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Abstract 
Precision agriculture strives to manage variations in the field in order to increase yield while adapting input 
factors to preserve resources and decrease production costs. Unmanned aerial systems (UAS) are advancing 
precision agriculture by allowing for nondestructive and convenient, as well as cost and time efficient mapping 
of spatial variation in fields with higher spatial resolution than previous methods. However, while there is much 
anticipation regarding the potential role for UAS in precision agriculture, their role still requires additional 
application-based testing. The objective of this work was to explore how growers best integrate the UAS product 
into their farm workflow. Two on-farm investigations were undertaken with vegetable growers for the duration 
of a growing season. Combinations of two unique unmanned aircraft (UA) platforms fitted with two different 
multispectral sensors were used to gather spectral reflectance data. The investigations found that the UAS 
product enabled the growers to optimize their field management practices, while overcoming a labor shortage, 
and create a more sustainable operation. 

Keywords: precision agriculture, unmanned aerial systems, unmanned aircraft, UAV, remote sensing, vegetation 
index, NDVI 

1. Introduction 
Growers are increasingly being tasked with producing more food with fewer resources while reducing their 
impact on the environment. The goal of meeting society’s food needs without compromising the ability of future 
generations to meet their own is the aim of sustainable agriculture (Feenstra et al., 2018). In order to meet this 
goal, in conjunction with continuous population growth, innovation in agriculture must continue. 

Sustainable agriculture is multifaceted and includes consideration of economic benefit, social consciousness, and 
environmental stewardship (Feenstra et al., 2018). In an industry that is experiencing continuous margin 
compression, knowing exactly when, where and what input factors to apply, and which not to, dictates 
profitability. Sustainable farming practices are also increasingly being demanded by consumers and communities. 
Environmentally responsible agriculture practices contribute to sustainability by minimizing air and water 
pollution, encouraging biodiversity, and managing water as a limited resource, while building and maintaining 
healthy soil (Feenstra et al., 2018). Precision farming champions the goals of sustainable agriculture by making 
more efficient use of input factors and thus decreasing the ecological footprint of a farm, while also saving the 
grower money and labor costs. The ready availability of quantifiable, high resolution, spatially explicit data is a 
key enabler of precision farming. 

Precision agriculture strives to manage variations in the field in order to increase yield while adapting input 
factors to preserve resources and decrease production costs. Unmanned aerial systems (UAS), colloquially 
referred to as drones, are advancing precision agriculture by allowing for nondestructive, cost and time efficient, 
on demand, and convenient mapping of spatial variation in fields with higher spatial resolution than previous 
methods. This quantifiable data allows for field management practices to be optimized by meeting actual crop 
needs and thus minimizing the use of water, pesticides, herbicides and fertilizers by enabling variable rate 
application. Variable rate application helps to realize both economic and environmental benefits. Additionally, 
these benefits also translate to less reliance on human labor, thus improving productivity while further lowering 
production costs. 
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While the use of remote sensing platforms, such as inhabited aircraft and satellites, have been used in precision 
agriculture for some time, the implementation of UAS into precision agriculture holds unique promise. 
Unmanned aircraft (UA) enable aerial imagery with greater resolution, a higher temporal frequency, and reduced 
costs. The ability of a UAS to obtain a spatial resolution on the order of centimeters and fly daily is in stark 
contrast to low resolution satellite imagery and manned aircraft overflights a few times a growing season. The 
availability of this nascent high spatial and temporal resolution data empowers the grower to more proactively 
manage crop health.  

