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Abstract 

This study evaluated a new measure for analyzing the process of children’s problem solving in a series 
completion task. This measure focused on a process that we entitled the Grouping of Answer Pieces (GAP) that 
was employed to provide information on problem representation and restructuring. The task was conducted using 
an electronic tangible interface, to allow for both natural manipulation of physical materials by the children, and 
computer monitoring of the process. The task was administered to 88 primary school children from grade 2 
(M=8.2 years, SD=0.50). GAP was a moderate predictor of accuracy on the series completion task. Averaged 
over multiple items, GAP, verbalizations and time measures were related to accuracy. On an item level, however, 
GAP was the only process measure related to item solving success, and this relationship was mediated by item 
difficulty. Further research is needed to investigate the precise relationship between problem solving and GAP. 

Keywords: cognitive strategy use, problem solving, inductive reasoning, process assessment, problem space 
restructuring, problem representation 

1. Introduction 

Throughout their school careers, children are subjected to a host of assessment procedures that seek to monitor 
their learning. In school, their cognitive and curricular progress is monitored by achievement tests; outside of the 
classroom, intelligence tests are sometimes used to assess the child’s cognitive ability. However, these 
instruments have been subject to critique on the grounds that they are unable to provide information on how a 
child learns, offer few details about why the child failed to learn (Elliott, Grigorenko, & Resing, 2010; Elliott, 
2000), and do not yield useful information about what forms of educational intervention might help the child 
(Elliott, 2000).  

An alternative approach to cognitive assessment involves process-oriented measurement (Benson, Hulac, & 
Bernstein, 2013; Resing & Elliott, 2011). This form of measurement focuses on the process of problem solving, 
instead of, or in addition to, its products, and may help to explain why a particular child failed to solve a problem. 
Studying the operation of cognitive processes within a test situation could potentially yield information that aids 
the design of subsequent instruction and intervention (Elliott, 2000; Greiff et al., 2013; Van Gog, Kester, 
Nievelstein, Giesbers, & Paas, 2009).  

In line with such reasoning, the general aim of the present study was to examine a new process measure that we 
called Grouping of Answer Pieces (GAP), which was designed to assess problem representation and restructuring. 
This measure was evaluated on its predictive properties within problem solving both in itself, and in combination 
with existing measures of the problem-solving process. Finally, this study aimed to evaluate the usefulness of a 
combination of an electronic tangible interface and dedicated analysis system in process-oriented assessment 
within a problem-solving framework.  

1.1 The Process of Problem Solving 

How people solve problems has been a major concern within the fields of cognitive psychology and artificial 
intelligence. While formal intelligence tests have been widely used, these have not proven very successful in 
helping us understand individual differences in particular problem-solving processes (Richard & Zamani, 2003). 
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The process of problem solving has often been described as cyclical, consisting of (1) problem recognition, (2) 
definition and representation of the problem, (3) development of a solution strategy, (4) organization of relevant 
knowledge, (5) allocation of mental and physical resources, (6) monitoring the progress towards the goal, and 
finally, (7) evaluation of the accuracy of the solution (Pretz, Naples, & Sternberg, 2003).  

The second phase of the problem-solving cycle, the definition and representation phase, has been extensively 
described by Newell and Simon (1972), who introduced the concept of a problem space, indicating all possible 
solutions to the problem. According to these authors, problem space can be reduced by breaking down a problem 
into a set of smaller problems. Here, heuristics can serve as rules that determine how the problem can be divided 
into a series of smaller problems, leading to a restructuring of the problem space (Pretz et al., 2003). Heuristics 
are seen as fast rules and procedures for obtaining an answer or decision without the use of an algorithm, and, 
therefore, do not necessarily always lead to the correct or optimal result (Colman, 2006). Problem-solving 
strategies and problem representation are thought to influence each other, as both are related to problem-solving 
performance, as well as to transfer (Alibali, Phillips, & Fischer, 2009). 

1.2 Measuring the Process of Problem Solving 

The literature on the measurement of problem-solving processes has mainly focused on strategy use. A cognitive 
strategy has been defined by Kossowska and Ncka (1994) as “a unique pattern of information-processing which 
takes place in a problem solving situation” (p. 33). It is considered to be a vital component of the 
problem-solving process (Richard & Zamani, 2003; Siegler, 2007) having both an impact on, and being impacted 
by, learning (Resing, Xenidou-Dervou, Steijn, & Elliott, 2012; Siegler, 2004). Siegler (1996) described high 
quality learning as not being rigidly connected to one particular strategy, but rather, to one’s ability to adapt 
strategy use flexibly to the task requirements. In his opinion, variability in strategy use (rather than stable use of 
one particular strategy) is often indicative of adaptive learning.  

