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Abstract 
Ascorbate peroxidase (APX) plays an important role in detoxifying reactive oxygen species under environmental 
stress. Although previous work in drought-tolerant wild watermelon has shown an increase in chloroplast APX 
enzyme activity under drought, molecular entities of APX have remained uncharacterized. In this study, structure 
and transcriptional regulation of the APX gene family in watermelon were characterized. Five APX genes, 
designated as CLAPX1 to CLAPX5, were identified from watermelon genome. The mRNA alternative splicing 
was suggested for CLAPX5, which generated two distinct deduced amino acid sequences at their C-terminus, in 
resemblance to a reported alternative splicing of chloroplast APXs in pumpkin. This observation suggests that 
two isoenzymes for stromal and thylakoid-bound APXs may be generated from the CLAPX5 gene. Phylogenetic 
analysis classified CLAPX isoenzymes into three clades, i.e., chloroplast, microbody, and cytosolic. 
Physiological analyses of wild watermelon under drought showed a decline in stomatal conductance and CO2 
assimilation rate, and a significant increase in the enzyme activities of both chloroplast and cytosolic APXs. 
Profiles of mRNA abundance during drought were markedly different among CLAPX genes, suggesting distinct 
transcriptional regulation for the APX isoenzymes. Up-regulation of CLAPX5-I and CLAPX5-II was observed at 
the early phase of drought stress, which was temporally correlated with the observed increase in chloroplast APX 
enzyme activity, suggesting that transcriptional up-regulation of the CLAPX5 gene may contribute to the 
fortification of chloroplast APX activity under drought. Our study has provided an insight into the functional 
significance of the CLAPX gene family in the drought tolerance mechanism in this plant. 
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1. Introduction 
Drought-associated water deficit is one of the major factors restricting plant productivity and crop yields 
worldwide. To sustain themselves when exposed to water deficit, plants activate various physiological and 
metabolic mechanisms that protect them from adverse physicochemical injuries. Some of the key molecules 
generated in large quantities in plant cells during environmental stress are the reactive oxygen species (ROS), 
such as hydrogen peroxide (H2O2), superoxide radical (O2

-), and hydroxyl radical (·OH) (Gill & Tuteja, 2010; 
You & Chan, 2015). These species oxidize various cellular components, such as nucleic acids, lipids, and 
proteins, which can cause lethal damage to plants. Plants are equipped with several enzymatic and 
non-enzymatic systems that decompose these ROS and maintain them at nontoxic levels (Mittler et al., 2004). 
The enzymes that scavenge ROS include superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase 
(GPX), and ascorbate peroxidase (APX). Moreover, an array of non-enzymatic antioxidants, such as ascorbate, 
glutathione, carotenoids, and tocopherols, serve as defense agents for protecting plant cells from oxidative 
injuries. These enzymes and antioxidants are mutually related in the glutathione-ascorbate cycle, which plays an 
essential role in resisting water deficit and oxidative stress under drought (Li et al., 2013).  

The importance of studying wild plant species, in helping to solve problems of disease and pest resistance, and to 
improve yields and adaptation to extreme environments, has been widely emphasized (Hawkes, 1991; Henry & 
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Nevo, 2014; Brozynska et al., 2016). One of the most drought-tolerant wild plant species is wild watermelon 
(Citrullus lanatus), which inhabits very harsh conditions in the Kalahari Desert and has the capacity to thrive 
under high light and drought stress (Akashi et al., 2008; Yoshimura et al., 2008). Although the fruit of this plant 
is not palatable to humans, it is a very important source of water for wildlife inhabitants in the desert, especially 
during long dry spells. Unraveling the mechanisms responsible for drought tolerance in the wild watermelon will 
offer valuable insights for breeding other crops, which are currently susceptible to adverse drought effects, 
toward improved drought tolerance.  

