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Abstract 
This work aimed to evaluate a collection of common and rare soil bacteria regarding to extracellular xylanases 
production and to characterize the stability in contrasting conditions of temperature and pH of these enzymes. 
This collection consists of 120 isolates belonging to six phyla that were subjected to screening for xylanase 
activity in pure cultures and in the extracellular proteic extract (EPE). The ratio between the halos diameters of 
xylan hydrolysis and in the colonies on solid medium (ratio H:C) was used for the evaluation of cultures as 
selection criteria. EPEs of isolates with highest ratios H:C were evaluated for the specific xylanases activity at 
50 °C for 1 h. EPE of the three isolates with the highest potential for activity under this condition were evaluated 
for optimum activity, stability at 60 °C and different pH values. Twenty-two isolates showed xylanase activity 
under these conditions. Xylanases from TC21 and TC119 showed high relative activity at temperatures up to 
70 °C and were less sensitive to changes in pH. Soil bacteria show high potential as a source of extracellular 
xylanases adapted to extreme pH and temperature conditions, which are required in agroindustrial processes. 

Keywords: kraft pulp bleaching, microbial diversity, saccharification, non-culturable viable, thermostable 
enzymes 

1. Introduction 
Despite the importance of microorganisms in the maintenance of the biosphere, it is difficult to estimate the 
number of organisms in microbial communities due to their great genetic diversity (Haegeman et al., 2013), and 
just over 7,000 bacterial species have been described (Achtman & Wagner, 2008). It is known that more than 
99% of the bacteria from environmental samples remain uncultivated and most of these microorganisms found in 
the soil are insufficiently studied because of the rarity of their isolation in cultivation studies (Pham & Kim, 
2012).  

The expected scientific benefits of greater knowledge about microbial diversity are related to the discovery of 
potentially exploitable microorganisms for the most diverse biotechnological processes, such as the production 
of enzymes for industrial and technological applications. Among the microorganisms that are not well explored 
are those belonging to the soil microbiota, which have immense biotechnological potential since they produce 
several enzymes that have been commercially exploited over the years (Jayani, Shivalika, & Gupta, 2005). 

There are about 200 enzymes produced by microorganisms available on the market from the 4000 enzyme types 
that are known at the moment, yet just 20 of these are produced in large quantities (Li, X. Yang, S. Yang, Zhu, & 
Wang, 2012). Regarding the global market for industrial enzymes, in 2014 this was around $4.2 billion and is 
expected to reach $6.2 billion from 2015 to 2020, with an annual growth rate (CAGR) of 7% (BCC Research, 
2014). Therefore, due to the high price of microbial enzymes, technology for improving their quality is 
developing each day (Gurung, Ray, Bose, & Rai, 2013).  

Brazil has imported most of its enzymes, although it has enormous potential for producing them. This potential is 
shown by the great biological diversity, still little explored, that could be the source of new organisms which 
produce enzymes of industrial interest, and the abundance of organic matter in the form of agricultural residues, 



jas.ccsenet.org Journal of Agricultural Science Vol. 10, No. 8; 2018 

233 

such as rice straw or bagasse, which constitutes low-cost substrate for fermentation (Bon, Ferrara, & Corvo, 
2008). 

Xylanases are among the most widely used industrial enzymes on the market (Cowan, 1996; Li et al., 2012b) and 
represent 20% of the global enzyme market together with cellulases and pectinases. Xylanases are produced by 
various organisms and most of the bacteria and fungi secrete these enzymes in the extracellular medium where 
they will act on hemicellulose material to release xylose as a directly assimilable final product. Among the 
bacteria, Actinobacteria and Firmicutes of the Bacillaceae family are reported to be the main producers of 
industrially important enzymes involved in lignocellulose degradation (Nagar, Mittal, Kumar, & Gupta, 2012).  

In several industrial applications, such as the bleaching stage of the kraft pulping process in paper production, 
the inlet pulp has a high temperature and alkaline pH, making it necessary to search for alkali thermostable 
xylanases (Sharma & Bajaj, 2005). In addition, cellulose-free xylanase is crucial to avoid degradation of the 
cellulose fibers (Techapun, Poosaram, & Watanabe, 2003). These enzymes promote the removal of xylan, 
facilitating the leaching of lignin (Niehaus, Bertoldo, Kahler, & Antranikian, 1999). Therefore, in the paper 
industry, the use of xylanases represents an important technological improvement because they promote an 
increase in the bleaching effect without chemical reagents and also decrease the production of pollutants during 
these processes (Walia, Guleria, Mehta, Chauhan, & Parkash, 2017).  

