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Abstract 
The wastewater has been an environmental problem, but your used as fertilizers could reduce or eliminate the 
application of commercial fertilizers in soil. Arbuscular mycorrhizal fungi (AMF) and nitrogen fixing bacteria 
(NFB) are a good parameter to analyze the impacts of this fertigationon soil. We aimed to evaluate the 
distribution and diversity of AMF and NFB before and after applications of wastewater or manure from green 
line of a cattle slaughterhouse in the irrigation of B. brizantha cv Marandu in Cerrado soil and leaf biomass 
productivity. The experimental design was performed in completely randomized blocks with ten biofertigation 
managements. The seeds of the forage were distributed in grooves with spacing of 5 cm. This seeds were 
covered with a soil layer. NFB and AMF diversity was performed by denaturing gradient gel electrophoresis 
(DGGE). The leaf biomass productivity in the biofertigation managements was higher than in the managements 
without the use wastewater/manure. After biofertigation managements, changes in the DGGE profile of the NFB 
and AMF communities were observed. These changes may be due to the difference in the sample collection 
period and in the soil humidification. Thus, these DGGE profiles was a good parameter to diagnose the efficacy 
of wastewater/manure as an alternative biotechnological irrigation.  

Keywords: manure, meat, environmental impacts, Brachiaria brizantha, mycorrhizal, nitrofen fixing bacteria 

1. Introduction 
Cerrado in territorial extension is the second Brazilian biome with 204 million of hectares. This biome plays a 
fundamental role in the flows of the main hydrographic basins of south American (Lima & Silva, 2007). Cerrado 
soils present edaphic conditions (e.g. texture, depth and relief) ideal for agropastoral activities. About 55% of 
Brazilian meat production is made in this biome (Embrapa, 2006). These activities have caused an increase in the 
deforestation of forest areas, in the water consumption and in the use of synthetic pesticides and fertilizers (da 
Silva et al., 2017).  

Brazil has one of the largest cattle herds in the world, with about 215.2 million animals (IBGE, 2015). Eight 
million of these cattle are in the Cerrado of Tocantins state. Furthermore, the number of cattle slaughtered in this 
state is uncertain, due to clandestine slaughter and tax evasion. According to the IBGE (2015), this amount may 
ranges from 1 to 2 million animals. 

In the cattle slaughterhouse, the highest water consumption is in the step of washing of animals, utensils and 
equipment. This step is made with fresh and potable water containing the minimum residual chlorine levels. This 
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water consumption in the green line that corresponds to the process of cleaning stool, urine and vomit is about 
1,000 liters per animal (Pacheco, 2006). Thus, in Tocantins/Brazil state the annual volume of wastewater of the 
green line is about 1 to 2 gigaliters. 

Wastewater is an environmental problem if discarded untreated in soil or waterbodies (Hespanhol, 2002; 
Azevedo, 2007). However, they may be used as agricultural fertilizers, due to the nitrogen, phosphorus, 
potassium and organic matter contents (Hespanhol, 2002; Azevedo, 2007; Da Silva et al., 2017). In addition, the 
fertigation also provides the organic matter addition in the soil that is a nutrients source for plants, 
microorganisms and fauna. 

The reduction of water consumption of natural waterbodies, of the wastewater disposal in environmental and of 
the application of synthetic fertilizers for pasture production is the main advantages of fertigation (Silva et al., 
2016). This technology increases in plant productivity and in nutritional quality of biomass. According to 
Christofidis (2006), about 10 million hectares of Cerrado has potential for fertigation; but less than 10% was 
used, due to the conflicts of interest between the native human population, farmers and cattle ranchers (Lima et 
al., 2007).  

The presence of fecal microorganisms (coliform bacteria, protozoa and helminths) in wastewater has also been a 
limiting factor for fertigation (Sousa Neto et al., 2012; Alderson et al., 2015; Ibekwe et al., 2018). However, 
water treatment and soil management can reduce the risk of contaminations of soil and of agronomic varieties by 
fecal microorganisms (Rocha et al., 2013; Silva et al., 2016). Fecal coliforms and helminth eggs were not 
identified, in the soil, after 60 days of the application of biosolid from the wastewater treatment (Rocha et al., 
2003). Our study, it was done using the suggestion of Silva et al. (2016). These authors recommend the 
fertigation for the plantation of agronomic varieties that do not have direct use as human food. In addition, these 
pathogenic microorganisms from wastewater can also be a source of nutrients for soil microorganisms. 
According to Ibekwe et al. (2018), bacterial of treated wastewater are very active in soil functions. 
Pyrosequencing detected sequences of nitrifying bacteria, nitrogen-fixing bacteria, denitrifying bacteria, 
potential pathogens, and fecal indicator bacteria in treated wastewater (Ibekwe et al., 2018). These authors also 
show that microbial diversity was not significantly different between soils with treated wastewater and fresh 
water by Shannon diversity index.  

The soil microorganism has several biological activities, such as, organic matter decomposition, atmospheric 
nitrogen fixation, nitrification and solubilization, and minerals availability to plants (Moreira & Siqueira, 2006; 
Madigan et al., 2010). In addition, Silva et al. (2016) showed that arbuscular mycorrhizal fungi (AMF) and 
nitrogen fixing bacteria (NFB) are a good parameter to analyze the impacts of fertigation with domestic 
wastewater in the Brachiaria brizantha planting in Cerrado soil.  