A previous study showed that the enzyme activity of chloroplast APX increased in the leaves of wild watermelon 
under drought stress (Nanasato et al., 2010). APX catalyzes the conversion of H2O2 to water with concomitant 
oxidation of ascorbate to monodehydroascorbate, thereby playing a pivotal role in the detoxification of ROS 
under biotic or abiotic stresses (Asada, 2006; Miyake et al., 2006). Extensive research has shown that APX 
isoenzymes are localized in at least three different subcellular compartments in plant cells, namely, cytosol 
(cAPX), microbody (mAPX), and chloroplast (Ishikawa & Shigeoka, 2008). The chloroplastic APXs are further 
categorized into at least two isoenzymes according to their distinct microenvironments, i.e. stroma-soluble 
(sAPX) and thylakoid membrane-bound (tAPX) forms. Interestingly, plants appear to be divided into two groups 
according to their mode of biogenesis of sAPX and tAPX. In the first plant group (which includes Arabidopsis, 
rice, and tomato), sAPX and tAPX are encoded by distinct genes. In the second plant group (which includes 
spinach, tobacco, and pumpkin), on the other hand, sAPX and tAPX are encoded by a single gene, and their 
protein products are generated by post-transcriptional alternative splicing of the mRNA precursors (Ishikawa & 
Shigeoka, 2008).  

Another feature of APX enzymes is their instability in the absence of ascorbate (Hiner et al., 2000; Kitajima et 
al., 2006). APX isoenzymes in chloroplasts are particularly sensitive to inactivation under ascorbate-deficient 
conditions, in comparison to their cAPX and mAPX counterparts (Yoshimura et al., 1998). Although increased 
expression of cAPX under various abiotic stresses is well documented in plants (Karpinski et al., 1997; Shigeoka 
et al., 2002), reports on the up-regulation of chloroplast APXs under drought and high light stress have been 
limited, and even a decrease in chloroplast APX activity was reported in spinach under high light stress 
(Yoshimura et al., 2000). These observations suggest that chloroplast APX may be one of the initial targets for 
oxidative injuries in plant leaves under drought- and light-related stress (Shikanai et al., 1998). In this regard, the 
observed increase in the chloroplast APX activity in wild watermelon under water deficit stress (Nanasato et al., 
2010) is intriguing because it may suggest that this plant fortifies the activity of chloroplast APXs that are 
otherwise vulnerable to drought and high light conditions. However, to our best knowledge, no report has been 
found on the structure and mRNA expression profiles of the APX gene family in watermelon species. Therefore, 
in this study, we attempted to characterize the gene organization and transcriptional regulation of the putative 
APX gene family in wild watermelon, together with the physiological responses of this plant during drought and 
high light stress conditions.  
2. Method 
2.1 Plant Materials and Growth Conditions 

Wild watermelon (Citrullus lanatus Acc. No. 101117-1) (Yoshimura et al., 2008) were self-pollinated at least 
three times and their seeds were used in this study. The seeds were soaked overnight in water at 30 °C in the dark 
and planted in pots filled with a horticulture soil the following morning. The germinated seedlings were grown in 
a growth chamber under LED lights with a light intensity of 800-1,000 μmol photons m-2 s-1 under a 14 h light 
and 10 h dark photoperiod, with an air temperature of 30 °C and relative humidity of 50%, for the entire growth 
and monitoring periods. After germination the plants were watered daily with supplementation of a 1,000-fold 
diluted Hyponex nutrient solution (Hyponex Japan Corp., LTD, Osaka, Japan) twice a week. When they reached 
the stage when the fifth true leaf had fully expanded, drought stress was introduced by withholding watering.  

2.2 Characterization of Gene and cDNA Structures for Watermelon APXs 

Watermelon cDNA and genomic sequences for the putative APX genes were searched using TBLASTN against a 
genome sequence database of C. lanatus subsp. vulgaris cv. 97103 in the Cucurbit Genomics Database (Guo et 
al., 2013), with known Arabidopsis APX sequences as the queries, using BLOSUM62 matrix and a setting of gap 
opening and extension penalties for 11 and 1, respectively, and a threshold E-value of 1e-10. The genome and 
unigene sequences, and chromosome locations of watermelon APX genes were obtained from the Cucurbit 
Genomics Database.  