Another outstanding industrial process that makes use of enzymes is the production of second generation ethanol, 
where xylanases are used in the degradation of lignocellulosic biomass. Bioconversion of biomass, such as 
sugarcane bagasse and straw, has been widely studied for the purpose of producing biofuel from a renewable 
source, representing an important alternative for increasing second-generation ethanol production (Canilha et al., 
2012). It is recognized that a large amount of sugar bagasse is inappropriately used, contributing to 
environmental (Schettino & Holanda, 2015). As both bagasse and sugarcane straw are lignocellulose materials, 
they could be better utilized for biofuel generation, which would contribute even more to Brazil’s leadership in 
the sugar-alcohol sector.  

Bacterial xylanases are known to be stable at alkaline pH and high temperature and have faster growth than fungi 
propterties that are suitable for industrial requirements (Chakdar et al., 2016). Thus, the characterization of the 
enzymes is a crucial step to understanding their properties of optimal activity and stability at different values of 
pH and temperature, which enables an evaluation of their potential application in these different processes 
(Kashyap, Vohra, Chopra, & Tewari, 2001). Several of these processes are performed using the cells themselves 
as a source of enzymes, but efficiency of the processes can be increased through the use of isolated and purified 
enzymes (Mohana, Shah, Divecha, & Madamwar, 2008). 

Considering the importance of xylanases in diverse agro-industrial uses, the present study involved evaluating a 
soil bacteria collection with the objective of selecting which produce alkaline thermostable extracellular 
xylanases. 
2. Method 
2.1 Isolates and Growth Media 

A total of 120 bacterial isolates obtained from the Soil Microbiology Laboratory of Embrapa Tabuleiros 
Costeiros (Aracaju-SE) were evaluated for in vitro xylanolytic activity. The isolates were obtained from soil 
samples collected in a secondary forest or in cultivated land planted with maize and pigeon pea and were 
cultured using VL55 culture media (Sait, Hugenholtz, & Janssen, 2002) with xylan as the sole source of carbon 
and nutrient agar in the original concentration or as a 10-fold, 100-fold and 1000-fold dilution. The taxonomic 
affiliation of the isolates was based on 16S rRNA gene partial sequencing. The 16S rRNA gene partial sequences 
obtained were compared with the sequences of bacteria of culture type deposited in the GenBank database 
(http://www.ncbi.nlm.nih.gov/) using the BLASTN software (Cavalcante, 2012).  

The isolates were stored at -20 °C in 50% glycerol, reactivated in liquid culture media of the same composition 
to the media used in the isolation and incubated (32 °C) in the dark until initial media turbidity. Thereafter, the 
reactivated cultures were inoculated in Petri dishes containing the solid media to verify purity. 

2.2 Selection of Extracellular Xylanase Producers in Solid Media 

To select the xylanase-producing bacteria, the isolates were inoculated into 50-mL Erlenmeyer flasks containing 
20 mL of mineral saline solution (MSS) containing xylan as the sole carbon source (Bajaj & Singh, 2010). The 
MSS solution is composed of 1% NH4NO3, 0.5% KH2PO4, 0.1% MgSO4·7H2O, 0.01% CaCl2·2H2O, 0.01% 
NaCl and 0.01% MnSO4·H2O, with the addition of 0.5% xylan. Once the isolates were at the beginning of the 
exponential phase, indicated by initial turbidity of the medium, xylanase production tests were carried out on 
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solid MSS medium containing xylan as the sole carbon source (0.5%). For this, a 2-mL volume of the liquid 
culture was centrifuged (14000 rpm for 5 min) and washed twice with saline (0.85% NaCl, w/v). Thereafter, the 
optical densities (OD) of the cell suspensions were adjusted to 0.7 in a spectrophotometer using wavelength of 
500 nm to give 1 × 106 UFC/mL. A 10-μL aliquot was deposited in the center of each Petri dish containing MSS 
solidified with agar (2%) or gellan (1%). Triplicate plates were used for each isolate. Plates were incubated in the 
dark at 30 °C (±2 °C) for seven days, and for an additional seven days if colony formation did not occur in the 
first period. Isolates whose colonies were not visible within 14 days were excluded from further procedures. 
Xylanase in vitro activity was evaluated by measuring the diameter of pale halos observed in the culture media, 
which are formed by xylan hydrolytic enzymes excreted by the colony and diffuse through the solid medium. To 
increase the contrast between the pale zone of the halo and the medium with xylan, 0.1% Congo red was added 
to the surface of the medium (Sharma & Bajaj, 2005). Two perpendicular measurements were made for each 
halo. These measurements were taken on the day of the test with Congo red and seven days after the test. The 
diameter of the colonies was also measured on the same evaluation dates. Selection of the isolates with the 
highest activity was performed using the relationship between the diameters of the activity halos and the colonies 
(H:C ratio) considering both evaluation dates. 

