effects observed 

on NOHb concentration are being driven by S7. Specifically, over the 90 days, NOHb concentration increased 6.67% 

for placebo, 33.87% for the 25mg group, and 53.43% for the 50mg group.  

 

Figure 2. A) Bar graph representing the differences between T1 (Day 1) and T2 (Day 90) (MSEM). B) Violin plots 

demonstrating the raw NOHb data. Violin plots were created with open-source software ggplot2 to visualize the 
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distribution and kernel probability density of the data within each group at each timepoint. Black dots with connected 

lines represent the M2*SEM 

4. Discussion 

Here, we provide evidence supporting our hypotheses that long-term administration of S7, a dietary supplement rich 

in phytochemicals, reduces ROS and increases NO● in overweight or slightly obese participants susceptible to 

metabolic dysbalance. The observed multifaceted effects of S7 are in agreement with the healthy redox balance 

hypothesis (Dröge, 2002), which consequently affects NO● bioavailability. Given the composition of S7, there are 

several potential ingredients that may contribute to the underlying mechanisms driving these effects. Specifically, 

catechins, which represents 36.8% of the material, are polyphenols that have been shown to have protective health 

benefits through reductions in ROS (Ruidavets et al., 2000; Xiangxin et al., 2002; Hofmann & Sonenshein, 2003; 

Ohga et al., 2009; Hazafa et al., 2019; Wang et al., 2019). Additionally, S7 has a high percentage of chlorogenic acids 

(26.2%), that have been shown to decrease ROS and increase ATP production in cells (Youn et al., 2019). These 

results converge with previous accounts from our lab and others demonstrating that catechins ((-)-epigallocatechin, 

―EGC‖, (-)-epigallocatechin-3-gallate, ―EGCG‖) and chlorogenic acids may modify ROS generation (Manach et al., 

2005; Nemzer et al., 2018). impact the activity of antioxidative enzymes, reduce lipid peroxidation, promote the 

expression of p53, p21 and NF-κB (Hofmann & Sonenshein, 2003), and reduce the accumulation of cholesterol in 

the vessel wall, thus inhibiting development of atherosclerosis (Xiangxin et al., 2002). Furthermore, other lesser 

ingredients of S7, such as curcumin, for example, have been reported to modulate redox status over the (NRF2) 

pathway (Shen et al., 2015), with subsequent increases of intracellular Superoxide Dismutase, (SOD) expression, 

thereby dismutating superoxide radicals into hydrogen peroxide. This is a signaling pathway that further/also leads to 

expression of Endothelial Nitric Oxide Synthase (eNOS). Such effects consequently serve to increase the 

bioavailability of NO● (Umemura, 2006; Joe & Lokesh, 1994). The observed multifaceted effects of S7‘s various 

compounds seem to be potentially in accord with the components of a healthy redox balance hypothesis (Dröge, 

2002). Further research is necessary to confirm this theoretical possibility. 

This study confirmed the long-term antioxidative properties of S7 via the reduction of mitochondrial ROS 

generation concomitant with NOHb increases. Specifically, we observed a greater than 33% increase in NOHb  in 

the 25mg S7 group, and a greater than 53% increase in the 50mg S7 group, as compared to placebo, that had a 

modest 6.67% increase. The mitochondrial ROS results complemented this pattern wherein placebo increased 

mitochondrial ROS by approximately 12% while the 25mg and 50mg groups demonstrated substantial decreases 

of over 54% and 75%, respectively. Thus, we conclude that S7, when administered over a 90-day period, 

increases levels of bioavailable NO●, potentially through normalization of mitochondrial ROS generation. Given 

that the regulation of vascular tone, endothelial function, and cardiovascular function depend heavily on the 

bioavailability of NO (Stephan et al., 2017; Yuyun, Ng & Ng, 2018), these results may have important implications 

for various clinical health outcomes including athletic performance. Although we cannot yet confirm the causal 

relationship between NOHb and mitochondrial ROS generation in this current study, future studies will investigate 

other potential mediators and mechanisms through which NO● increases.  

The current study has some limitations. First, the sample size is small, which reduces the power to detect effects. 

Future studies should be more highly powered in order to detect more subtle effects, which may shed light on other 

potential mechanisms related to the observed antioxidant properties of S7. Second, we used a participant sample that 

was overweight or slightly obese and therefore potentially on the cusp of metabolic dysbalance. Thus, we cannot 

conclude that these results would generalize to other populations of interest, including different age groups. As such, 

additional studies investigating S7 in other populations would provide intriguing lines of inquiry.  

5. Conclusion 

In conclusion, for the first time we were able to measure the ability of S7, a polyphenol-rich botanical dietary 

supplement, to positively increase levels of bioavailable NO● and to reduce levels of mitochondrial ROS in a sample 

of older, overweight or slightly obese adults. These results suggest that S7 has significant potential to improve 

endothelial function, to increase circulating NO● concentrations, to support healthier redox status, and to promote 

other positive health outcomes through antioxidant effects that are not system specific. Future studies should 

examine the effects of S7 on other conditions for which dysregulated redox signalling is a hallmark feature (i.e., 

sports performance and recovery, or specific metabolic or cardiovascular conditions).  
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