For PCR amplification of the whole coding DNA sequences (CDSs) of wild watermelon, a leaf of the 
watermelon that was exposed to water deficit stress for three days was used for total RNA extraction. The leaf 
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sample was snap frozen into liquid nitrogen and stored at -80 °C until RNA isolation. Total RNA was extracted 
with the Spectrum Plant Total RNA Kit (Sigma Aldrich, St Louis, MO, USA), and trace amounts of genomic 
DNA were degraded using the On-Column DNase I Digestion Set (Sigma Aldrich). The cDNA syntheses were 
performed using the ReverTra-Ace- synthesis kit (Toyobo, Osaka, Japan) with an Oligo(dT) primer (Toyobo). 
To design primers for amplifying whole CDSs, sequences flanking the CDSs, i.e., upstream of the translation 
start codons and downstream of the stop codons (Table A1 in Appendix), in the unigene information from cv. 
97103, were employed. The 3’-RACE was performed according to the instructions from a 3’-Full RACE Core 
Set (Takara, Shiga, Japan). The PCR amplification was performed by a KOD FX NEO high-fidelity proofreading 
enzyme (Toyobo). The PCR products were separated in an agarose gel electrophoresis and amplicons were 
purified from the agarose gel using a MinElute Gel Extraction Kit (QIAGEN, Germantown, MD, USA), and 
then sub-cloned into an Invitrogen TOPO-BLUNT vector (Life Technologies, Carlsbad, CA, USA). Sequence 
reactions were performed using a BigDye terminator v3.1 Cycle Sequencing Kit (Life Technology) and analyzed 
using a 3130xl DNA sequencer (Applied Biosystems, Foster City, CA, USA).  

Intracellular locations of these gene products were predicted by the WoLF PSORT and DeepLoc-1.0 programs 
(Horton et al., 2007; Armenteros et al., 2017). Visualization of the exon-intron structures of the genes was 
performed by the GSDS 2.0 gene feature visualization server (Hu et al., 2015). ClustalW and ETE3 programs in 
the GenomeNet server (Kanehisa et al., 2002) were used to generate an amino acid sequence alignment and 
phylogenetic tree.  

2.3 Measurement of Plant-Water Relations 

Gravimetric soil moisture content was determined essentially as described by Reynolds (1970), with the 
following minor modification: after harvesting leaf samples, the entire aboveground plant tissues were cut out. 
The moist soil, together with the planting pot, were then weighed and recorded as the wet mass (WM). The soil 
was oven dried at 105 °C for 72 h, then weighed and recorded as the dry mass (DM). The soil moisture content 
(θg) was determined by the following formula (Reynolds, 1970): 

θg = (WM – DM)/DM × 100                             (1) 

Leaf relative water content was measured essentially as described by Barrs (1968), with the following 
modification: the leaves were harvested and the fresh weight was quickly measured on a Unibloc AUX 120 
balance (Shimadzu, Kyoto, Japan) and recorded as the fresh weight (FW). After the FW were recorded, the leaf 
samples were placed in zip-lock plastic bags, which were filled with distilled water and kept overnight at 25 °C. 
The next day, excess water was removed by blotting the leaves in paper towels. The water-saturated leaves were 
then weighed and recorded as turgid weight (TW). The turgid leaves were then oven dried at 80 °C for 3 d and 
their weights were recorded as the dry weights (DW). The leaf relative water content (LRWC) was calculated by 
the following formula (Barrs, 1968):  

LRWC = (FW – DW)/(TW – DW) × 100                       (2) 

2.4 Measurements of Photosynthetic Parameters 

Leaf chlorophyll contents were measured using a SPAD-502plus meter (Konica Minolta, Tokyo, Japan). Leaf 
stomatal conductance was measured by an SC-1 leaf porometer (Decagon Devices, Pullman, WA, USA) 5 h after 
the onset of the light regime. CO2 assimilation and chlorophyll fluorescence were measured in the third true 
leaves using an open gas exchange system LI6400XT photosynthesis meter (LI-COR Biosciences, Lincoln, NE, 
USA). A 2 cm radius IRGA gas chamber was used for all the measurements, with the chamber temperature set at 
25 °C, CO2 flow rate at 400 μmol mol-1, light intensity at 1,000 μmol photons m-2 s-1, and relative humidity at 
50%. CO2 assimilation was measured 3 h after the onset of the light regime, while the chlorophyll fluorescence 
of dark-adapted leaves was measured early morning, before the onset of the light regime, after the plants were 
kept in darkness overnight.  