UA were first used in agriculture as far back as 1990 for the spraying of rice paddies (Sato, 2003). However, 
subsequent access to high quality global positioning system (GPS) signals and cost effective GPS receivers, 
advancements in integrated circuits and battery technology, and the miniaturization of aircraft systems has now 
led to the proliferation of small and affordable UAS for agriculture. UA, equipped with a wide variety of sensors, 
have more recently been shown to be effective in agriculture to manage irrigation (Gonzalez-Dugo, Goldhamer, 
Zarco-Tejada, & Fereres, 2015), ascertain soil moisture (Hassan-Esfahani, Torres-Rua, Jensen, & Mckee, 2017) 
discriminate plowing techniques (Tripicchio, Satler, Dabisias, Ruffaldi, & Avizzano, 2015), investigate the 
microclimate over crops (Adkins & Sescu, 2017), estimate yield (Geipel, Link, & Claupein, 2014), and monitor 
crop stress (Stanton et al., 2017), amongst other uses.  

While there is much anticipation regarding the potential role for UAS in precision agriculture, their use still 
requires additional investigation into how they can be most effectively implemented by commercial growers, as 
much of the research to date has taken place on research farms (Thomasson & Valasek, 2016), (Elston, 2016), 
(Komp, 2018), (Bendig, Yu, & Aasen, 2015), (Nebiker, Lack, Abächerli, & Läderach, 2016). Consideration 
needs to be given as to how a grower best implements the technology into their farm and crop management 
workflow. The employment of new technology by a farmer in the absence of thorough on-farm evaluation, or 
knowledge of how best to integrate the technology into the farm workflow, presents a high risk. The main goal of 
this work was to investigate, in conjunction with the grower, how to best integrate UA-based multispectral 
imagery into crop management decisions. This investigation took place on two farms. Each grew an assortment 
of vegetables that included mustard greens, cabbage (white, Shanghai (bok choy), and wawa), and Chinese white 
radishes. 

2. Method 
Farmers today have many crop management tools and on-farm research can assist farmers in evolving their 
management strategies and decisions. This on-farm research utilized various state-of-the-art, commercial 
off-the-shelf (COTS) UA, sensors, and post-processing software. COTS hardware and software were chosen in 
order to make the operation viable to a representative farmer. Per the growers’ feedback and acceptance, the 
acquisition, processing, analysis, and application of the data was continually adapted based on lessons learned. 
This evolution moved operations toward a pragmatic and relevant best practice. The overall generic UAS 
workflow consisted of flight planning, flight and the capturing of imagery, same day local processing of the data, 
and the creation of vegetation index maps. The sharing, analysis and ensuing discussion of the results informed 
the required actions on the part of the grower and established the timeframe for the next flight. All flight 
operations were conducted under 14 CFR Part 107 of the Federal Aviation Regulations (FAR). Furthermore, all 
crew members were certificated by the Unmanned Safety Institute (USI) in small UAS safety. 

2.1 System Description 

Commonly referred to as a drone, a UAS is a system comprised of a number of sub-systems to include the air 
vehicle (often called an unmanned aircraft (UA) or unmanned aerial vehicle (UAV)), the payload (sensors), a 
control station (CS) (most often a ground control station (GCS)), aircrew, data link, launch and recovery 
equipment, maintenance and support equipment, and an operational space consisting of rules and regulations 
(Austin, 2010). To make the operation and results applicable to the typical grower, two different, but widely 
available, fixed-wing UA were utilized. The majority of the flights were undertaken with the senseFly eBee, 
Figure 1a, with a few select flights completed with the Parrot Disco-Pro Ag, Figure 1b. Whenever the Disco 
Pro-Ag was deployed, the flight was immediately followed-up with the eBee platform for consistency. Flight 
planning for the eBee was accomplished using the accompanying eMotion software on a laptop, which also 
served as the GCS; planning for the Disco-Pro Ag flights was achieved with the Pix4Dcapture app on a mobile 
tablet. All data processing was completed using Pix4Dmapper Pro Ag. 
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inspection. The trade-off between extensive spatial coverage and exhaustive inspection was made especially 
acute during the associated growing season by the farm labor shortages experienced as the result of the 
simultaneous conversation in the United States regarding immigration and deportation policy. One of the earliest 
recognized benefits, by the grower, of the UAS was the comprehensive scouting it enabled in the midst of the 
labor shortage. The UAS thus enabled comprehensive, high resolution scouting that accounted for the irregular 
distribution of weeds. Further, analysis of SAVI and NDVI images during this stage of the season alerted the 
grower to planting and germination issues within the field. 