The occurrence and distribution of AMF are influenced by soil use and edaphic factors (Silva et al., 2015). These 
fungi provide the plant with an increase in rate of nutrient absorption and tolerance to heavy metals, water stress 
and pathogenic microorganisms (Guo et al., 2013). The genus Glomus is the most abundant in the areas of 
intensive and extensive pasture and in no-tillage and conventional. In addition, no-tillage provides greatest 
abundance of AMF spores (Silva et al., 2015).  

The soil nitrogen is obtained from the degradation and mineralization of organic matter, biological nitrogen 
fixation (BNF) and fertilizers (Bloom, 2015). The highest nitrogen content in the rhizosphere comes from the 
symbiosis between the plants and the diazotrophic bacteria (Vance, 1998; Wartiainen et al., 2008; Silveira et al., 
2013).  

Thus, the aims of this study were to evaluate the distribution and diversity of AMF and NFB before and after 
applications of wastewater or manure from green line of a cattle slaughterhouse in the irrigation of Brachiaria 
brizantha cv Marandu in Cerrado soil and leaf biomass productivity. 

2. Materialsand Methods 
2.1 Site Location and Characterization 

The experiment was carried out on the campus of CEULP/ULBRA, Palmas-Tocantins, Brazil, located at an 
altitude of 254 m and the following geographic coordinates: 10º16′34.16″ S and 48º20′05.03″ W (Figure 1). 

 



jas.ccsenet.

Source: Go

 

The clima
evapotrans

The soil o
5%. Thus, 

2.2 The Ex

First, vege
was system
at depths o

Ten treatm
m2) spaced

The exper
aligned ea

At the end
samples w
resistance 
penetrome

Soil sampl

2.2.1 Prep

After the 
tractor-driv

The value
samples c
distributio
and use of

The applic
layer was a

2.2.2 Fora

The prima
to determin

org 

Fig

oogle Earth. 

ate of this regi
spiration betwe

of this experim
surface runoff

xperiment 

etation cover w
matic accordin
of 0 to 10, 10 t

ments of biofert
d 0.20 m apart

riment was arr
st to west, and

d of the experim
were collected 

to root penetr
eter (Falker-PL

les (20 g) were

aration Initial 

step of collect
ven disk plows

s of the physi
ollected prior
n and incorpo

f rake. In additi

cation of the li
applied in soil

ge Nutritional 

ary macronutri
ne the nutritio

gure 1. Experim

ion is humid 
een 1,400 and 

ment was classi
ff is slow to lig

was removed,a
ng to the metho
to 20, 20 to 30 

tigation manag
, in quadruplic

ranged in a ra
d two north to s

ment, which o
at the center 

ration in depth
LG 1020).  

e used to analy

of Soil in Exp

ting the soil s
s was perform

ical-chemical 
r to the install
oration dolomi
ion, during the

imestone occu
 for a better di

Demand 

ients, nitrogen 
nal demand of

Journal of A

mental area sho

and subhumid
1,700 mm (So

ified as a Red
ght and predom

and soil sampli
odology propo
and 90 to 100

gements (M1 t
cate (Figure 1)

andomized com
south (Figure 

occurred after t
of each expe

hs of 0 to 60 

yze the physica

perimental Area

samples, the o
med.  

indicators (pH
lation of the 
itic limestone 
e acidity, the ar

urred during th
istribution of th

(N), phosphor
f B. brizantha.

Agricultural Sci

355 

owing the distr

d (C2wA"a") w
ousa, 2010). 

d-Yellow Latos
minantly westbo

ing was perfor
osed by Raij (2
0 cm (Figure 1)

to M10) were a
. Forage was p

mplete block d
1).  

the third cut of
rimental plot 
cm and 2.5 c

al-chemical ind

a 

operation of pl

H, base saturat
experiment w
in the area w

rea leveling w

he dry period w
he limestone in

rus pentoxide 
 The each nutr

ience

ribution blocks

with a water 

sol, occurring 
ound (Seplan, 

rmed to the soi
2001). Eight sa
).  

applied on plo
planted in lines

design with fo

f plant, new so
(M1 to M10)

cm interval w

dicators (see it

lowing and so

tion and cation
were used to t
was performed,
was also perform

with few or no
n area. 

(P2O5) and p
rient amount w

s (B1 to B4) 

deficit in the 

in a smooth r
2013a). 

il characteriza
amples (A1 to 

ots of 1.62 × 3.
s spaced 1.00 m

our replication

oil samples we
. In these col
as measured w

tem 2.4). 

orting of the so

n exchange ca
the soil acidit
, respectively, 
med.  

o rain in July/2

potassium oxid
was determined

Vol. 10, No. 5;

 

winter and an

relief and a slo

ation. Soil samp
A8) were colle

.00 m (total of
m inside the pl

ns (B1 to B4),

ere obtained. T
lection points
with the aid o

oil with the u

apacity) of the
ty adjustment.

by hand-thro

2015. Thus, a w

de (K20) were 
d from the con

2018 

nnual 

ope < 

pling 
ected 

f 4.86 
lots.  

