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Abstract 

Pterostilbene (PTS) is a natural polyphonic compound known to have biological activities, such as antioxidant 
and anticancer effects. This study was designed to regulate the effect of pterostilbene on the in vitro maturation 
(IVM) of mouse oocytes denuded of the cumulus (DOs). Different concentration of PTS was added to IVM 
media with immature DOs. After maturation, meiosis II (MII) stage rates oocytes, Measurement of reactive 
oxygen species (ROS) and glutathione (GSH) levels, activation of the Nuclear Factor Erythroid 2 like 2 
(NFE2L2) pathway and apoptotic expression of BCL2 family in MII oocytes were determined. Our results 
showed that: PTS significantly increased the MII rate of DOs (P < 0.05). Moreover, PTS decreased the ROS 
levels in DOs (P < 0.05) and increased the GSH levels (P < 0.05). Furthermore, PTS addition in DOs 
significantly increased the protein expression of NFE2L2 in the nucleus and decreased Kelch-like 
ECH-associated protein1 (KEAP1). PTS significantly increased the antioxidant enzyme expression of catalase 
(CAT), heme oxygenase1 (HMOX1), and superoxide dismutase (SOD). In addition, PTS lowered the protein 
expression of apoptotic Bcl-2-associated X protein (BAX) and increased the protein expression of anti-apoptotic 
B-cell lymphoma2 (BCL2) as well as PTS treatment significantly increased the gene expression of BCL2 and 
reduced the expression of apoptotic BAX in matured DOs. These results indicated that pterostilbene significantly 
improved the IVM quality matured of DOs and activate NFE2L2-Keap1 pathway during maturation of oocytes.  

Keywords: pterostilbene, mouse oocytes, in vitro maturation, nuclear factor erythroid 2 like 2 (NFE2L2), 
Kelch-like ECH-associated protein1 (KEAP1) 

1. Introduction 

Phytoalexins are antimicrobial and antioxidative substances synthesis from grapes and blueberries are utilized 
widely as a major constituent for nutraceuticals (Kasiotis, Pratsinis, Kletsas, & Haroutounian, 2013). There are 
various research studies which have been narrated different biological activates of stilbene scaffolds (Rossi et al., 
2012; Wang et al., 2016). In the biological system, the stilbene activates are mostly polyhydroxylated molecules 
that carry the ability to unify the hydrogen bonds and to create oxidative electrophilic molecules (Stivala et al., 
2001).  

Pterostilbene (PTS) is stilbene compound that has phytoalexins properties thus protect the plant from external 
and internal stress (Alessandro, Marco, di Osti, & Cesari, 2000). PTS was mostly found in blueberries and 
grapes but it was first discovered in tree wood, Pterocarpus marsupium (Alessandro et al., 2000). PTS is a 
dimethylated analog of resveratrol but it is more active due to its natural phytochemical verities of bioactivity, 
which include protection against oxidative stress, inflammation, apoptosis, and aging effects (Wang, Yu, & Xu, 
2007). Through natural compounds, nuclear factor erythroid 2-related factor 2 (NFE2L2) activation is 
encouraging way to protect the cells from oxidative stress, such as resveratrol (Ungvari et al., 2010), piceatannol 
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(Lee et al., 2010), epigallocatechin-3-gallate (Na et al., 2010), sulforaphane (Jiang et al., 2010). Pterostilbene has 
also been used to activate NFE2L2 in different studies. As it activates NFE2L2 signaling pathway which 
increases the expression of the downstream antioxidant enzyme HMOX1 and GRB (Chiou et al., 2011). 
Bhakkiyalakshmi et al. (2014) stated that pterostilbene has a significant effect on NFE2L2 activation in 
pancreatic beta cells and increases the downstream target genes of NFE2L2 include HMOX1, SOD, CAT, GPX 
and also up-regulate anti-apoptotic gene BCL2 expression and downregulate pro-apoptotic gene BAX and 
caspase-3 expressions. 