Several methods for measuring strategy use are available although each offers a compromise between accuracy 
of measurement, participant involvement and reactivity, and ease of use (Tenison, Fincham, & Anderson, 2014). 
Reactivity is understood here as a change in strategy use, as a result of its assessment. In such instances, the 
observed strategy use is different to how the participant might otherwise have employed strategies (Kirk & 
Ashcraft, 2001; Tenison et al., 2014).  

Verbal (i.e., oral) reports are widely employed means of assessing strategy use and cognitive processes. Kirk and 
Ashcraft (2001) suggested that offering a verbal report may influence the natural mental processes of the 
participant (i.e., inducing reactivity). Such influence could, in theory, lead to improved or reduced performance. 
Verbal reporting might increase cognitive load demands and, as a result, reduce the mental resources available 
for the process that is being reported upon. On the other hand, participants might be motivated to work through 
the task with greater energy and accuracy, as the requirement to offer oral reports might expose their possible 
errors more publicly. Strategy assessment using verbal reports therefore requires a compromise between report 
accuracy and participant reactivity (Tenison et al., 2014). Although debate exists about the accuracy and 
reliability of verbal reports of cognitive processes (e.g., Feldon, 2010), the general consensus is that these 
provide valid data when obtained under the correct circumstances (Ericsson & Simon, 1980; Tenison et al., 
2014). However, as noted above, we must recognize that the requirement to describe their use of cognitive 
processes may elicit reactivity from the participants, affecting their natural strategy use (Tenison et al., 2014).  

Problem-solving speed has generally been presented in the literature as indicative of cognitive ability; the 
general assumption being that faster is better, although research findings have not unilaterally supported this 
view (Goldhammer et al., 2014; Scherer, Greiff, & Hautamäki, 2015). High performing participants have tended 
to be faster than less proficient participants at highly perceptual, automated, low complexity tasks, but they may 
take more time when tackling more challenging and complex reasoning tasks (Goldhammer et al., 2014). Others 
(e.g., Kossowska & Ncka, 1994) have examined the amount of time taken at different stages of task completion. 
By analyzing the proportion of time spent on the initial stages of the task, an estimate can be made of the portion 
of time a participant spent on the analysis of the task and their planning of the problem-solving process. Higher 
performing participants have been found to spend relatively more time than weaker performers on analysis and 
planning in the initial stages of the task (Kossowska & Ncka, 1994; Resing & Elliott, 2011; Resing et al., 2012).  

Although developments in the field of technology have offered new possibilities for studying strategy use 
(Ericsson, 2003), advances in process-oriented measurement have yet to lead to widely used practical methods to 
incorporate process measures into the assessment of learning and cognitive abilities.  
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1.3 Inductive Reasoning 

Inductive reasoning requires the detection of a rule governing a specific set of elements, and the formulation of a 
general rule from these elements (Klauer & Phye, 2008), in such a way that reasoning from a particular situation 
is applied to a general situation (Sternberg, 1985). Inductive reasoning is generally seen as important for learning 
and transfer (Klauer, Willmes, & Phye, 2002; Resing et al., 2012). Some authors have argued that inductive 
reasoning is an important component of cross-curricular thinking and learning skills (Greiff et al., 2013; Molnár, 
Greiff, & Csapó, 2013). A number of different types of tasks are based on the principles of inductive reasoning; 
these include analogies, series completion, and categorization (Sternberg, 1985). The focus of this paper is on 
series completion tasks, which require the solver to analyze a series of elements, and complete the series by 
supplying the missing element(s). Series completion problems exist in a number of shapes and forms, using 
letters, numbers, geometric figures, colours, etc. Some forms, such as letters and numbers, have a fixed 
relationship to each other as they have a natural sequence, while others, such as geometric figures and colours do 
not. Series completion has long been the subject of research, and the processes involved have been described 
extensively (see Holzman, Pellegrino, & Glaser, 1983; Simon & Kotovsky, 1963; Sternberg, 1985). 

1.4 Electronic Tangibles 

In studying the process of problem solving, computers are useful tools for registering test performance. Over the 
last years, computerized forms of intelligence tests have been introduced. An individual’s performance on the 
Wechsler Intelligence Scale for Children®- Fifth Edition (WISC-V) can be recorded either on paper or using an 
IPad. Although offering a computerized version, such tools are not designed to measure the process of problem 
solving; the focus here is still on recording the outcome.  

For those who seek to measure problem-solving processes, physical objects offer benefits that the traditional PC 
or tablet based interfaces would appear to lack. The benefits of physical materials for learning have been 
advocated by seminal writers such as Piaget, Bruner and Montessori whose theories inspired the development of 
sets of materials for classroom use. Dienes’ multi-base arithmetic blocks (Dienes, 1964), for example, were 
intended to facilitate comprehension of elementary mathematics by the formation of “qualitative structures”, 
such as the concept of number (e.g., Piaget, 1976). Digitized physical learning materials were introduced by 
Papert and his student Resnick, who developed so-called “digital manipulatives” (Resnick et al., 1998). 
Operating across a broader context than schooling alone, the concept of Tangible User Interfaces (TUIs) offers 
great promise for learning and assessment. TUIs consist of electronically enhanced tangible materials, which 
permit a seemingly more natural performance by the student and enable the collection and analysis of computer 
data by an assessor. In contrast to PC or touch-surface tablet applications, where 2 or 3 dimensional 
representations of objects are typically utilized, electronic tangibles make use of real objects (Verhaegh, Resing, 
Jacobs, & Fontijn, 2009).  