, two 

These 
, soil 

of the 

se of 

e soil 
The 

wing 

water 

used 
ntents 



jas.ccsenet.org Journal of Agricultural Science Vol. 10, No. 5; 2018 

356 

of these elements in the depth of 0 to 20 cm and commercial fertilizer containing superphosphate (with 18% 
P2O5), potassium chloride (with 60% K2O) and urea (with 45% N) was used. Nitrogen and others elements were 
determined, respectively, the Kjedahl method and spectrophotometry (APHA, 2005; Embrapa, 2006). 

2.2.3 Forage Water Demand 

In the pre-planting, a day before the beginning of sowing of the weed on June 22, 2015, a water layer in the 
experimental plots was applied to raise the water level in the soil to the field capacity. This water layer was 
calculated from the estimate of the water depth in the soil between the wilting point and the field capacity. After 
this first addition of water in the soil, the other additions were estimated as a function of the maximum crop 
evapotranspiration, the irrigation shift (3 and 4 days) and the precipitation occurred between biofertigation. 

In each biofertigation and in the experimental plots, the water layer that was applied, with or without 
wastewater/manure was multiplied by the plot area. This volume of water was divided by the capacity of the 
sprinkler (10 L) to determine the number of sprinklers to be applied in each plot. 

2.3 Fodder Planting 

B. brizantha cv Marandu seed was purchased in Palmas/TO/Brazil with, respectively, 60.3% and 80.0% purity 
and germination rate. Thus, the cultural value was 48.24%. In the planting of this forage are used of 1.5 to 2.0 
kg/ha of viable seeds (Embrapa, 1984). In this study, 1.75 kg/ha of viable seeds were used.  

The planting was done (June 24, 2015) with sowing in equidistant lines (1.00 m). In each plot three planting 
lines were made in the form of triangular grooves with depth of 4 cm and 1.62 m in length. The seeds were 
distributed in these grooves with spacing of 5 cm and were covered with a lightly pressed soil layer. This cover 
was made only to provide wet soil contact with the seeds. 

2.4 Biofertigation Management in the Field Experiment 

The experimental design was performed in completely randomized blocks (B1 to B4) and 10 biofertigation 
management (M1 to M10) (Table 1). This table also contains the quantity of inputs for each management. 

The wastewater used in this experiment were collected in a cattle slaughterhouse located in Paraíso do 
Tocantins/TO/Brazil. In this slaughterhouse, the effluents of the green line are channeled to a reception box. The 
wastewater of this box are separated into two portions through a pumping system. The liquid part is deposited in 
three stabilization ponds and solid part (manure), is used as fuel in the boiler heating system. 

For the composition of the biofertigation management, the wastewater of slaughterhouse from the 3rd 
stabilization pond (M3 a M5), from reception box (M6 a M8) and of solid part (M9 e M10) were used (Table 1). 
The managements M1 and M2 did not contain wastewater of slaughterhouse (Table 1).  

Samples of each of these wastewater of slaughterhouse were collected for determination of the 
physical-chemical indicators (Table 2). These analyses were made according to Standard Methods (APHA, 
2005). 
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Table 1. Biofertigation management and quantity of wastewater/manure applied in the planting of Brachiaria 
brizantha cv Marandu 

Biofertigation management 

Wastewater per parcels 

3rd stabilization 

ponds (lt) 

Reception 

box (lt)  
Manure (kg) 

M1 Application of dolomitic limestone and water blade of artesian well 0 0 0 

M2 Application of dolomitic limestone, NPK fertilizer (commercial) and water blade of 

artesian well. 

0 0 0 

M3 Application of dolomitic limestone, fertilizer: N (80% commercial and 20% of 

wastewater of the 3rd stabilization ponds), P and K and water blade of artesian well 

98 0 0 

M4 Application of dolomitic limestone, fertilizer: N (60% commercial and 40% of 

wastewater of the 3rd stabilization ponds), P and K and water blade of artesian well 

196 0 0 

M5 Application of dolomitic limestone, fertilizer: N (40% commercial and 60% of 

wastewater of the 3rd stabilization ponds), P and K and water blade of artesian well 

293 0 0 

M6 Application of dolomitic limestone, fertilizer: N (80% commercial and 20% of 

wastewater of the reception box), P and K and water blade of artesian well. 

0 85 0 

M7 Application of dolomitic limestone, fertilizer: N (60% commercial and 40% of 

wastewater of the reception box), P and K and water blade of artesian well 

0 170 0 

M8 Application of dolomitic limestone, fertilizer: N (40% commercial and 60% of 

wastewater of the reception box), P and K and water blade of artesian well 

0 254 0 

M9 Application of dolomitic limestone, fertilizer: N (80% commercial and 20% 

manure), P and K and water blade of artesian well 

0 0 33 

M10 Application of dolomitic limestone, fertilizer: N (60% commercial and 40% 

manure), P and K and water blade of artesian well 

0 0 66 

Note. N: nitrogen, P: phosphorus, K: potassium.  

 

The inputs amount of each parcels was determined by the availability of NPK in the soil and in the wastewater of 
slaughterhouse (Table 2). In addition, the N content was used to determine the wastewater of slaughterhouse 
amount to be applied in the biofertigation management (Tables 1 and 2). 

The commercial and wastewater of slaughterhouse inputs were applied together with the water layer of artesian 
well. 