To test the hypothesis that the methods used in the isolation of bacteria (Cavalcante, 2012) result in cultures with 
different xylanase activities, the effect of various aspects of bacterial isolation on the H:C ratios of the isolates 
was evaluated as described below. The t-test (p < 0.05) was used to compare the mean values of isolates obtained 
from different soils (agriculture versus forestry), solidifying agents in the culture medium (agar versus gellan), 
dilution of the inoculum used in plating (10-6 versus 10-7) and pour-plate versus spread-plate methods. The 
Bonferroni procedure (p < 0.05) was used to compare the mean H:C ratios of the isolates with different 
incubation durations until colony appearance and among the culture media. The t-test was also used to test the 
hypothesis that was a difference in xylanase activity between the bacteria in the collection classified as rare and 
common isolate. 

2.3 Preparation of Extracellular Protein Extracts (EPE) 

The isolates with higher H:C ratios were selected and grown in the MSS medium with xylan (0.5%) and 
incubated at 32 °C/150 RPM until the initial media turbidity was observed. This medium was filtered on a 
Millipore nitrocellulose filter (0.22-μm porosity), which was maintained at a temperature of -20 °C until the time 
of analysis. 

2.4 Determination of Extracellular Xylanase Activity 

The enzymatic activity was determined using the modified method of Schinner and Von Mersi (1990), which 
was used to evaluate the activity of xylanases in soil extracts. According to the original method, the reducing 
sugars formed during the incubation of extracts in the presence of xylan (1.2% in 2 M acetate buffer, pH 5.5) at 
50 °C for 24 h were quantified colorimetrically after reaction with ferric potassium hexacyane under specific 
conditions, using glucose as the standard. In this study, the incubation period was reduced from 24 h to 1 h; other 
conditions were the same as in the original method. A low protein content of the cell extracts under the 
conditions used for the culture of bacteria was reported. Therefore, this method was chosen instead of the 
traditionally employed dinitrosalicylic acid method (Miller, 1959), since it has a sensitivity which is 
approximately 200 times higher for detection of reducing sugars (Schinner & Von Mersi, 1990). For these 
analyses, 100-μL aliquots of each EPE were added to 3 mL of acetate buffer and 3 mL of xylan buffer in test 
tubes, which were incubated at 50 °C for 1 h in triplicate. For the controls, EPE addition took place after the 
incubation period. For quantification of the reducing sugars, 100-μL aliquots were pipetted into test tubes and the 
volume made up to 1 mL with distilled water; 1 mL of reagent A (16 g L-1 of anhydrous sodium carbonate and 
0.9 g L-1 of potassium cyanide) and 1 mL of reagent B (0.5 g L-1 of ferric hexacyane potassium) were then added. 
The test tubes were sealed and placed in a water bath at 100 °C for 15 min. After this period, the contents of the 
tubes were cooled rapidly in a cold water bath for approximately 5 min and 5 mL of reagent C (1.5 g L-1 ferric 
ammonium sulfate, 1.0 g L- 1 of sodium dodecyl sulfate and 4.2 mL of L-1 of concentrated sulfuric acid) was then 
added. After color stabilization for 1 h at room temperature, the absorption was measured at 690 nm to determine 
the formation of reducing sugars. A reducing sugar standard curve based on glucose (0 to 18 μg glucose mL-1) 
was used to convert the absorbance into the amount of product formed by the reaction. Reactions for the 
detection of reducing sugars were performed in duplicate.  

The total protein content in these extracts was determined by the method of Bradford (1976) as recommended by 
the supplier for the detection of proteins in the range of 8 to 80 μg mL-1 (Bio-Rad). Bovine serum albumin (BSA) 
solutions with known concentrations were used as the standard. 
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The specific activity of the extracellular xylanases was determined by the ratio between the rate of formation of 
reducing sugars and the concentration of total proteins in the EPE. The units were expressed as μg of reductive 
sugar min-1 mg-1 protein.  