TUIs integrate input and output in physical objects that represent digital information themselves (Ullmer & Ishii, 
2000). Graphical User Interfaces (GUIs), such as a PC mouse and a screen, separate input and output modalities, 
whereas TUIs seamlessly integrate control and representation. Where younger children may experience difficulty 
performing some actions on touch-surface tablets, such as drag-and-drop procedures (Price, Jewitt, & Crescenzi, 
2015), the physical materials that are used in TUIs permit more natural interaction with the interface (Verhaegh 
et al., 2009), and draw upon the use of a wider range of human skills and abilities such as perception, motor 
skills and emotion (Dourish, 2004). It has been found that early cognitive development depends mostly on 
sensory-motor responses (Goswami, 2008), and, thus, the use of tangible interfaces comes naturally to people. 

Several possible benefits of TUIs for learning have been described. TUIs are assumed to support playful learning, 
which enhances children’s engagement in scholastic learning tasks. Furthermore, it is likely that they offer a 
more accessible and direct interface than PC or Mac-based learning applications, and support multisensory 
learning as well as collaborative play (Manches, O’Malley, & Benford, 2009; Marshall, 2007). 

1.5 Aims and Research Questions  

The current research concerned an examination of a novel method of process-oriented measurement involving a 
new measure of strategy use, called Grouping of Answer Pieces (GAP). This measure was applied in a series 
completion construction task with a TUI, an electronic console. The task consisted of puppet figures, which were 
to be constructed using eight separate pieces. GAP was considered to be indicative of the use of adaptive 
heuristics, employed to reduce and (re)structure the problem space, and considered to represent the smaller 
problems that the task had been broken into (Pretz et al., 2003).  
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GAP in the series completion task was expected to be related to the accuracy of the participants’ performance 
(Richard & Zamani, 2003). However, it was not expected to be related to other measures of strategy use, such as 
time measures or verbal reports, as these take place during different stages of the problem-solving cycle (Pretz et 
al., 2003). GAP was thought to add unique predictive and explanatory value to performance on the tangible 
series completion task, a factor that could hopefully be added to the existing array of measures, such as 
verbalizations of the problem-solving process, time measurement, and previous inductive reasoning ability.  

Variability in strategy use between items was expected to be connected to performance, thus providing additional 
value in predicting test performance on the tangible series completion task. Participants who displayed greater 
variability in strategy use between items, were expected to perform better than those showing less variability 
(Siegler, 1996, 2007). 

Finally, we anticipated that, for each item, performance on the tangible series completion task could largely be 
explained by a combination of measures: initial skill level, GAP, verbal reports, time strategies, and task features. 
Siegler (1987) has pointed out, however, that averaging data over multiple items can lead to a distorted image of 
an individual’s strategy use, and can result in the loss of valuable information. Additional analysis of each item 
was expected to prevent the loss of information that could result from using data averaged over multiple items. 
The study sought to study the relationship between the process measures, task identity, previous ability, and 
performance on the tangible series completion task. As was found with the relationship between time measures 
and performance (Goldhammer et al., 2014; Scherer et al., 2015), we expected this relationship to be complex 
and interactive. 

2. Method 

2.1 Participants 

The participants in this study were N=88 children, 46 boys and 42 girls (M=8.2 years; SD=0.50), from 4 grade 2 
classes of 3 primary schools. The schools were selected on the basis of their willingness to cooperate and were 
all located in a predominantly middle class area in the Netherlands. Informed consent from the parents was 
obtained before testing. Three children failed to complete the study due to absence as a result of illness and were 
excluded from the analyses. 

2.2 Design and Procedure 

Participants were first presented with the Raven’s Standard Progressive Matrices (Raven, Raven, & Court, 1998). 
Each participant received his/her own booklet and answer sheet, and was required to complete the matrices 
independently in the classroom. After the matrices had been completed, each child was taken out of class to work 
on the tangible series completion task individually on the electronic console. The console provided standardized 
instruction for all of the participants. An examiner was present at all times to collect and return the children to 
class, and to oversee the task process. However, they had no role in providing test instructions. 

2.3 Materials 

2.3.1 Raven’s Standard Progressive Matrices  

The Raven’s Standard Progressive Matrices Test (Raven et al., 1998) was used to assess initial cognitive ability. 
This group test is considered to be a sound indicator of inductive reasoning ability. 