 

Table 2. Physical-chemical indicators concentration before of the planting Brachiaria brizantha cv Marandu and 
biofertigation management (M1 at M10) with wastewater/manure of the green line 

Physical-chemical indicators* 
Wastewater/manure of slaughterhouse 

3rd stabilization ponds  Reception box  Manure 

 --------------------------- mg/L -------------------------- ------- mg/kg -------

Carbon 2034  2534  5322  

Nitrogen 149.44  172.33  443.79  

Phosphorus 1.58  1.982  4.55  

Potasium 14.22  21.421  1.62 

Sodium 27.12  39.252  3.21 

pH 8.20 8.05 8.76 

Note. * The minerals were determined after a nitroperchloric digestion of the samples. 

 

2.5 Characterization of Leaf Biomass 

The cut of leaf biomass were made with a pruning shears. The samples of these biomass were collected in the 
center of the parcels, with 1.00 m × 0.82 m of dimensions to avoid the border effect. The green mass was 
determined on analytical balance.The samples in 65 °C forced-ventilation greenhouses during 72 hours to 
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moisture loss were conditioned. After cooling to room temperature (25±5 °C), the air dry mass (ADM) was 
determined using the analytical balance. This ADM was crushed with the aid of a Willey mill for determination 
of greenhouse dry mass (GDM) at 105 ºC.  

2.6 Analysis of the Microbiota in the Biofertigation Management  

2.6.1 Measurement of Viable Microorganisms in Soil 

Ten grams of soil and 90 mL of sodium chloride (0.85% w/v) were used to quantify the microorganisms (Sabino, 
2007). This mixture was stirred for one hour at 200 rpm, filtered on filter paper and stored at 4 °C. A series of 
dilutions (10-1 to 10-7) of 1 mL of the suspension was made. One hundred μl of each dilution was added on solid 
culture medium and spread with a Drigalski handle. The plates were incubated at 25 °C. This procedure was 
performed in triplicates.  

In the measurement of BFN, the nutrient agar culture medium containing 0.3 ml of nystatin was used (Sabino, 
2007). The pH in this medium culture was adjusted to 7. The plates were incubated for 3 days. 

Martin medium containing rose bengal (0.1% w/v) was used for counting filamentous fungi (Martin, 1950). In 
this medium, 1 ml of streptomycin (0.3 mg/ml) was added and the pH was adjusted to 5.8. The plates were 
incubated for 7 days.  

The actinomycete counts in selective medium containing glycerol were made (Rodrigues, 2007). The plates for 7 
days were incubated. 

The microbial measurements were expressed in log scale of the colony-forming unit (CFU) per gram of soil. 

2.6.2 Characterization of Microbial Diversity by DGGE Profile  
Diversity of NFB and AMF was performed by denaturing gradient gel electrophoresis (DGGE). These microbial 
groups were selected for this analysis due to species diversity and their contributions to soil fertility and 
structuring (Moreira & Siqueira, 2006). 

DNA of the soil samples was extracted using a soil DNA Mega Prep Kit (Kit-MO BIO, Ultraclean TM). In this 
extraction, 0.5 g of soil were added in plastic tubes (Eppendorff type) containing polypropylene beads. After, 
several steps of adding solutions and centrifugations, according to the manufacturer's protocol, the suspension 
containing the total DNA was stored at -20 °C. 

The nifH and 18S rDNA genes were amplified by polymerase chain reaction (PCR) from the total DNA for 
analysis of NFB and AMF, respectively.  

Bionumerics software (Version 5.10) was used for normalization, conversion and comparison of the images in 
presence/absence and band intensity matrices. 

2.6.3 DGGE Profile of NFB 

The PCR of the nifH gene was done with the 19F and 407R primers (Ueda et al., 1995). In this amplification, a 
390 base pair (bp) fragment was obtained. This fragment was used in the Nested-PCR with the 19F-GC (with 
GC clamp) and 278R primers (Direito & Teixeira, 2002). In this new amplification, a 260 bp fragment was 
obtained.  

PCRs were performed with a final volume of 50 μl, containing 1 μl (20 ng) of total DNA, 0.2 μM of primers, 
200 μM of triphosphate deoxyribonucleotides, 2 mM magnesium chloride, 0.5 mg ml-1 of bovine serum albumin, 
50 mM of potassium chloride and 1.25 U of GO Taq DNA polymerase (Invitrogen, Life Technologies) in 20 
mM of Tris-HCl (pH 8.4).  

The program used in the thermal cycler was similar to the described by Direito and Teixeira (2002). In the 
negative controls, 1 μL of MilliQ water was used instead of the DNA fragments.  

The Nested-PCR fragments were analyzed by DGGE (Model DCodeTM Systems, BIO-RAD California). 20 μL 
of these fragments were loaded onto 8% polyacrylamide gel (w/v) in TAE buffer (1×). This gel was prepared 
with denaturation gradient varying from 45 to 70% using urea (7M) and formamide. The gel was subjected to 
vertical electrophoresis for 12 h at 60 V and 60 °C. This gel was stained for 40 min with SYBR Gold (1×) 
(Molecular Probes, Leiden, The Netherlands) and photographed on ultraviolet light on the Molecular Imaging 
Locococentor (Loccus biotechnological L-Pix Chemi).  

2.6.4 DGGE Profile of AMF 

PCR was similar to those described in DDGE profile of NFB.  
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The AM1 and NS31 primers were used to amplify the fragments of the 18S rDNA gene of the first PCR (Simon 
et al., 1992; Helgason et al., 1998). In this reaction, a 580 bp fragment was obtained which was used in the 
Nested-PCR with primers NS31-GC (with GC clamp) and Glo1 (Kowalchuk et al., 2002; Cornejo et al., 2004). 

