Sustainable Intensification of Global Agronomic Output


  •  Niels Dybro    
  •  Alan Hansen    

Abstract

Agribusinesses are investigating sustainable ways to meet the predicted increased demand for food production due to an increasing world population and higher living standards. Therefore, there is a strong need to increase agronomic output. This paper will review the current state of agricultural production of the main annual top-five staple grain crops grown around the world, their current yields and harvested area averages and trends. It concludes with a discussion of which changes are needed to increase the yield in lower yielding areas of the world. Finally, there is an assessment of what level of yield increases that could be attained provided the proposed changes are made and its predicted impact on food security by 2050.

The current yield trends and trends for harvested area, when extrapolated out to 2050, indicate crop production will increase 106%. This includes an expansion of the total crop production area by 31%. This increase of cropping area can be achieved by increased utilization of available, uncropped land suitable for crop production, increased double cropping, and relay intercropping, allowing for multiple crops in a calendar year.

In order to double crop production by 2050, it is necessary to focus on growing crops where the conditions make it possible, adopt the best sustainable crop production practices and implement them as intensively as possible everywhere, and consider improved crop production machine system options to reduce risk of soil compaction, which can reduce crop yields.

With proposed changes across the world, it will be possible to exceed a doubling of food production by 2050 relative to 2005 levels, providing a reasonable high level of food security, absent wars and widespread natural disasters.



This work is licensed under a Creative Commons Attribution 4.0 License.
  • Issn(Print): 1916-9752
  • Issn(Onlne): 1916-9760
  • Started: 2009
  • Frequency: monthly

Journal Metrics

(The data was calculated based on Google Scholar Citations)

  • Google-based Impact Factor (2016): 2.28
  • h-index (December 2017): 31
  • i10-index (December 2017): 304
  • h5-index (December 2017): 22
  • h5-median (December 2017): 27

Contact