Characterization and Classification of Soils of the Terra da Esperança Settlement Project in Chapada do Apodi, Brazil


  •  Joseane Dunga da Costa    
  •  Jeane Cruz Portela    
  •  Phâmella Kalliny Pereira Farias    
  •  Francisco Ernesto Sobrinho    
  •  Carolina Malala Martins Souza    
  •  Thaís Cristina de Souza Lopes    
  •  Francisco Wellington Andrade Silva    

Abstract

Soil characterization and pedological classification are essential to define its main potentials and restrictions. The objective of this work was to classify the morphological, physical, chemical, and pedological attributes of soils of the Terra da Esperança Settlement Project (TESP) in Chapada do Apodi, Brazil, and find the most sensitive attributes for distinguishing them using multivariate analysis. The research was carried out in the TESP, in the municipality of Governor Dix-Sept Rosado, state of Rio Grande do Norte, Brazil. Ten sites were chosen to open representative soil profiles: Native Forest Area 1 (NFA1), 2 (NFA2), and 3 (NFA3), Collective Area with Native Forest (CNF), Agroecological Area (AEA), Cashew crop Area (CCA) Collective Area with Pasture 1 (CAP1), and 2 (CAP2), Permanent Preservation Area (PPA), and Cajaraneira (Spondia sp.) Orchard Area (COA). Disturbed and undisturbed soil samples were collected and subjected to physical and chemical analysis for soil classification. The soils classes found were: Cambissolo Haplico Carbonatico vertissolico (NFA1), Cambissolo Haplico Carbonatico tipico (CNF, and AEA), Cambissolo Haplico Ta Eutrofico tipico (CAP2, NFA2, and COA), Cambissolo Haplico Ta Eutrofico vertissolico (NFA3), Argissolo Vermelho Distrofico latossolico (CCA), Chernossolo Rendzico Ortico saprolitico (CAP1), and Neossolo Fluvico Ta Eutrofico tipico (PPA). The material of origin of the soils contributed to the presence of a calcic horizon in the profiles NFA1, CNF, AEA, CCA (Cambissolos), and CAP1 (Chernossolos). The textural class of the soils varied from sand to clay. The Argissolo (CCA) presented acid character, high aluminum saturation, low base saturation, dystrophic character, and low cation exchange capacity, forming horizons with chemical limitations, due to its latossolico character. The most sensitive attributes for distinguishing the soil classes were related to the source material, which directly influenced the soil physical (silt and clay) and chemical (acidity, salinity, nutrient availability, and clay activity) attributes.



This work is licensed under a Creative Commons Attribution 4.0 License.