Seedling Growth and Recovery in Response to Waterlogging of Wheat Cultivars Grown in the Yangtze River Basin of China from Three Different Decades


  •  Jinfeng Ding    
  •  Shengnan Su    
  •  Yuxue Zhang    
  •  Chunyan Li    
  •  Xinkai Zhu    
  •  Wenshan Guo    

Abstract

Waterlogging is a major constraint on wheat (Triticum aestivum L.) production, especially in the Yangtze River Basin of China (YR). A container experiment was designed to investigate wheat-seedling growth and short-term recoveryin response to waterlogging. Cultivars commonly grown in theYR from three different decades, namely, Yangmai 1 (1970s), Yangmai 158 (1990s), and Yangfumai 4 (2010s), were selected. Seedling waterlogging significantly postponed leaf development, as well as decreased the number of tillers and adventitious roots per plant, seedling height, leaf area, specific leaf dry weight, shoot dry weight, root dry weight, and root/shoot ratio. After a 20-day recovery phase, the leaf stage, seedling height, and root/shoot ratio recovered to the control level, whereas the adverse effects of waterlogging on the number of tillers per plant, leaf area, and shoot dry weight intensified. Significant differences were found in seedling growth among the three wheat cultivars. Yangfumai 4 showed the highest number of adventitious rootsper plant and the highest specific leaf dry weightbut the lowest seedling height, leaf area, and dry weights of shoots and roots. However, Yangfumai 4 showed the lowest percentage decrease in all growth parameters after both waterlogging and recovery. These results suggested thatimprovement inadventitious root numberper plant and specific leaf dry weight may be indicators ofresistance to waterlogging in wheat.



This work is licensed under a Creative Commons Attribution 4.0 License.