NFE2L2 is a transcription factor that regulates intracellular redox balance and antioxidant thus regulates ROS, 
senescence, and inflammation (Oh & Jun, 2018). Numerous studies have revealed that activation of NFE2L2 in 
ethanol-exposed mouse embryos is involved in increased detoxifying and antioxidant enzymes (Harris & Hansen, 
2012). Recently Lin et al. (2018) reported that inhibition of NFE2L2 by brusatol prevents early mouse embryo 
development by affecting cell cycle progression from G2 to M Phase. The role of NFE2L2 has been investigated 
in a different cultural environment in bovine embryos that reached blastocyst stage (Gad et al., 2012). However, 
under suboptimal culture condition in early bovine embryos, NFE2L2-KEAP1 signaling pathway protects the 
embryo from oxidative stress (Amin et al., 2014). But also, the development of rabbit embryo was promoted by 
activation of NFE2L2 during induced oxidative stress condition (Mehaisen et al., 2015).  

In vitro environment of oocytes, maturation can be affected by oxidative stress due to the manipulation of the 
oocytes during collection. Thus, it negatively affects the in vitro oocytes maturation, as well as in vitro 
fertilization in early development. These oxidative stress conditions lead oocytes to apoptosis, fragmentation, 
and change in oocyte metabolism and gene expression (Ma et al., 2017). Therefore, protection of oocytes against 
stress condition by activation of NFE2L2 is an approach to improve oocytes maturation under in vitro 
conditions.  

In this study was designed to evaluate PTS effect on (1) denuded oocytes rate (DOs) at metaphase 11 (M11) 
stage compare to COCs and DOs in control media, (2) ROS and GSH levels, (3) The activation of the NFE2L2 
pathway, and (4) The apoptotic expression of BCL2 family in matured oocytes. 

2. Materials and Methods 

2.1 Chemicals, Reagents and Animal Ethics Statement 

This study was approved in the guidelines for the care and use of animals of the university. In the present study, 
all chemicals and reagents were obtained from Sigma-Aldrich Chemical Company (St. Louis, MO, USA), unless 
otherwise stated. Pterostilbene was purchased from Cayman Chemical Michigan USA (Cas no. 537-42-8).  

2.2 Super Ovulation, Immature Oocytes Collection, and in vitro Maturation 

The Kunming mice were selected from the animal experimental center of the university. Mouse at 8-10 weeks 
old were housed under conditions of 12 hours light and 12 hours dark cycle (12:12). The mice were 
superovulated with 10 IU pregnant mare serum gonadotropin (Cat no. 140825) through intraperitoneal injection. 
Mice were sacrificed by cervical dislocation after 46 hours. Immature oocytes were extracted from ovaries and 
collected in M2 medium (Cat no. M7167) under a stereo microscope. Immature oocytes at germinal vesicle (GV) 
stage were collected through dissecting method. The immature oocytes at GV stage divided into two parts that 
are, (1) denuded oocytes (DOs); (2) cumulus-oocyte complexes (COCs). The COCs were denuded of cumulus 
cells by adding 0.03% hyaluronidase (H3506, Sigma-Aldrich, St. Louis, MO, USA) and washed with M2 
medium. The DOs were subjected to different concentrations of PTS (0.1, 0.25, 0.5 μM) covered with mineral oil 
at 37 °C under 5% CO2 in 95% humidified air. PTS at 0.25 μM were used in further analysis. Group of 10 
immature oocytes at GV stage were collected in three groups. In the first group with COCs was considered as a 
control in 25 μL drops of the M2 medium. The DOs in the second and third group were added in 25 μM of M2 

media and 0.25 μM PTS respectively. After 24 hours, oocytes were observed under an inverted microscope. In this 
study, IVM rate was determined by the appearance of the first polar body and were used for further analysis. 

2.3 Measurement of ROS and GSH Levels 

For detection of intracellular ROS and glutathione (GSH) level, 15-20 mature oocytes at M11 stage from each 
group was washed twice with polyvinyl alcohol (PVA) (1 mg/ml) and then incubated for 15 mins in 50 μL of a 
droplet of 10 μM 2, 7-dichlorodihydro-fluorescein (D6883, Sigma-Aldrich, St. Louis, MO, USA) and 10 μM 
4-chloromethyl-6, 8-difluoro-7-hydroxycoumarin (CMF2HC Cat. No. C12881 USA) respectively and put in 
incubator at 37 °C under 5% CO2 in 95% humidified air. After incubation, the oocytes were washed twice with 
PBS and examined under an epifluorescent microscope (1X71 Olympus Tokyo, Japan). For ROS the emission 
and excitation wavelengths was 510 nm and 480 nm respectively. For GSH the emission and excitation 



jas.ccsenet.org Journal of Agricultural Science Vol. 10, No. 7; 2018 

37 

wavelengths was 464 nm and 371 nm respectively. The data are analyzed in relative intensity of fluorescence. 
All pictures were taken under the same conditions and analyzed by Image-Pro plus 6.0 (Media Cybernetics, 
Rock ville, MD, USA).  