2.5 APX Enzyme Assay 

Crude leaf extracts were prepared essentially as described (Nanasato et al., 2010), with the following minor 
modifications: approximately 200 mg of leaf tissues were ground to a fine powder using a pestle and mortar, 
with the aid of liquid nitrogen, in 1 ml of homogenization buffer containing 50 mM potassium phosphate, pH 7.0, 
1 mM EDTA, 1 mM sodium ascorbate, 1% (w/v) 3-[(3-cholamidopropyl) 
dimethyl-ammonio]-1-propanesulfonate (CHAPS), and 2% polyvinylpolypyrrolidone. The detergent CHAPS 
was included in the buffer to solubilize thylakoid-bound APX (Veljovic-Jovanovic et al., 2001). The 
homogenized samples were centrifuged at 12,000 × g for 20 min at 4 C and then the supernatant was collected 
in a new tube. The extracts were desalted by running them through an Amicon Ultracel 3K filter (Merck 
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Millipore, Burlington, MA, USA), and their protein concentration was quantified using Protein Assay CBB 
Solution (Nacalai, Kyoto, Japan) and the Multiskan FC plate reader (Thermo Fisher Scientific, Waltham, MA, 
USA), using bovine serum albumin as the standard.  

APX enzyme activity was measured essentially as described (Amako et al., 1994; Nanasato et al., 2010), with 
the following modifications: the reaction was performed in 1 ml of assaying buffer containing 50 mM potassium 
phosphate buffer, pH 7.0, 1 mM sodium ascorbate, 10 μl of the crude leaf extract, and 1 mM of H2O2. The assay 
was started by the addition of H2O2 substrate and a solution without the H2O2 substrate was used as a reference. 
The oxidation of ascorbate was continuously monitored by optical absorbance at 290 nm using a UH5300 
spectrophotometer (Hitachi, Tokyo, Japan) and an absorption coefficient of 2.8 × 10-3 M cm-1 (Nakano & Asada, 
1981) was used for the calculation of reaction rates. To separately quantify the two activities of chloroplast and 
cytosolic isoenzymes, the plant protein was incubated in the assay mixture with 10 M of H2O2 without 
ascorbate for 5 min, and then residual activity was assayed as the cytosolic isoenzyme. The total APX was 
quantified without any prior incubation with H2O2 and used to calculate the value of chloroplast isoenzyme 
activity (Amako et al., 1994).  

2.6 Quantification of APX mRNA Expression  

Pairs of specific primers used for a RT-qPCR analysis of wild watermelon APX genes (Table A1) were designed 
using the Primer3 online tool (Untergasser et al., 2012). Total RNAs were extracted from the leaves of wild 
watermelon stressed for 0, 3, 5, 7, 9, and 11 days, and cDNA synthesis were performed as described in Section 
2.2. The mRNA abundance of the APX genes was measured by a Light-Cycler 480 (Roche Diagnostics, 
Mannheim, Germany), using a LightCycler 480 SYBR Green I Master Kit (Roche), according to the 
manufacturer’s instruction. As reference genes, three sets of primers for γ-actin (ylsACT), α-tubulin (ylsTUB), 
and glyceraldehyde-3-phosphate dehydrogenase (ylsGAPDH), which showed highly homogeneous expression in 
a wide range of tissue types, developmental stages and environmental stimuli in watermelon (Kong et al., 2014; 
Table S1), were used as controls, and their normalized value (Vandesompele et al., 2002) was used to calculate 
relative abundance of the APX mRNAs. The profiling of mRNA quantification was run with three biological 
replications, each consisting of an average of three technical replications.  

3. Results and Discussion 
3.1 Structures of the Putative APX Genes in the Watermelon Genome 

Using the protein sequences deduced from all APX genes in Arabidopsis thaliana (Panchuk et al., 2002; Table 
A2) as the queries, we identified five homologous genes in the whole genome sequence of cultivar watermelon 
(Citrullus lanatus subsp. vulgaris cv. 97103) in the Cucurbit Genomics Database. These five putative APX genes 
were designated as CLAPX1 to CLAPX5, according to the order of highest sequence similarity with the translated 
sequence of Arabidopsis AtAPX1 (Table 1). These five genes were located on four different chromosomes, i.e., 1, 
2, 3, and 8. Two genes for CLAPX1 and CLAPX3 on chromosome 2 were approximately 27 Mbp apart, showing 
that the watermelon APX genes were not clustered but rather scattered in the genome. From the comparison 
between the genomic sequence and assembled EST sequences, or unigenes, 9-12 exons were predicted in these 
CLAPX genes (Figure 1).  