The DNA fragments of the Nested-PCR were used to obtain the DGGE profile (DCodeTM Systems Model, 
BIO-RAD California). Twenty μL of this fragment (150 to 200 ng of DNA) was loaded onto polyacrylamide gel 
(8%, w/v) in TAE buffer (1×). 

The next steps to obtain DDGE prolife of AMF were done similar to DGGE prolife of NFB. 

2.7 Statistical Analysis of the Indicators of Soil Quality and of Leaf Biomass 

The experiment was conducted in a completely randomized block design with factorial unfolding (10 
biofertigation management and 3 cuts of leaf biomass). 

Physical-chemical indicators content and leaf biomass were compared using analysis of variance followed by 
pos-hocTukey test, both at 5% significance. The estimates of these parameters were made at 95% confidence 
level, based on the coefficient of variation (CV) limits proposed by Pimentel-Gomes (2000). This author 
classifies the experimental variations in low variation (CV < 10%), medium (10 < CV < 20%), high (20 < CV < 
at 30%), and very high (CV > 30%).  

The DGGE profiles were analyzed in the Bionumerics software (Version 5.1). In this software were made the 
unweighted pair group method with arithmetic mean (UPGMA) dendograms using the Jaccard similarity index.  
The similar bands were considered those with probability level of 0.5% by the post-hoc Bonferroni test. 

The graphs to present the relationships between the variables were made from the spreadsheets/software: Excel, 
Surfer, SigmaPLOT12.0 and Minitab 17. 

3. Results and Discussions 
3.1 Analyzes Carried out Before Biofertigation Management  

3.1.1 Wastewater/Manure of Slaughterhouse Composition 

The wastewater/manure of slaughterhouse had a diversified composition of primary macronutrients (Table 2). 
Thus, crude wastewater, despite representing an environmental problem may be reduces or eliminates the use of 
commercial fertilizers (Hespanhol, 2002).  

Forage grasses due to accelerated leaf growth rates require a large nutrient amount (Barbero et al., 2013; Costa et 
al., 2016). Thus, the use of wastewater in meeting the demand of these plants is a viable alternative (Silva et al., 
2016, 2017).  

A forage crop with high availability in nitrogen has more vigorous roots than a crop deficient in this nutrient, 
because root growth is related to the accumulation of elaborated sap (Brower, 1962). 

The sodium had lower concentrations (Table 2) than at the limit level (40 mg/L), recommended to avoid 
salinization or sodification of soil and groundwater (Von Sperling, 2005; Gloaguen, Gonçalves, Forti, Lucas, & 
Montes, 2010).  

The basic pH of wastewater/manure of green line (Table 2) can contribute to the increase of the cation exchange 
capacity in the soil and together with the limestone increase the pH in soil solution. These soil changes may 
favor the development of forage crops and shows the potential of biofertigation with wastewater/manure of green 
line.  

3.1.2 Characterization of Physical-Chemical Indicators of Soil  

The concentration, movement and distribution of the physical-chemical indicators in natural conditions limit the 
use of the Cerrado soil for the exploitation of agropastoral activities. The use of adjusts acidity and fertilizeris are 
alternative to reduce or eliminate this limitation. Thus, in this study the dolomitic limestone was added for soil 
acidity adjustment before the planting of B. brizantha cv Marandu.  

We observed a reduction in the ions (H + Al) concentration and an increase in base saturation and pH in the 
effective depth (20 to 30 cm) of the roots (Figure 2). These results may be due to the morphological 
characteristics of the sandy loam soil. In this type of soil has a greatest volume of infiltration of water in the 
roots depth that favors the leaching of the bases and the increase of the H+ and Al3+ concentration.  

The pH in the soil depth of 0 to 30 cm did not significant difference (p < 0.05) in the blocks. However, in the 
depth of 90 to 100 cm the pH presented a significant difference when compared to the other depths (Figure 2). 
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Cerrado soils have acidic pH and vary according to the time, geographical location and soil depth (Ronquim, 
2010). 

 

Table 3. Counts of viable microbial cells of the Cerrado soil before the planting of Brachiaria brizantha cv 
Marandu and of the use of biofertigation with cattle slaughterhouse wastewater/manure 

Sample collection points Soil depth  Actinomycete Total bacteria  Fungi 

 --------- cm-------- ------------------------- Log (CFU g-1) --------------------------