2.3.2 Series Completion Task  

This study used a schematic-picture inductive reasoning series completion task which was designed specifically 
for use with the TUI system, although initially designed as a dynamic test incorporating a graduated prompts 
form of training (e.g., Resing & Elliott, 2011; Resing, Touw, Veerbeek, & Elliott, 2016). The series completion 
task required the child to detect changes in objects and relationships in a series of puppet figures, and formulate a 
rule to complete the series. The task, based on the puppet series completion task designed by Resing and Elliott 
(2011) was intended to provide an indication of each child’s inductive reasoning ability. Schematic-picture tasks 
such as the tangible series completion task used in this research are seen as more complex than series completion 
tasks that make use of letters or numbers. While letters and numbers have a fixed relationship to each other, 
pictures and colours do not. Thus, in order to solve the series, one must first search for repeating combinations of 
pictures prior to being able to understand the relationships between the elements of the task.  

The test consisted of 12 items with increasing levels of difficulty. The test started with an example item. If the 
child was unable to provide the correct answer on the example item, the console would provide additional 
explanation to the child, to ensure understanding of what was expected of him/her. Each series item consisted of 
an initial array of six puppets and the child was asked to complete the sequence by making the seventh puppet. 
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The child had to analyze the changes across successive puppets and find the rule to enable them to complete the 
task. An example item can be found in Figure 1. Each puppet consisted of 8 separate pieces. The head was a 
single piece that determined the gender of the puppet (either boy or girl). The 7 pieces that made up the body, 
arms and legs of the puppet could vary in colour and pattern. There were 4 different colours available (green, 
blue, pink, and yellow), which could be plain (no pattern), dotted or striped. The design of the eight piece puppet 
allows for multiple transformations in a series, so the participant is called upon to use a large number of rules in 
order to complete the tasks. 

 

 

Figure 1. An example of an item from the puppet series completion task. The child is presented with an array of 
puppets (drawn on paper) and is asked to construct the puppet that should appear next in the series 

 

2.3.3 Electronic Tangible Interface  

Our study employed an electronic console called “TagTiles” (Serious Toys, 2011), which enabled us to use a 
computerized environment for assessment, without the issues that manipulation of a touchscreen or mouse bring 
for young children (Price et al., 2015; Verhaegh et al., 2009). This incorporated a 12x12 electronic grid, which 
was equipped with sensors to detect the placement of puppet pieces on its surface, and LEDs which could be 
programmed to provide visual, brightly coloured feedback. Through its audio output, the console was able to 
provide appropriate task instructions. The series completion task was completed by placing the pieces on the 
console. Each contained a unique RFID tag, which enabled the sensors to detect position, timing, and identity of 
that particular piece on the console’s surface. All activity data were automatically saved in log files on SD 
memory cards. Log files contained rudimentary information about time, identity, and position of pieces placed 
on the console, and details about the accuracy the answers, per piece and for the item as a whole. The log files 
that were created by the console were manually cleared of unnecessary data, e.g., accidental movement of pieces, 
and relevant data were transferred into SPSS for analysis. Wherever possible, missing data, caused by any failure 
to detect pieces by the console, were retrieved from written records of the child’s performance made by the tester 
during testing. 

 

   

Figure 2. TagTiles console 
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2.4 Scoring and Analysis 

2.4.1 Accuracy  

Accuracy was used as the primary outcome variable for the series completion task. The scoring was based on the 
number of correctly placed pieces. As each answer contained eight puppet pieces, the score for each item ranged 
from 0 to 8. Given that the full test consisted of 12 items, each child’s accuracy score could range between 0 and 
96. This approach was expected to enable far greater differentiation than if we had employed more 
straightforward right or wrong scoring for each item. 

2.4.2 Grouping of Answer Pieces (GAP) 

The concept of grouping in respect of the placement of the answer pieces on the task is similar to the principle of 
grouping into “chunks” that is widely utilized in memory contexts (Miller, 1994; Simon, 1974). This is based on 
the structuring of the problem space and the creation of sub-goals or groups by means of adaptive heuristics. As 
the puppets used in the tangible series completion task are composed of multiple pieces, and the series 
completion tasks are composed of a number of different relations and transformations, the child’s response 
sequence is thought to be influenced by the unfolding process of solving the tasks. The subdivisions in the 
sequence of piece placement were theorized as indicative of the concepts used to define and represent the 
problem (Pretz et al., 2003).  