The growing season in Florida largely coincides with the region’s dry season and the period of time during 
which the investigation took place was abnormally dry with an absence of any precipitation in the fields for 3 
months. In order to avoid excessive soil salinity realized from long-term subsurface irrigation (water table 
control), an irrigation gun was utilized during critical periods of crop development, and to activate fertilizer 
following its application. As crops matured, and crop canopy density increased, NDVI-derived maps were more 
singularly utilized to reveal heterogeneity within the fields. Areas identified as being stressed were specifically 
targeted for inspection. With the unusually dry growing season, the stress often identified was water stress. The 
high resolution NDVI map was then subsequently used to guide irrigation. This strategy minimized water usage 
and decreased the labor effort associated with the irrigation gun. 

The ability to monitor temporal variation within the field through regular overflights allowed for the continued 
observation of plant growth and examination of crop health. In addition to red based NDVI, green based GNDVI 
images were created and shared with the grower for this purpose. These images helped inform the need for 
chemical treatment, the required rate of treatment, and allowed for the monitoring of the efficacy of the treatment. 
While the images readily identified areas needing attention, one benefit unanticipated by the growers was their 
ability to see the effectiveness of the treatment, specifically following fertilization, prior to being able to visually 
perceive it in the field through plant color. Figure 5 shows similarly scaled NDVI images taken of two adjacent 
subplots. The left-hand side of the field contained radish and the right-hand side contained cabbage. From left to 
right, the images in the figure show an image just prior to fertilization (left image), five days after fertilization 
(center image), and thirteen days following fertilization (right image). Each field was fertilized on the same day, 
with the fertilizer activated at the same time by irrigation. No further action was taken on either of the fields 
during the following two weeks and a uniform visual improvement in plant color was not observed until two 
weeks elapsed. However, the NDVI images clearly show an improvement in crop health prior to this point in 
time. The radish field, on the left-hand side, exhibits a swifter improvement than the cabbage field, on the right. 
The grower attributed this difference to the increased nutrient uptake associated with the increased surface area 
of this root vegetable. 

 



jas.ccsenet.

Figure 5. S
right: a) le

 

4. Conclus
This inves
workflow 
Consequen
farms. A v
analyzed in
cost-effect
ability to c
growth an
crop mana
the farm 
sustainable

Reference
Adkins, K

using
https:

Austin, R
AIAA

org 

Similarly scale
eft image take

sion 
stigation soug
and use it f

ntly, the work 
variety of vege
n order to acco
tive high resol
compare these 
nd health that 
agement strateg
workflow allo
e operation. 

es 
K. A., & Sescu
g an Instrumen
://doi.org/10.1

. (2010). Unm
A & Wiley. htt

   

ed NDVI imag
n at time of fe

righ

ght to better u
for agronomic
was undertak
tation indices 
ommodate the 
lution imagery
images over th
empowered th
gy, even in the
owed the gro

u, A. (2017). O
nted Unmanned
080/15435075

manned Aircra
tps://doi.org/10

Journal of A

ges of 2 adjacen
rtilizer applica
ht image taken

understand ho
c decision ma

ken as on-farm
that incorporat
entire range o

y allowed for b
he entirety of t
he grower to m
e midst of acut
wers to optim

Observations 
d Aerial Syste
5.2017.133466

aft Systems: U
0.1002/978047

Agricultural Sci

16 

   

nt subplots wit
ation; b) center
n 13 days post 

ow to effectiv
aking beyond

m research, in c
ted spectral re

of chlorophyll v
both the ident
the growing se
more efficient
te labor challen
mize their fiel

of Relative H
em. Internation
61 

UAVs Design, 
70664797 

ience

th radish plant
r image taken 
fertilization

vely integrate 
d the structur
conjunction w
flectance in bo
variation. The 
tification of in
eason. This ins
tly and effectiv
nges. Thus, the
ld managemen