2.4 Western Blot Analysis 

Approximately 200 matured oocytes were selected from each group and lysed in a radioimmunoprecipitation 
assay (RIPA) (Beyotime, Jiangsu, China), while the nuclear and cytoplasmic proteins of oocytes were extracted 
with a nuclear protein extraction kit (Beyotime, China) for evaluation of NFE2L2 expression that contained a 
protease inhibitor and heated at 95 °C for 5 min. The total protein concentration in each group was detected on 
NANODROP one (Thermo Fischer Scientific). Protein lysate from oocytes was added to 12% sodium dodecyl 
sulfate-polyacrylamide gel (SDS-PAGE) electrophoresis. Moreover, the detached proteins were transferred to 
PVDF membranes (Millipore, USA). The membranes were blocked in skim milk for 1 hour and then membrane 
was incubated with primary antibodies KEAP 1 Rabbit Polyclonal Antibody (Protein Tech; Cat no. 10503-2-AP), 
NFE2L2 Rabbit Polyclonal Antibody (Protein Tech; Cat no. 16396-1-AP), BCL2 Rabbit Polyclonal Antibody 
(Protein Tech; Cat no. 12789-1-AP), BAX Rabbit Polyclonal Antibody (Protein Tech; Cat no. 50599-2-Ig) and 
GADPH antibody (Rabbit Polyclonal Antibody (Protein Tech; Cat no. 104944-1-AP) at 4 °C overnight. 
Afterward, the membrane in TBST was washed thrice times and was incubated at room temperature for 2 hours 
with Peroxidase Conjugated Affinipu Goat Anti Rabbit IgG (HL) (Protein Tech; Cat no. SA 00001-2). The target 
protein bands were detected using a chemiluminescence Plus reagent (ECL Plus, Bio sharp Life Science, cat no. 
BL50A).  

2.5 RNA Isolation, cDNA Synthesis, and Semiquantitative Real-Time Polymerase Chain Reaction (RT-PCR) 

For RNA isolation three biological replicates from each treated group were used. Total RNA was isolated from 
150 matured oocytes by using an RNA isolation kit (Qiagen RNeasy Mini Kit Cat no. 74104) according to the 
manufacturer’s instruction. cDNA was created by reverse transcription using Prime Script™ RT reagent Kit with 
gDNA Eraser (Takara Biotechnology Co. Ltd., Dalian, China Cat no. PR047A). The concentration of total RNA 
was measured NANODROP one (Thermo Fischer Scientific). The PCR was done by using 25 μL reaction 
volumes including 4 μL cDNA, 6 μL H2O, 1 μL reverse primers, 1 μL forward primers (5 mM) and 13 μL 2×Taq 
PCR Master Mix (Tiangen Biotech Co., Ltd. Cat no. KT201). The condition for PCR are as follow, 95 °C for 3 
mins initial pre-incubation level, then 95 °C for 30 secs denaturation, 59-62 °C for 30 secs annealing, 72 °C for 
30 secs extension for 35 cycles and 72 °C for 5 mins in final extension. Primer sequence and annealing 
temperature are listed in (Table 1). The bands for the genes were analyzed on on 2% gels by electrophoresis 
having ethidium bromide. The bands were visualized under UV illumination and intensities were analyzed by 
Lane 1D Analysis Software (Beijing Sage Creation Science Co., Ltd., Beijing, China).  

 

Table 1. Primer sequences 

Gene Access No. Forward primer (5’-3’) Reverse primer (5’-3’) Tm (°C) Amplicon size, bp

GAPDH BC023196 CATCACCATCTTCCAGGAGCG GAGGGGCCATCCACAGTCTTC 59 357 

HMOX1 NM010442 CAGGTGATGCTGACAGAGGA ACAGGAAGCTGAGAGTGAGG 62 184 

CAT NM009804 GGAGGCGGGAACCCAATAG GTGTGCCATCTCGTCAGTGAA 59 102 

SOD1 NM011434 TTCGAGCAGAAGGCAAGCGGTGAA AATCCCAATCACACCACAAGCCAA 59 396 

BAX  NM007527 CCAGGATGCGTCCACCAA AAGTAGAAGAGGGCAACCAC 62 195 

BCL2 NM007527 AACTCTTCAGGGATGGGG GCCGGTTCAGGTACTCAG 59 144 

 

2.6 Statistical Analysis 

Unless otherwise indicated, data were presented in mean±standard deviations. All the data were calculated by 
using multiple comparisons (IBM SPSS 17.0) and one-way ANOVA followed by post-hoc Turkey’s multiple 
comparison tests (Graph Pad Prism 5 software). Statistical significance was considered at (P < 0.05) and data 
were performed in three separate events. 