Task characteristics were used to create sub-groups of puppet pieces that go through the same transformation, or 
which are grouped on the basis of colour, pattern, or anatomy. Puppet pieces were considered to be grouped if 
they were placed immediately after each other. First, puppet pieces were numbered, so a sequence could be 
identified indicating which piece was placed at a particular point in time. The identification numbers of the 
pieces ranged from one to eight, as follows: (1) head, (2) left arm, (3) right arm, (4) left body, (5) middle body, 
(6) right body, (7) left leg, and (8) right leg. An example item (Figure 3) illustrates the basic principle of the GAP 
measure. The Figure includes a sequence of puppets (the task presented to the child) illustrated with some 
possible sequences of responses. The displayed task consists of three discernible series of transformations. First, 
the heads go through a series of changes. The second series is that of the arms and legs, which change colour. 
The third series is that of the body, which stays the same throughout the series. The first sequence displayed in 
Figure 3 contains no adaptive grouping of answer pieces, as each successive piece placed is one that goes 
through a different series of transformations. No adaptive groups of puppet pieces were constructed; pieces that 
transform according to the same rule were not grouped together. Example 2 contains one of the two groups, the 
“body” group (the 4th, 5th and 6th position, pieces 4, 5 and 6). All the pieces in this group are placed in 
immediate succession to one other. The “arms+legs” group (pieces 2, 3, 7 and 8) were not placed as a group, as 
they were interrupted by the body group. Finally, Example 3 contains both the “body” and the “arms+legs” 
groups. Here, all pieces of both groups were placed as a group following each other in the sequence.  

 

Groups for this item  1st 2nd 3rd 4th 5th 6th 7th 8th 

‐ Body ( 4 5 6 ) 

‐ Arms + Legs  

( 2 3 7 8 ) 

Example 1 

Example 2 

Example 3 

1 

1 

1 

2 

2 

5 

4 

8 

4 

3 

6 

6 

5 

5 

2 

7 

4 

3 

6 

7 

7 

8 

3 

8 

Figure 3. Illustrative responses showing grouping strategy (GAP). Three sequences are provided, with the 1st 
position being the first piece placed in the sequence, up to the 8th and last piece. The groups for this item are 
listed in the far left column. Heads are treated as a separate piece and are not included in any of the groups 

 

The adaptive groups of puppet pieces that could be utilized differed between the various items, with the number 
and type of groups that could be discerned per item ranging between two and five. Some items contained groups 
that overlapped or contained other smaller groups. For each test item, formulae were written in Microsoft Excel 
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to identify the placement of adaptive groups for a particular item. The GAP score was based on the number of 
groups laid down by the participant, divided by the number of possible groups for that item. 

2.4.3 Verbalized Strategies 

After each item was completed, the console’s electronic voice asked “Why do you think this is the correct 
puppet?”. Children’s answers were recorded in writing and by audio recordings, and the verbalizations of their 
solution strategies were recorded and scored. The scoring system was based on verbalizations that had been 
found in previous studies, the literature on strategy use in inductive reasoning tasks, and categories used in prior 
research on reasoning tasks. This resulted in three levels of verbalized strategies, as used by Resing and 
colleagues (2016), and depicted in Figure 4. In the first group (I), children were able to provide full explanations 
of all transformations involved in the series, either explicitly or implicitly (e.g., by pointing). The second group 
(II) contained children who were able to verbalize some transformations in the puppet series, but not all those 
that were needed to solve the task. The third group (III) consisted of verbalizations that did not provide 
information relevant to the solution of the task. This scoring was used to analyze each item. The children were 
then allocated to 1 of 5 classes of their verbalizations. If children used a single type of verbalization for more 
than 33% of the items, they were allocated to the corresponding strategy class. If they used two types of 
verbalizations, both in more than 33% of the items, they were assigned to a mixed strategy class (Figure 4).  

 

 

Figure 4. Verbalized strategies. Verbalization is scored for each item. The children were assigned to one of five 
verbalized strategy classes on the basis of the percentage of items where a particular type of verbalization was 

provided 

 

2.4.4 Time Strategies 

Time measures obtained from the log files were the total time for completion of the task (ITOTAL, Figure 5) and 
the time intervals between the placement of all pieces. 

 

 

Figure 5. Interval calculation 

 

An adapted version of Kossowska and Ncka’s (1994) formula was used to calculate the proportion of time used 
on the initial stages of the problem-solving process. These stages are considered to reflect the time taken for 
analysis and planning of the problem-solving process (Kossowska & Ncka, 1994; Resing & Elliott, 2011; Resing 
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et al., 2012). The formula calculated the proportion of time used for the placement of the first two pieces, as 
previous research has shown that many children place the puppet head first and then progress to completing the 
rest of the puppet. This resulted in the following formula: 

  (1) 

Higher values for thinking time represented more thinking and planning in advance; lower values indicated a 
more impulsive style of addressing the task (Resing & Elliott, 2011). 