A1 0-10 6.19±0.01 7.39±0.01 5.25±0.01 

10-20 6.06±0.01 7.31±0.01 5.10±0.03 

20-30 5.97±0.01 7.21±0.02 -a 

90-100 5.40±0.04 6.70±0.02 -a 

A2 0-10 6.19±0.01 7.37±0.01 4.97±0.02 

10-20 6.02±0.01 7.27±0.02 4.80±0.03 

20-30 5.97±0.01 6.91±0.01 -a 

90-100 -a 6.64±0.01 -a 

A3 0-10 6.17±0.01 7.32±0.02 5.10±0.02 

10-20 6.06±0.01 7.27±0.01 4.91±0.01 

20-30 5.99±0.01 6.97±0.01 -a 

90-100 5.41±0.04 6.52±0.03 -a 

A4 0-10 6.25±0.01 7.42±0.01 4.81±0.03 

10-20 6.13±0.01 7.28±0.01 4.66±0.04 

20-30 5.94±0.01 6.94±0.02 -a 

90-100 -a 6.51±0.03 -a 

A5 0-10 6.18±0.01 7.37±0.01 5.02±0.03 

10-20 5.98±0.01 7.26±0.01 4.62±0.03 

20-30 5.67±0.01 6.94±0.01 -a 

90-100 -a 6.55±0.03 -a 

A6 0-10 6.18±0.01 7.45±0.01 4.87±0.02  

10-20 5.93±0.02 7.29±0.02 4.63±0.03 

20-30 5.66±0.02 6.88±0.03 -a 

90-100 -a 6.53±0.03 -a 

A7 0-10 6.16±0.01 7.22±0.01 4.79±0.02 

10-20 5.87±0.02 7.16±0.01 4.67±0.04 

20-30 5.54±0.02 6.89±0.01 -a 

90-100 -a 6.54±0.03 -a 

A8 0-10 5.99±0.01 7.25±0.01 5.00±0.02 

10-20 5.89±0.01 7.10±0.02 4.89±0.02 

20-30 5.56±0.02 6.79±0.01 -a 

90-100 -a 6.45±0.02 -a 

Note. a: values below 25 colonies. CFU: colony-forming unit. B1P1: sample collection points 1 and soil depth 1 
(0-10 cm), B2P2: sample collection point 2 and soil depth 2 (10-20 cm), B3P3: sample collection point 3 and soil 
depth 3 (20-30 cm) and B4P4: sample collection point 4 and soil depth 4 (90-100 cm).  
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evapotranspiration (Table 4). The ASWC represented about 50% of the ASW that is the maximum limit of water 
in the soil to avoid the water stress of the plant.  

During the biofertigation management, an excess of water in the soil was observed (Table 4). This fact was due 
to precipitations with intensity higher than the ASW. This excess water caused the leaching of fine soil particles 
(silt and clay) and nutrients. Furthermore, the mean water demand of Brachiaria brizantha calculated by the 
ratio between the maximum crop evapotranspiration and the time of biofertigation management was 4.1 mm/d 
(Table 4).  

 

Table 4. Water and climatic parameters measured during the biofertigation of Brachiaria brizantha cv. Marandu 
in Palmas, TO, Brazil from 06/22/2015 to 03/27/2016  

Water and climatic parameters Amount Unit 
Available water capacity in soil (ASW) 51.6 mm 

Soil water retention 8.5 mm 

Actual soil water capacity (ASWC) 25.8 mm 

Daily potential evapotranspiration  4.7 mm 

Maximum crop evapotranspiration 1.145.9 mm 

Precipitation occurred during crop management 915.3 mm 

Water blade applied without or with the management of biofertigation 792.6 mm 

Excessive water during management of biofertigation 562.0 mm 

During of the management of biofertigation 279 dia 

 

3.2.2 Characterization of Physical-Chemical Indicators of Soil 

The physical-chemical indicators did not present significant differences in their contents along the soil depth, in 
all biofertigation management (Table 5). These indicators in the soil solution presented a greater dispersion with 
the biofertigation than dispersion before the preparation of the soil for the planting. According to Koura et al. 
(2002), it requires several years of irrigation with wastewater to achieve changes in physical-chemical 
characteristics. However, we results show o potential of use of wastewater/manure of green line as nutrient 
source and water by B. brizantha cv Marandu that is important for cattle food.  

3.2.3 Characterization of Leaf Biomass  

In the first cut, leaf biomass productivity was low. This result may be due to the initial stages of plant growth or 
interference of wastewater/manure in the formation of foliar mass (Figure 6A). However, leaf biomass 
productivity did not show a significant difference (p < 0.05) between the treatments without or with the use of 
wastewater/manure (Figure 6A). Therefore, the low productivity, regardless of the management, was due to the 
culture not having completed the development, at this stage.  

The second cut of the leaf mass was performed at 209 days of planting and at 49 days after the first cut (Figure 
6B). The organic and mineral masses were larger in this cut than in the other cuts (Figure 6). Thus, the ideal 
period for cutting the leaf mass, regardless of the use of biofertigation, was after 200 days of forage planting. 

Leaf biomass productivity in the second cut had significant differences (p < 0.05) between the biofertigation 
managements (Figure 6B).  

Similar to that observed in the first cut, the leaf biomass productivity in the second cut was greater in 
managements with manure than other (Figure 6). In addition, the leaf biomass productivity in the biofertigation 
managements was higher than in the managements without the use wastewater/manure. These results show that, 
at this stage of plant growth, the use of the biofertigation has a positive effect on the growth and production of B. 
brizantha cv. Marandu in the Cerrado soil.  