2.5 Enzyme Characterization 

The three isolates with the highest specific activity in the previous assay were selected for the determination of 
the optimum temperature of activity and thermostability of the xylanases. Quantification of the activity in the 
two determinations was performed using the method of Schinner and Von Mersi (1990) in the same manner as 
previously described. For the optimum temperature of activity test, the incubation of the protein extracts was 
carried out at temperatures ranging from 30 to 80 °C, with increments of 10 °C. The results were presented as 
relative activity, expressed as the percentage of specific activity at each temperature in relation to the maximum 
specific activity observed at the six incubation temperatures. For determination of the enzymatic stability at 
temperature, 100 μL of extract was added to test tubes containing 3 mL of acetate buffer without xylan and 
incubated for 2, 4 and 6 h at 60 °C. After each of these incubation periods, 3 mL of acetate buffer with xylan 
(1.2%) was added to the contents of the vials and the incubation was carried out to determine the residual 
activity of xylanases at 50 °C for 1 h. Determination of the reducing sugars formed was performed as previously 
described. The specific activity of xylanases at 50 °C, without pre-incubation at 60 °C, was used as the control, 
and the activities after 2, 4 and 6 h of pre-incubation were expressed as a percentage of the control value. 

The three isolates selected were also tested for xylanase stability at pH values of 4.0, 5.5 and 8.0. To this end, 
250 μL of each extract was incubated for 24 h at 4 °C in 750 μL of McIlvaine buffer (McIlvaine, 1921) adjusted 
to each pH value. After this period, 100-μL aliquots were incubated at 50 °C in 3 mL of acetate buffer and 3 mL 
of acetate buffer with xylan (1.2%) for 1 h and the reducing sugar content formed by the residual activity of the 
xylanases quantified as previously described. For the background solution, 100-μL aliquots of the pre-incubated 
EPEs with different pH values were added immediately before the reactions for the determination of reducing 
sugars. The maximum residual specific activity among the three pH values tested was used as reference and the 
results expressed as relative activity (percentage of the reference activity).  
2.6 Determination of Cellulase Activity 

For the isolate with the highest xylanase specific activity, cellulase activity was determined in the protein extract 
obtained after incubation in medium containing xylan as the sole carbon source. This activity was determined by 
the method of Schinner and von Mersi (1990), replacing xylan with disodium CM-cellulose (7 g L-1 of 2M 
acetate buffer, pH 5.5). The procedures for reading the samples and the standard curve followed the methodology 
described in the previous sections.  
3. Results and Discussion 

From 120 isolates evaluated, 114 (95% of the total) presented growth in medium with xylan as the only carbon 
source. Despite this high frequency, only 22 isolates (25% of the total) showed xylanase activity, detected by the 
formation of pale halos around the colonies under the conditions tested (Table 1). This discrepancy may be 
associated with free glucose and arabinose contamination in the beechwood xylan used, which would act as a 
carbon source and allow initial growth of the colonies without xylanase activity. Although 50 bacteria from the 
collection were isolated in VL55 medium, which has several nutritional factors, especially vitamins, most of 
these bacteria are metabolically versatile in nutritional terms, displaying growth in MSS medium whose 
composition has only mineral salts and xilan as a source of carbon. From 22 bacteria that showed halo xylanase 
activity under the conditions tested, 20 showed growth at up to seven days of incubation and only two (TC14C 
and TC9D) between seven and 14 days. As for the date of detection of xylanase activity, all bacteria, except 
TC97, presented halos on the first date that activity was evaluated (Figure 1a). High variability among isolates 
was observed in xylanase expression capacity under the conditions tested, regardless of the dates of evaluation of 
enzyme activity (Figure 1). In the first evaluation date the H:C ratio ranged from 1.44 to 4.26, between TC89 and 
TC21 isolates, respectively. This variation corresponded to 3.7 times the standard deviation (SD) observed 
among the isolates of the collection and a 290% increase among the isolates of the minimum and maximum H:C 
value. For the second evaluation date, the H:C values ranged from 1.44 to 4.73 for TC89 and TC92 (Figure 1b), 
which corresponded to 3.4 times the SD between isolates and a 230% increase between the isolates of the 
minimum and maximum H:C value.  
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Table 1. Characterization of bacterial isolates with xylanase halos formation activity for taxonomic affiliation 
based on 16r DNAr, culture rarity, soil type and techniques used in isolation 

Strains Phylum Family1 
Species with maximum 

similarity at 16S DNAr 

Culture  

rarity2 

Soil 

type3

Inoculum 

dilution4 

Culture  

media5 

Solidifying  

agent 

Plating  

technique6 

Colony  

formation 

(days) 

TC10C Acidobacteria Acidobacteriaceae Edaphobacter aggregans 

(98%) 

Commom FS D6 VL Gellan PE 7 

TC13B Actinobacteria Micromonosporaceae Micromonospora sp. (98%) Commom FS D6 AN Gellan PE 4 