2.4.5 Decision Tree Analysis  

Classical linear analyses are widely used to investigate contributory predictive factors. However, their usefulness 
is limited when they are used with data that contain complex interactions and which are non-linear (Ritschard, 
2014). Decision Tree Analysis (DTA) contains a number of exploratory techniques aimed at detecting 
interactions and non-linear relationships within a dataset. The basis of DTA is recursive repartitioning, which 
involves splitting the data in order to achieve the optimal difference between groups on the outcome variable. 
This procedure is repeated for each of the splits until an appropriate place to stop is reached. DTAs compare all 
predictors and search through all possible cut-off points with respect to their effect on the outcome variable. The 
splitting variable is chosen as a predictor that maximizes the relationship with the outcome variable, at a specific 
cut-off point (McArdle, 2014). The DTA framework offers multiple techniques and forms of statistical analysis.  

We employed the CHAID technique in the present study (McArdle, 2014; Ritschard, 2014). CHAID uses 
Chi-square analysis as its splitting criterion. The advantage of this approach is that it permits splitting into more 
than two groups at once for a single predictor. These groups of cases resulting from a split are called “Nodes” in 
DTA. At each splitting point, CHAID determines the optimal number of splits, and the cut-off points for these 
splits, for each of the predictors. The p-value of the Chi-square (with a Bonferroni correction) is used as the 
criterion to determine the splits. The p-values are sensitive to the number of cases involved, and help avoid any 
splitting into groups that are too small. The minimum number of cases involved in each split can also be 
predetermined (Ritschard, 2014), as was done in this study. 

3. Results 

3.1 Validating GAP on a Test Level 

Firstly, we examined whether the GAP score was correlated with performance on the task. As expected, we 
found a positive (albeit moderate) correlation between GAP and Accuracy (r=.32, p=.002). Additionally, and also 
as expected, no significant correlations were found for Verbalized strategies (r=.02, p=.88), TotalTime (r=-.05, 
p=.65), or ThinkingTime (r=.17, p=.12) with GAP. These findings indicate that GAP can be seen as a unique 
measure of strategy use, unrelated to any previous measures of strategy use. 

Multiple regression analysis was used to investigate the prediction of Accuracy in completing the task. Multiple 
models were tested, and the results are depicted in Table 1. In the first model, Accuracy was used as the 
dependent variable and GAP was used as the independent variable. As the sole predictor, GAP explained 9.0% of 
the variance in Accuracy. In Model 2, Verbalization, TotalTime and ThinkingTime were added to the model as 
independent variables. This model explained 27.0 % of the variance in Accuracy. GAP, Verbalization and 
ThinkingTime were found to be significant predictors of Accuracy. In contrast, TotalTime was not a significant 
predictor. The final model (Model 3) contained Raven scores as an independent variable, along with the 
independent variables used in the previous model. This model explained 30.7% of the variance in Accuracy, with 
GAP, Verbalization and Raven scores as significant predictors for Accuracy. Neither TotalTime nor 
ThinkingTime were significant predictors of Accuracy. These findings were in line with our expectations that 
GAP would add unique predictive value to the available measures. 
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Table 1. Regression analysis for accuracy on the puppet task 
 Model 1 Model 2 Model 3 

Variable B SE B   β B SE B   β B SE B   Β 

Constant 54.87 7.38  24.32 9.49  19.95 9.43  

GAP 33.72 10.91 .32** 29.83 10.02 .28** 26.40 9.88 .25** 

Verbalization    3.11 1.07 .27** 3.21 1.04 .28** 

TotalTime    0.00 0.00 .19 0.00 0.00 .16 

ThinkingTime    40.84 17.00 .24* 29.20 17.31 .17 

Raven scores       0.36 0.15 .23* 

R2  .10   .30   .35  

F for change in R2  9.55**   7.96**   5.39*  

* p<.05. ** p<.01. 

 

3.2 Variability in Strategy Use 

The second hypothesis reflected our expectation that variability in strategy use would be indicative of superior 
performance on the puppet task, and also, of overall learning. To investigate this, we calculated the variance 
within each participant’s strategy use across all of the items. A multiple regression analysis was used with 
Accuracy on the task as the dependent variable, and variance in GAP, Verbalization, TotalTime and 
ThinkingTime as the independent variables. The results are presented in Table 2. This analysis yielded a model 
that explained 15.1% of the variance in Accuracy. A closer look at the model identified variance in GAP and 
variance in Verbalization as significant predictors of Accuracy, although it should be noted that GAP was 
negatively related to Accuracy. Although this was partly in line with our expectations, we had not anticipated the 
finding that more variability in GAP would lead to less accuracy on the task itself. 

 

Table 2. Regression analysis with variability in strategy use 

 Accuracy 

Variable B SE B   β 

Constant 76.79 4.86  

GAP -72.70 34.69 -.21* 

Verbalization 31.17 10.35  .31** 

TotalTime -2.06E-10 0.00 -.01 

ThinkingTime 163.25 150.18  .12 

R2  .19  

F for change in R2  4.23**  

* p<.05. ** p<.01.  