The third cut was performed at 280 days of planting and at 71 days after the second cut (Figure 6C). In this last 
cut, we observed, respectively, a reduction of leaf biomass productivity in managements with manure and an 
increase of this productivity in the other managements in relation to the second cut (Figure 6). This shows the 
forage regrowth capacity. Silva (2017) also shows this B. brizantha ability in Cerrado soil in fertigation 
management. Thus, the regrowth may be related to the use of wastewater in the irrigation of this forage. 
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Table 5. Physical-chemical indicators concentration after of the planting Brachiaria brizantha cv Marandu and 
biofertigation management (M1 at M10) with wastewater/manure of the green line 

Biofertigation  
management  

Physical-chemical indicators 

Soil detph (cm) 

0-10 10-20  20-30 

Average±Sd CV  Average±Sd CV  Average±Sd CV  

M1 

pH (CaCl2) 4.73±0.35 a 4.7 4.53±0.20 a 2.8  4.43±0.24 a 3.4 

Clay 

% 

26.00±6.09 a 14.7 30.50±7.52 a 15.5  36.00±7.46 a 13.0 

Sand 50.75±12.00 a 14.9 48.75±15.12 a 19.5  39.00±11.84 a 19.1 

Limo 23.25±6.15 a 16.6 20.75±7.62 a 23.1  25.00±5.03 a 12.6 

Ca 

cmolc/dm³ 

1.60±0.87 a 34.2 0.85±0.59 a 43.5  0.58±0.46 a 50.0 

Mg 0.85±0.42 a 31.1 0.43±0.27 a 40.2  0.28±0.24 a 54.5 

Al 0.10±0.23 a 141.4 0.10±0.00 a 0.0  0.10±0.23 a 141.4

H + Al 4.78±0.42 a 5.5 5.25±1.20 a 14.4  4.70±1.88 a 25.2 

K 0.05±0.03 a 32.9 0.03±0.01 a 21.6  0.03±0.01 a 16.1 

CEC 7.25±1.57 a 13.6 6.53±1.52 a 14.7  5.55±1.97 a 22.3 

Organic Matter g/dm³ 25.25±7.62 a 19.0 25.25±7.62 a 19.0  22.25±2.39 a 6.7 

Base Saturation 
% 

33.73±11.35 a 21.1 19.80±11.31 a 35.9  16.15±11.09 a 43.1 

Al Saturation 4.03±7.57 a 118.2 8.18±6.21 a 47.7  11.50±24.41 a 133.4

Na 

mg/dm³ 

1.50±0.92 a 38.5 3.00±0.00 b 0.0  1.50±0.92 a 38.5 

Zn 1.63±3.62 a 140.2 0.55±0.60 a 68.8  0.28±0.38 a 85.9 

B 0.18±0.15 a 54.7 0.15±0.09 a 38.5  0.13±0.08 a 40.0 

Cu 0.13±0.08 a 40.0 0.10±0.00 a 0.0  0.15±0.16 a 66.7 

Fe 36.75±10.42 a 17.8 28.75±11.35 a 24.8  23.00±10.15 a 27.7 

Mn 3.25±3.53 a 68.2 1.75±0.80 a 28.6  1.25±0.80 a 40.0 

K 19.00±9.89 a 32.7 13.50±4.77 a 22.2  11.50±3.05 a 16.7 

P (Melich I) 1.50±0.92 a 38.5 1.25±0.80 a 40.0  1.25±0.80 a 40.0 

M2 

pH (CaCl2) 4.58±0.56 a 7.7 4.48±0.57 a 8.0  4.48±0.46 a 6.4 

Clay 

% 

26.50±4.00 a 9.5 29.00±2.60 a 5.6  33.75±8.75 a 16.3 

Sand 53.25±3.28 a 3.9 47.00±0.00 b 0.0  43.75±9.76 ab 14.0 

Limo 20.25±0.80 a 2.5 24.00±2.60 b 6.8  22.50±5.28 ab 14.7 

Ca 

cmolc/dm³ 

1.38±1.33 a 61.0 0.85±0.72 a 53.0  0.65±0.69 a 67.1 

Mg 0.60±0.58 a 60.9 0.48±0.69 a 91.6  0.28±0.35 a 80.6 

Al 0.13±0.20 a 100.7 0.15±0.21 a 86.1  0.08±0.08 a 66.7 

H + Al 5.10±3.37 a 41.5 4.90±3.21 a 41.1  4.40±2.65 a 37.9 

K 0.07±0.07 a 64.8 0.07±0.07 a 63.2  0.05±0.07 a 88.9 

CEC 7.13±1.64 a 14.5 6.30±1.97 a 19.6  5.35±1.70 a 19.9 

Organic Matter g/dm³ 26.00±3.18 a 7.7 25.00±3.67 a 9.2  25.00±3.67 a 9.2 

Base Saturation 
% 

30.58±33.31 a 68.5 24.55±31.99 a 81.9  20.50±29.63 a 90.8 

Al Saturation 9.18±18.01 a 123.4 14.05±21.64 a 96.8  10.43±11.33 a 68.3 

Na 

mg/dm³ 

1.50±0.92 a 38.5 2.25±0.80 a 22.2  1.50±1.59 a 66.7 

Zn 0.25±0.38 a 95.2 0.25±0.09 a 23.1  0.28±0.20 a 45.8 

B 0.18±0.15 a 54.7 0.20±0.18 a 57.7  0.15±0.09 a 38.5 

Cu 0.10±0.00 a 0.0 0.10±0.00 0.0 a  0.13±0.08 a 40.0 

Fe 27.00±6.23 a 14.5 22.50±4.21 a 11.8  20.00±6.23 a 19.6 

Mn 2.00±2.25 a 70.7 1.75±2.39 a 85.7  1.75±2.39 a 85.7 

K 25.50±26.42 a 65.1 25.50±25.64 a 63.2  20.50±29.21 a 89.5 

P (Melich I) 1.75±1.52 a 54.7 1.75±1.52 a 54.7  1.50±0.92 a 38.5 
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Table 5. Continued 