TC49 Actinobacteria “Micrococcaceae” Arthrobacter sp. (99%) Rare FS D6 AN1:10 Gellan PP 4 

TC6B Actinobacteria Streptomycetaceae Streptomyces djakartensis 

(98%) 

Commom FS D6 AN Agar PE 7 

TC79 Actinobacteria Streptomycetaceae Streptomyces albospinus  

(98%) 

Commom FS D6 AN Agar PE 4 

TC9D Actinobacteria “Micromonosporaceae” Planosporangium sp. (93%) Rare FS D6 VL Agar PE 21 

TC106 Firmicutes Bacillaceae Bacillus sp. (99%) Commom FS D6 AN1:100 Agar PE 7 

TC123 Firmicutes “Bacillaceae” Bacillus sp. (99%) Rare FS D6 VL Gellan PP 7 

TC38 Firmicutes Bacillaceae Bacillus subtilis (99%) Commom FS D7 AN1:10 Gellan PP 14 

TC67 Firmicutes Bacillaceae Bacillus subtilis (96%) Commom FS D7 AN Agar PP 7 

TC72 Firmicutes “Bacillaceae” Bacillus cereus (98%) Rare AS D6 AN1:10 Gellan PE 4 

TC83 Firmicutes Bacillaceae Bacillus subtilis (99%) Commom AS D6 AN1:100 Agar PP 7 

TC89 Firmicutes Bacillaceae Bacillus safensis (99%) Commom AS D6 AN1:100 Agar PP 4 

TC119 Proteobacteria “Methylobacteriaceae” Methylobacterium sp. (99%) Rare AS D6 VL Gellan PP 4 

TC137 Proteobacteria Bradyrhizobiaceae Bradyrhizobium sp. (99%) Commom AS D7 VL Agar PE 63 

TC14C Proteobacteria Caulobacteraceae Phenylobacterium sp. (97%) Commom FS D7 VL Gellan PE 21 

TC21 Proteobacteria “Phyllobacteriaceae” Mesorhizobium sp. (97%) Rare FS D6 VL Gellan PP 14 

TC66 Proteobacteria Burkholderiaceae Ralstonia pickettii (95%) Commom FS D6 VL Gellan PE 14 

TC88 Proteobacteria “Rhizobiaceae” Rhizobium miluonense  

(96%) 

Rare AS D7 AN Agar PP 7 

TC92 Proteobacteria “Phyllobacteriaceae” Phyllobacterium trifolii  

(95%) 

Rare AS D7 AN Gellan PP 4 

TC97 Proteobacteria Methylobacteriaceae Methylobacterium isbiliense

(94%) 

Commom AS D6 AN Gellan PE 4 

TC99 Proteobacteria Ralstoniaceae Ralstonia sp. (99%) Commom FF D7 AN1:10 Gellan PE 28 

Note. 1 Quoted names indicate families with which the isolates had the highest similarity in the 16S rDNA 
sequence, although they did not affiliate with them; 2 According to the methodology of Joseph et al. (2003); 3 FS: 
soil under secondary forest; AS: only under agricultural cultivation; 4 Plating of 100 μl of dilution 10-6 (D6) and 
10-7 (D7); 5 VL: VL55 (Sait et al., 2002); AN, AN1: 10 and AN1: 100: nutrient agar without dilution, diluted 10 
and 100 fold, respectively; 6 PP: “pour-plate”, PE: spread plate. 

 

The sequence of isolates with regard to the H:C ratio differed between the first and second evaluation dates 
(Figure 1). Several studies have previously observed late gene expression in bacterial isolates, such as studies 
with nodC and nodW nodulation genes and the nopP gene in Bradyrhizobium japonicum, which probably act on 
the infection of soybean roots (Bortolan, Barcellos, Marcelino, & Hungria, 2009), or expression of GDH gene in 
Lactobacillus plantarum DPPMA49 in response to different environmental conditions (De Angelis et al., 2010), 
which revealed differences in the activation of the gene expression machinery in response to the medium. 

These changes were characterized by halo formation by TC97 only on the second evaluation date and by the 
increase in the H:C ratio between the two dates for some bacteria, especially TC119, TC66, TC92, TC13B and 
TC99. The gap between colony formation and expression of xylanase activity may be related to mechanisms of 
catabolic repression, in which sugars of more easy assimilation represses the expression of genes involved in the 
use of polymers of more complex structure, as already demonstrated with the fungus Trichoderma reesei (Mach, 
Strauss, Zeilinger, Schindler, & Kubicek, 1996) and on Bacillus stearothermophilus and Bacillus subtilis (Cho & 
Choi, 1999).  
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