 

3.3 Validating GAP on an Item Level 

The relationship between the number of correctly placed pieces on the puppet task items, the task characteristics, 
and the process measures was expected to be complex and interactive. To investigate this, a file was created in 
which each individual item for a particular participant was handled as a separate case (N=1056). For predicting 
Accuracy on each item (the number of body parts correctly placed out of eight), a Classification Tree was 
generated, using the CHAID method. The results of this analysis are displayed in Figure 6. Accuracy was used as 
the dependent variable, and the Item number (the number of the item on the tangible series completion task), 
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scores on the Raven’s progressive matrices, TotalTime, ThinkingTime, GAP and Verbalization were used as the 
independent variables. The minimum number of cases per node was set to N=50.  

For Items 4, 6, 9, and 10, the item number was the only factor to explain Accuracy. For Items 1 and 3, Accuracy 
was further explained by the Raven scores. For Item 2, 5, 7, 8, 11 and 12, GAP was added as an indicator of task 
success. Higher GAP values seemed to be predictive of higher Accuracy, although Node 10 is an exception to 
this. Node 10 was split on the basis of Raven’s scores, with higher scores predictive of higher Accuracy. 
TotalTime, ThinkingTime, and Verbalization failed to offer a significant improvement of the model. At the item 
level, the best predictors of Accuracy were found to be task characteristics, previous ability (Raven’s scores), and 
GAP.  

 

 

Figure 6. CHAID tree for the prediction of accuracy per item 

 

4. Discussion 

The aim of this paper was to gain greater understanding of how we can identify and assess the operation of 
problem-solving processes in young children. To assist in achieving this aim, we utilized a sophisticated 
assessment tool incorporating electronic tangible technology. 

The use of the electronic tangible TagTiles console made it possible to observe and analyze children’s 
problem-solving strategies in significant detail. GAP appeared to be moderately related to accuracy on the 
tangible series completion task, as were the previously available measures of strategy use, with the exception of 
TotalTime. This latter finding may be a consequence of the level of difficulty of the task, as time on task has 
been shown to be moderated by task difficulty (Goldhammer et al., 2014). The lack of a relation with the other 
measures suggests that GAP is a measure that can provide unique information about the process of an 
individual’s problem solving  

Our findings regarding variability in strategy use showed a more complex picture. In line with Siegler’s (1996) 
theory, intra-individual variability in both ThinkingTime and verbalizations was positively related to 
performance on the task. Variability in GAP was negatively related to accuracy; presumably more stable use of 
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grouping is indicative of greater accuracy in solving the task. If so, GAP appears to function differently to the 
other strategies. If GAP is more related to general task structuring, as we suspect, it would be a relatively 
constant style of approaching the process of problem solving, rather than a choice of strategy application. This 
would make the use of GAP less dependent on particular task content. As GAP is assumed to be related to 
problem representation (Pretz et al., 2003; Richard & Zamani, 2003), it may be a metacomponent of problem 
solving. Metacomponents, such as problem recognition, definition, and representation, were described by 
Sternberg (1985) as executive processes that guide the problem-solving processes, and were expected to be 
general across cognitive problem-solving activities (Pretz et al., 2003; Sternberg, 1985). As such, GAP may 
provide more general information on a child’s problem-solving processes than previously available process 
measures, such as verbalizations and time measures, which were found to be more variable.  

We were somewhat surprised to discover that the Items themselves were identified as the primary factor for task 
success as, at least superficially, these seem fairly similar in the characteristics and processes used. However, the 
results showed that task characteristics were important here. This finding builds upon the work of Goldhammer 
and colleagues (2014) who found that the relationship between time on task and performance was moderated by 
task difficulty. In other words, task difficulty is a key factor in determining the need for adequate strategy use. 
Analysis of the items in the present study indicated this to be true for our task. On the items where there was 
high average task success (in other words, where the item was found to be relatively easy), the item identity itself 
provided the best explanation for task performance. As Klauer and Phye (2008) have proposed, experts on a task 
may use less sophisticated strategies, requiring less time and effort, on easier items. Thus, the use of less 
sophisticated strategies on easier items may prove more efficient (Siegler, 1996). It was also seen that no single 
process-oriented measure provided an explanation for all items. This is in line with Siegler’s (1996) notion that 
averaging data over multiple items might lead to the oversight of important information and may lead to an 
oversimplification of models of strategy use. GAP provided the single best explanation of all process-oriented 
measures for performance, as it was the only process-oriented measure included in the model. However, it was 
not a predictor for accuracy in all of the tangible series completion items. The relationship between strategy use 
and performance appeared to be moderated by task characteristics (Dodonova & Dodonov, 2013; Goldhammer et 
al., 2014; Tenison et al., 2014), and might be distorted by the use of linear analyses.  

Although our two time measures offered additional explanatory value, no analysis or model included them both. 
Neither did they complement each other in the prediction of task performance, although ThinkingTime proved to 
have greater explanatory value. The finding that thinking and planning time provided more information than did 
total time is in line with the results of a study by Resing and Elliott (2011), who found that total completion time 
failed to discriminate between their trained and untrained participants.  