 

Table 1. Summary on ascorbate peroxidase genes in watermelon 

Isoenzyme name 

Cultivar watermelon (cv. 97103) Wild watermelon (Acc. No. 101117-1) 

Chr.*1 
Locus 

name 
Locus position Unigene ID  Acc. ID*2 

NT sim. 

(%)*3 

Length  

of AA*4 

WoLF  

PSORT*5 
Deep Loc*5

CLAPX1 2 Cla013254 30982510..30986181(-) wmu3984  MH178405 99.2 250 chl cyt 

CLAPX2 3 Cla008291 2065040..2073452(-) wmu23766  MH178406 99.2 249 cyt cyt 

CLAPX3 2 Cla015833 3993709..3997744(+) wmu34919  MH178407 99.2 286 cyt per 

CLAPX4 1 Cla014301 29858539..29862551(-) wmu57455  MH178408 99.5 296 cyt per 

CLAPX5-I 8 Cla013927 14858020..14864092(-) wmu44297  MH178409 99.1 427 chl mit/chl 

CLAPX5-II 8 Cla013927 14858020..14864092(-) wmu05603  MH178410 99.0 378 chl mit/chl 

Note. *1 Chromosome number in which APX gene was encoded. *2 DDBJ/Genbank/EMBL accession numbers of 
APX sequences for the Acc. No. 101117-1. *3 Percent similarity of CDS nucleotide sequences between APXs 
from cv. 97103 and Acc. No. 101117-1. *4 Length of amino acid deduced from the CDSs in Acc. No. 101117-1. *5 
Subcellular location of the gene product in Acc. No. 101117-1 was predicted by WoLF-PSORT and DeepLoc-1.0 
programs, and expressed as chl (chloroplast), cyt (cytosol), per (peroxisome), and mit (mitochondria).  
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Appendix 
 