Humidity in the
nal Journal of 

Development

   

ted on the left a
5 days followi

UAS technol
ed setting of 
ith the grower
oth the green a
resulting time

n-field spatial 
sight enabled t
vely implemen
e implementat
nt practices a

e Near-wake o
f Green Energy

t and Deploym

Vol. 10, No. 7;

 

and cabbage o
ing fertilization

ogy into the 
f a research f
r, on two vege
and red ranges 
ely, convenient
variability, an
the tracking of
nt and monito
tion of an UAS
and create a 

of a Wind Tu
y, 14(10), 845

ment. Reston, 

2018 

n the 
n; c) 

farm 
farm. 
etable 
were 

t, and 
d the 

f crop 
or his 
S into 
more 

rbine 
-860. 

VA: 



jas.ccsenet.org Journal of Agricultural Science Vol. 10, No. 7; 2018 

17 

Bendig, J., Yu, K., & Aasen, H. (2015). Combining UAV-based Plant Height from Crop Surface Models, Visible, 
and Near Infrared Vegetation Indices for Biomass Monitoring in Barley. International Journal of Applied 
Earth Observation and Geoinformation, 39, 79-87. https://doi.org/10.1016/j.jag.2015.02.012 

Deering, D. W. (1978). Rangeland Reflectance Characteristics Measured by Aircraft and Spacecraft Sensors. 
ProQuest Dissertations Publishing.  

Elston, J. (2016). Why Unmanned Aircraft for Agriculture? Engineering & Technology for a Sustainable World, 
23(4), 22.  

Feenstra, G., Ingels, C., Campbell, D., Chaney, D., George, M., & Bradford, E. (2018). What is Sustainable 
Agriculture? Retrieved March 18, 2018, from http://asi.ucdavis.edu/programs/sarep/about/what-is-sustain 
able-agriculture  

Geipel, J., Link, J., & Claupein, W. (2014). Combined Spectral and Spatial Modeling of Corn Yield based on 
Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System. Remote Sensing, 
6(11), 10335-10355. https://doi.org/10.3390/rs61110335 

Getting Started with MicaSense. (2018). Retrieved March 22, 2018, from https://support.micasense.com/hc/ 
en-us/articles/217112037-What-spectral-bands-does-the-Sequoia-camera-capture 

Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a Green Channel in Remote Sensing of 
Global Vegetation from EOS-MODIS. Remote Sens. Environ., 58(3), 289-298. https://doi.org/10.1016/ 
S0034-4257(96)00072-7 

Gitelson, A. A., Viña, A., Arkebauer, T. J., Rundquist, D. C., Keydan, G., & Leavitt, B. (2003). Remote 
Estimation of Leaf Area Index and Green Leaf Biomass in Maize Canopies. Geophys. Res. Lett., 30(5), 
335-343. https://doi.org/0.1029/2002GL016450 

Gonzalez-Dugo, V., Goldhamer, D., Zarco-Tejada, P. J., & Fereres, E. (2015). Improving the Precision of 
Irrigation in a Pistachio Farm using an Unmanned Airborne Thermal System. Irrig. Sci., 33(1), 43-52. 
https://doi.org/10.1007/s00271-014-0447-z 

Hassan-Esfahani, L., Torres-Rua, A., Jensen, A., & Mckee, M. (2017). Spatial Root Zone Soil Water Content 
Estimation in Agricultural Lands using Bayesian-Based Artificial Neural Networks and High-resolution 
Visual, NIR, and Thermal Imagery. Irrigation and Drainage, 66(2), 273-288. https://doi.org/10.1002/ 
ird.2098 