4.1 Process-Oriented Measurement 

Although process-oriented measurement yielded some additional explanatory value, a number of complexities 
emerged. In line with previous research, we found that process-oriented measures are dependent on task 
characteristics and do not show a unilateral relationship with performance (Goldhammer et al., 2014; Scherer et 
al., 2015). While process measures may provide additional information for the more difficult items, their 
relationship with easier items is unclear.  

Process-oriented measurement is often labelled as strategy use in the literature. Such inconsistency in the use of 
terms may lead to confusion. Time measures, verbalizations and actions (GAP or otherwise) have all been 
labelled as strategy use in previous studies, but they all take place in, and over, different stages of the 
problem-solving cycle (Figure 7). Although the problem-solving cycle is not necessarily followed in a 
straightforward, linear fashion (Pretz et al., 2003), the different stages in the problem-solving cycle, where 
strategy measurement can take place, may explain why the different measures of strategy use were found to be 
unrelated.  
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Figure 7. Different process-oriented measures with respect to the phases of the problem-solving cycle (Pretz et 
al., 2003) 

 

GAP has a particular place in the problem-solving cycle, as it may be influenced by the phases between 
representation and taking physical action. Thinking time represents the time taken on the initial phases of the 
task, up to the point that physical action begins. Total completion time represents the time taken throughout the 
whole process, with the exception of the evaluation phase. Verbalizations about strategy use may concern any of 
the problem-solving phases, but would rarely cover all of these. The particular focus of such accounts will most 
likely be influenced by the type of verbalization measurement (Tenison et al., 2014), the accompanying 
instructions (Ericsson & Simon, 1980) and the participant’s willingness and ability to reflect, report and 
elaborate upon his or her cognitive processes. Taking this into account, a more precise differentiation in the use 
of terminology could be desirable. We would suggest reserving the term strategy for any domain specific 
procedure, such as the math-specific strategies described by Siegler (1996). Differences in procedures aimed at 
general structuring of the problem-solving process, such as the time taken for planning and analysis (Kossowska 
& Ncka, 1994), or the grouping performed during problem solving, may be more accurately termed as process 
structures.  

Although these findings offer some promising results with regard to process-oriented measurement using 
electronic tangibles, and the GAP measure in particular, caution is advized in interpreting these findings. As this 
research solely employed a tangible series completion task, our results cannot be generalized to other domains of 
problem solving. Even within the field of series completion, the particular task used in the present study cannot 
be readily generalized to other series completion tasks as these may not contain multiple transformations, or may 
be more domain-bound by the use of letters or numbers (Resing & Elliott, 2011).  

It is also important to note that our sample size was rather small and spanned a narrow age range, thus further 
limiting generalizability. Clearly, more research is needed, utilizing larger and more diverse samples, in order to 
enable general statements to be made about the value of process-oriented measurement in education and clinical 
settings.  

Although we found a relationship between performance and process measures in our particular test domain, its 
nature remains unclear. Future research should determine whether process training can be successfully employed 
to improve children’s intellectual performance.  
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4.2 Conclusions and Recommendations for Future Research 

In summary, our GAP procedure appears to offer additional and unique explanatory value to the field of 
process-oriented measurement. GAP can be measured and interpreted by technological systems such as that 
employed in the present study, and thus used in computerized testing environments where no examiner is present. 
Such a facility also makes the measure particularly suitable for analyses of classroom based problem solving. 
Although theoretically, it would be possible to measure and analyze such processes without the use of technology, 
this would not be recommended as the adaptive groups differ between items. Manual analysis would be prone to 
mistakes and oversights, and would be very time consuming. Tangible user interfaces, in contrast, make it 
possible for educators to provide individualized forms of adaptive instruction, based on the real-time 
activities/responses of the child.  

Further research is needed to determine how to interpret the values derived from the obtained measures. In this 
respect, classification and regression trees may provide a more informative view than traditional analyses, as 
they are able to handle more complex and interactive data. This will enable researchers to take into account the 
interaction between item characteristics and the various process measures.  

As GAP is based on the subdivision of tasks into sub goals, it is not possible to use this measure with all tasks. 
Future research should be aimed at identifying a range of diverse tasks that can enable measurement of this kind. 
The GAP measure does provide an opportunity for analyzing the problem-solving process of participants who 
for some reason are not able to provide (reliable) verbalizations of their strategies, such as those with specific 
language difficulties, certain children from ethnic minorities, etc. As the measurement is unobtrusive, there is no 
risk of participant reactivity. Additionally, tangible user interfaces offer the potential of providing individuals or 
groups of children with adaptive scaffolds, based on their differing responses to challenging classroom material. 
In that way, individualized training and assessment of the process of problem solving in education may come 
within reach. 
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