Table A1. Primer sequences used in this study 

Usage Primer name  Primer sequence 

Full length cDNA amplification 

APX-1F CTTTTCAAGAGAATCTCAGCC 

APX-1R CGTTTGAACTTCTGGAGAAG 

APX-2F CATTTTTTCCAAGTTTCATCACC 

APX-2R TTTTCCCCCGTTCCAATTGC 

APX-3F TGCTCTGTAGCCTCCTCCC 

APX-3R AATCGACCTTGCTACTGTAA 

APX-4F TCTGCATTCTTATCCAAGATTTCA 

APX-4R TGGAAGAATATCTTTCTTCTGTATAA 

APX-5F GAAAACTCAAATTTCAACTAAATCC 

APX-5R CTCATAAATAGATTAATTTAAACACTCAAA 

3'-RACE 

Apx5-1086F+Kpn GCGGTACCTGCTGGAGAGAAGTTCG 

3sites-Adaptor CTGATCTAGAGGTACCGGATCC 

3sites-Poly-dT CTGATCTAGAGGTACCGGATCCTTTTTTTTTTTTTTTT 

RT-qPCR for CLAPX 

CLAPX1-77F TTGTTGCTGAGAAGCACTGC 

CLAPX1-195R TTCCGCTGCGTTCTTCATTG 

CLAPX2-79F ATCGCTGAGAAGAACTGTGC 

CLAPX2-163R CACCGGTCTTGGTTTTCTGGTC 

CLAPX3-71F TCATTGCCAATCGGAACTGC 

CLAPX3-162R AGGCCCACCAGTTTTTGTAG 

CLAPX4-134F ACGACGCTGAAACGAAAACC 

CLAPX4-253R TGGCCTTCACAGTTTCACAG 

CLAPX5_I-1004F CTGAAGCCCATGCCAAACTC 

CLAPX5_I-144R CTGATAGCTCTCTCTTTCCATATGAG 

 CLAPX5_II-1004F CTGAAGCCCATGCCAAACTC 

 CLAPX5_II-1146R ACTTGTTTTTTAATCCTTTCCATATGAGTA 

RT-qPCR for rerefence genes 

Actin-F TGGTCGTACAACAGGTTGTGC 

Actin-R TTCGGCAGTGGTTGTGAACATG 

Tubulin-F GGTCAGGAAGTTGGCTGATAAC 

Tubulin-R CACTGACAAGCGCTCTAACAAC 

GAPDH-F CCGATGAGGATGTTGTTCTCTAC 

GAPDH-R CATTGTCGTACCAAGTCACCAG 

Sequencing  

M13-F GTAAAACGACGGCCAG  

M13-R CAGGAAACAGCTATGAC  
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Table A2. Accession numbers for plant APX genes that were used in this study. 

Organism Gene Accession number*1 

Arabidopsis thaliana AtAPX1 AT1G07890.1 

AtAPX2 AT3G09640.1 

AtAPX3 AT4G35000.1 

AtAPX5 AT4G35970.1 

At.sAPX AT1G77490.1 

At.tAPX AT4G08390.1 

Spinach So.cAPX D85864 

So.mAPX D84104 

So.sAPX D83669 

So.tAPX D77997 

Pumpkin Cka.mAPX AB070626 

Cka.sAPX D88420 

Cka.tAPX D83656 

Note. *1 For Arabidpsis, AGI locus identifiers were shown. For spinach and pumpkin, NCBI/EMBL/DDBJ 
accession numbers were shown. 

 

 
Figure A1. C-terminus amino acid alignment between CLAPX5 and pumpkin chloroplast APXs 

Note. Amino acid alignments of C-terminal region for a pair of CLAPX5-I and pumpkin thylakoid Cka.tAPX (a), 
and a pair of CLAPX5-II and pumpkin stromal Cka.sAPX (b). The region spanning exon 11 and exon 12 is 
shown for each pair. Identical amino acids are labeled by vertical lines, similar amino acid residues between the 
pair are labeled as +, and amino acids with different chemical properties are labeled as #.   

 

CLAPX5-II PAGEKFEAAKYSYGKD  378
||||||+|||||||||

Cka.sAPX PAGEKFDAAKYSYGKD  372

CLAPX5-1  PAGEKFEAAKYSYGKRELSDSMKQKIRAEYEGFGGSPDKPLPTNYFLNIIVVIAVLAI  420
||||||+||||||||||||||||||||||||#||||||||||||||||||+|||||||

Cka.tAPX PAGEKFDAAKYSYGKRELSDSMKQKIRAEYESFGGSPDKPLPTNYFLNIILVIAVLAI  414

CLAPX5-1 LTSLLGN  427
|||||||

Cka.tAPX LTSLLGN  421

a

b
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Figure A2. Comparison of genome sequence between CLAPX5 and the pumpkin chloroplast APX gene in the 
region that corresponds to the C-terminus 

Note. A nucleotide sequence alignment between CLAPX5 and the pumpkin chloroplast APX gene in their 
C-terminal region is shown. The region spanning exon 11 and exon 12 is presented. Identical nucleotides 
between the two sequences are labeled as vertical lines and different nucleotides are labeled as #. Deduced amino 
acid sequences for CLAPX5 and pumpkin chloroplast APX are presented on top of and below the nucleotide 
sequences, respectively. Terminator codons are indicated by asterisk (*). A conserved “gt” motif at the beginning 
of intron 11 is boxed and labeled as (i), while the conserved “ag” motif for the termination of intron 11 for 
CLAPX5-II and CLAPX5-I are also boxed and labeled as (ii) and (iii), respectively. 