3. Results 

3.1 The Effect of Different Concentration of Pterostilbene on the Nuclear Maturation of Mouse Oocytes 

In our initial experiment, the M2 IVM media of DOs was supplemented with different concentrations of PTS (0.1, 
0.25 and 0.5 μM). PTS at a 0.25 μM concentration significantly increased the percentage (P < 0.05) of M11 stage 
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DOs compared to DOs treated group (Table 2). So, for further analysis, 0.25 μM of PTS was used in the different 
experiment. 

 

Table 2. The effect of different concentration of PTS on the nuclear maturation of Mouse oocytes 

Group Total No. of GV Oocyte† Total No. of GVBD (%) Total No. of Maturation MII (%)

DOs 213 72.0±1.85b 52.1±1.60b 

DOs + 0.1 μM PTS  208 81.7±1.79a 68.7±1.16a 

DOs + 0.25 μM PTS 207 83.9±2.12a 70.4±1.55a 

DOs + 0.5 μM PTS 205 79.5±3.94a 66.8±2.30a 

Note. ab: Values within a column with different superscripts significantly differ (P < 0.05). †: Experiment was 
replicated more than 5 times.  

 

3.2 The Effect of Pterostilbene on the Developmental Potential in MII Oocytes 

As shown in Table 3, the MII rate of the DOs + PTS group (57.6±1.77%) was significantly higher than the DOs 
group (42.6±1.92%; P < 0.05) but similar to the COCs group (67.1±2.24%; P > 0.05).  

 

Table 3. Effect of 0.25 μM pterostilbene on mouse oocytes maturation 

Group Total No. of GV oocyte† Total No. of GVBD (%) Total No. of Maturation MII (%)

COCs 212 86.3±1.06a 75.6±1.71a 

DOs 213 72.0±1.85b 52.1±1.60b 

DOs + 0.25 μM PTS 207 83.9±2.12a 70.4±1.55a 

Note. ab: Values within a column with different superscripts significantly differ (P < 0.05). †: Experiment was 
replicated more than 5 times. 

 

3.3 Effect of Pterostilbene on Intracellular ROS and GSH Levels 

To determine the intracellular level of ROS and GSH, M11 stage oocytes were collected and stained with 
DCHFDA (Figure 1A) and CMF2HC (Figure 1A). The ROS level in DOs group was significantly higher (P < 
0.05) in the M11 stage as compared to the COCs and those treated with DOs + PTS (Figure 1B). By contrast, 
GSH level in DOs group was significantly lower (P < 0.05) in M11 stage compared to the COCs and those 
treated with DOs + PTS (Figure 1B).  
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from the mitochondria, resulting in selective apoptosis (Sireesh et al., 2017). However, treatment with an 
antioxidant can protect the oocytes from oxidative stress damage by regulation of BCL2 family (Kim et al., 
2015). PTS addition in DOs maturation media in our result have shown down-regulation in the expression level 
of pro-apoptotic genes BAX but on another side, PTS increased the expression level of anti-apoptotic gene 
BCL2. Western Blot analysis of BAX protein showed the down-regulation by PTS and up-regulation of BCL2 in 
DOs confirms the protective effect of PTS. A similar study was reported in induce diabetic animals, as it 
improved the BCL2 and lower BAX expression by activation of NFE2L2 by PTS in pancreatic beta-cells against 
different insult such as oxidative stress (Sireesh et al., 2017). All these results predicted that activation of an 
NFE2L2 signaling pathway by PTS can improve oocytes maturation rate in the mouse.  

5. Conclusions 

In conclusion, our data highlighted that PTS can improve the nuclear maturation of mouse DOs, enhanced 
survival of DOs via NFE2L2 signaling pathway, evaluate the ROS and GSH levels and reduce the apoptotic rates 
of DOs in absence of cumulus cell. These results identifying the potential role of PTS as an antioxidant in 
oocytes maturation. 
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