Hatfield, J. L., Gitelson, A. A., Schepers, J. S., & Walthall, C. L. (2008). Application of Spectral Remote 
Sensing for Agronomic Decisions. Agron. J., 100(Suppl. 3), 117. https://doi.org/10.2134/agronj2006.0370c 

Huete, A. R. (1988). A Soil-adjusted Vegetation Index (SAVI). Remote Sensing of Environment, 25(3), 295-309. 
https://doi.org/10.1016/0034-4257(88)90106-X 

Jordan, C. F. (1969). Derivation of Leaf-area Index from Quality of Light on the Forest Floor. Ecology, 50(4), 
663-666. https://doi.org/10.2307/1936256 

Komp, M. (2018). Drones on the Farm. Retrieved March 20, 2018, from https://www.noble.org/news/ 
publications/legacy/2017/fall/drones-on-the-farm 

multiSPEC 4C Camera User Manual. (2018). Retrieved April 4, 2018, from http://95.110.228.56/ 
documentUAV/camera%20manual/[ENG]_2014_user_manual_multiSPEC_4C.pdf  

Nebiker, S., Annen, A., Scherrer, M., & Oesch, D. (2008). A Light-weight Multispectral Sensor for Micro UAV: 
Opportunities for Very High Resolution Airborne Remote Sensing. International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences (pp. 1193-1200). 

Nebiker, S., Lack, N., Abächerli, M., & Läderach, S. (2016). Light-weight Multispectral UAV Sensors and their 
Capabilities for Predicting Grain Yield and Detecting Plant Diseases. International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences (XLI-B1, pp. 963-970). https://doi.org/ 
10.5194/isprsarchives-XLI-B1-963-2016 

Salamí, E., Barrado, C., & Pastor, E. (2014). UAV Flight Experiments Applied to the Remote Sensing of 
Vegetated Areas. Remote Sensing, 6(11). https://doi.org/10.3390/rs61111051 

Sato, A. (2003). The RMAX Helicopter UAV. Defense Technical Information Center. Retrieved from 
http://www.dtic.mil/docs/citations/ADA427393 



jas.ccsenet.org Journal of Agricultural Science Vol. 10, No. 7; 2018 

18 

Stanton, C., Starek, M. J., Elliott, N., Brewer, M., Maeda, M. M., & Chu, T. (2017). Unmanned Aircraft 
System-derived Crop Height and Normalized Difference Vegetation Index Metrics for Sorghum Yield and 
Aphid Stress Assessment. Journal of Applied Remote Sensing, 11(2), https://doi.org/10.1117/1.JRS. 
11.026035 

Thomasson, J. A., & Valasek, J. (2016). Small UAS in Agricultural Remote-sensing Research at Texas A&M. 
Resource: Engineering & Technology for a Sustainable World, 16(4), 19. 

Tripicchio, P., Satler, M., Dabisias, G., Ruffaldi, E., & Avizzano, C. A. (2015). Towards Smart Farming and 
Sustainable Agriculture with Drones (pp. 140-143). 2015 International Conference on Intelligent 
Environments (IE). https://doi.org/10.1109/IE.2015.29 

Yang, C., Bradford, J. M., & Wiegand, C. L. (2001). Airborne Multispectral Imagery for Mapping Variable 
Growing Conditions and Yields of Cotton, Grain Sorghum, and Corn. Trans ASAE, 44(6), https://doi.org/ 
10.13031/2013.6997 

Yang, C., Liu, T., & Everitt, J. H. (2008). Estimating Cabbage Physical Parameters using Remote Sensing 
Technology. Crop Protection, 27(1), 25-35. https://doi.org/10.1016/j.cropro.2007.04.015 

Zecha, C. W., Link, J., & Claupein, W. (2013). Mobile Sensor Platforms: Categorization and Research 
Applications in Precision Farming. Journal of Sensors and Sensor Systems, 2(1), 51-72. https://doi.org/ 
10.5194/jsss-2-51-2013 

 
Copyrights 
Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 
license (http://creativecommons.org/licenses/by/4.0/). 