 

 

Figure A3. The observed cleavage sites for addition of poly(A) tails, and putative cis-acting poly(A) signals in 
the CLAPX5 gene 

Note. The positions of observed proximal and distal cleavage sites (CSs) for the addition of poly(A) tails were 
shown by the downward arrows, and the conserved CS motifs were indicated with asterisks on top of the 
dinucleotides. The hexanucleotides for the putative near upstream elements (NUEs) of the poly(A) signals (Loke 
et al., 2005) are shown by the underlines. 
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P  A  G  E  K  F  E  A  A K  Y  S  Y  G  K
CLAGK5 CCTGCTGGAGAGAAGTTCGAGGCCGCCAAATACTCATATGGAAAGgtcgtatacattacaaactttcatattt-tcatttcatttctttgcacaattgaa 99  

|||||#|||||||||||#||#|||||||||||||||||#||#||||||||||#||||||||||||||#|#||| #||||||||||#||||||##||##|#     
Cka.APX CCTGCAGGAGAGAAGTTTGATGCCGCCAAATACTCATACGGGAAGgtcgtatncattacaaactttcttntttcccatttcatttatttgcatgataaat 100 

P  A  G  E  K  F  D  A  A K  Y  S  Y  G  K

D  *
CLAGK5 gtcttcagaaaatctcatgtcttcgtaaaatgtttatcttctctacttttggctgtctactgcaggattaa---aaaacaagtct-catgttttgttgtg 195 

#||||#|#||||||||  ||||||#|||||||||||||||||||||||||||#||||||||||||||||#|   |||||||||#| ||||||||||||||     
Cka.APX ttctttaaaaaatctc--gtcttcataaaatgtttatcttctctacttttggttgtctactgcaggattgattaaaaacaagtttccatgttttgttgtg 198 

D  *

CLAGK5 ccacttgtcttttaataatacaagt--cgaagctttattcaagtccttgacatctgtgatgtc-acgtctaaaaaaaacttggaagtcttaaatgaagga 292 
#| |#|||| |||||| ||||#|||  #||||#|#|||||#|##||#|||||||||||||||| #||||||    ||||||||||||||#||||||||#|     

Cka.APX ac-cgtgtc-tttaat-atacgagttgagaagatatattccaaaccctgacatctgtgatgtccgcgtcta----aaacttggaagtctaaaatgaagca 291 

R  E  L  S  D  S  M  K  Q  K  I  R  A  E  Y  E  G  F  G
CLAGK5 gaaatggaataaaattcaatagt--attgcctatttgaattgcagAGAGAGCTATCAGACCCAATGAAGCAGAAGATTCGGGCTGAATACGAAGGTTTTG 390 

| |||||||||||||||||||||  ||||||||||||||||||||||||||||||||||##||||||||||||||||||||||#|||||||||#|#||||     
Cka.APX g-aatggaataaaattcaatagtgtattgcctatttgaattgcagAGAGAGCTATCAGATTCAATGAAGCAGAAGATTCGGGCGGAATACGAAAGCTTTG 390 

R  E  L  S  D  S  M  K  Q  K  I  R  A  E  Y  E  S  F  G

G  S  P  D  K  P  L  P  T  N  Y  F  L  N  I  I V  V I  A  V  L  A  I  L  T  S  L  L G  N *
CLAGK5 GTGGAAGTCCAGATAAGCCTTTACCAACAAACTACTTCCTTAATATCATTGTTGTGATTGCTGTTTTAGCAATTTTGACATCCCTGCTTGGAAACTAA 488   

|||||||||||||||||||||||||||||||||||||||||||||||||##||||||||||||||||#||||||||||||||#||#||#|||||||#|       
Cka.APX GTGGAAGTCCAGATAAGCCTTTACCAACAAACTACTTCCTTAATATCATACTTGTGATTGCTGTTTTGGCAATTTTGACATCTCTTCTAGGAAACTGA 488   

G  S  P  D  K  P  L  P  T  N  Y  F  L  N  I  I L  V  I  A  V  L  A  I  L  T  S  L  L G  N *

(i)

(ii)

(iii)

  V  L  A  I  L  T  S  L  L  G  N  ter. 
CTGTTTTAGCAATTTTGACATCCCTGCTTGGAAACTAATTTGAGTGTTTAAATTTAA 
 
 
ATCTATTTATGAGATGGTTTGTTTCTCAACAAAATGTCATATAATTTCACGATCAGT 
 
TTCTAGCAATTATTTTTTAGTTCAACAATTTGCAGGGTAGAAAATCCGAGCATTTGA 

** ** 
Proximal CS  Distal CS 