Biofertigation  
management 

Physical-chemical indicators 

Soil detph (cm) 

0-10 10-20  20-30 

Average±Sd CV  Average±Sd CV   Average±Sd CV  

M3 

pH (CaCl2) 4.33±0.20 a 2.9 4.38±0.33 a 4.7  4.35±0.21 a 3.0 

Clay 

% 

31.75±11.28 a 22.3 32.25±10.66 a 20.8  35.25±5.57 a 9.9 

Sand 46.75±12.07 a 16.2 43.75±9.76 a 14.0  40.00±7.35 a 11.5 

Limo 21.50±5.44 a 15.9 24.00±3.90 a 10.2  24.75±3.28 a 8.3 

Ca 

cmolc/dm³ 

0.65±0.40 a 38.7 0.58±0.56 a 60.9  0.43±0.08 a 11.8 

Mg 0.30±0.18 a 38.5 0.28±0.35 a 80.6  0.18±0.08 a 28.6 

Al 0.15±0.21 a 86.1 0.15±0.16 a 66.7  0.55±1.34 a 153.2

H + Al 4.73±3.11 a 41.4 4.85±2.27 a 29.4  4.35±2.79 a 40.4 

K 0.03±0.01 a 14.9 0.03±0.01 a 14.8  0.03±0.01 a 15.7 

CEC 5.68±3.25 a 36.0 5.70±2.31 a 25.5  4.95±2.90 a 36.8 

Organic Matter g/dm³ 22.50±5.28 a 14.7 24.25±7.51 a 19.5  23.25±4.57 a 12.4 

Base Saturation 
% 

18.50±10.26 a 34.9 15.58±14.02 a 56.6  13.68±6.03 a 27.7 

Al Saturation 14.08±17.35 a 77.5 16.80±17.97 a 67.2  30.08±53.50 a 111.8

Na 

mg/dm³ 

2.75±0.80 a 18.2 1.75±0.80 a 28.6  1.75±0.80 a 28.6 

Zn 0.68±0.88 a 82.4 0.53±0.40 a 47.6  0.38±0.49 a 82.6 

B 0.18±0.15 a 54.7 0.13±0.08 a 40.0  0.25±0.09 a 23.1 

Cu 0.10±0.00 a 0.0 0.18±0.15 a 54.7  0.10±0.00 a 0.0 

Fe 25.75±11.72 a 28.6 22.75±8.85 a 24.4  18.00±7.46 a 26.1 

Mn 2.25±3.01 a 84.1 1.50±0.92 a 38.5  1.00±0.00 a 0.0 

K 13.00±3.18 a 15.4 12.50±3.05 a 15.3  10.00±2.60 a 16.3 

P (Melich I) 1.75±1.52 a 54.7 1.25±0.80 a 40.0  1.75±1.52 a 54.7 

M4 

pH (CaCl2) 4.70±0.57 a 7.6 4.45±0.28 a 3.9  4.33±0.08 a 1.2 

Clay 

% 

28.50±4.00 a 8.8 32.00±3.90 a 7.7  36.50±4.59 a 7.9 

Sand 51.25±5.86 a 7.2 43.50±10.75 a 15.5  40.00±7.35 a 11.5 

Limo 20.25±2.00 a 6.2 24.50±7.06 a 18.1  23.50±2.76 a 7.4 

Ca 

cmolc/dm³ 

1.58±1.44 a 57.3 0.80±0.54 a 42.1  0.48±0.08 a 10.5 

Mg 0.70±0.57 a 50.8 0.33±0.20 a 38.7  0.18±0.08 a 28.6 

Al 0.05±0.16 a 200.0 0.10±0.13 a 81.6  0.13±0.08 a 40.0 

H + Al 4.60±2.45 a 33.5 5.43±1.57 a 18.1  5.25±0.94 a 11.3 

K 0.03±0.02 ab 38.8 0.03±0.00 a 0.0  0.02±0.00 b 10.1 

CEC 6.90±1.36 a 12.4 6.55±1.11 a 10.6  5.90±0.90 a 9.6 

Organic Matter g/dm³ 23.00±0.00 a 0.0 25.00±6.37 ab 16.0  19.00±3.18 b 10.5 

Base Saturation 
% 

34.00±27.61 a 51.0 17.90±11.74 a 41.2  11.53±2.66 a 14.5 

Al Saturation 5.88±18.70 a 200.0 9.30±16.59 a 112.1  15.35±6.76 a 27.7 

Na 

mg/dm³ 

1.75±1.52 a 54.7 2.75±0.80 a 18.2  1.75±1.52 a 54.7 

Zn 0.60±0.66 a 69.4 0.40±0.65 a 102.1  0.28±0.46 a 104.4

B 0.20±0.18 a 57.7 0.20±0.13 a 40.8  0.18±0.15 a 54.7 

Cu 0.10±0.00 a 0.0 0.13±0.08 a 40.0  0.38±0.88 a 146.7

Fe 30.50±11.36 a 23.4 30.25±10.18 a 21.1  21.75±4.57 a 13.2 

Mn 2.25±1.52 a 42.6 1.75±1.52 a 54.7  1.75±1.52 a 54.7 

K 12.50±7.96 a 40.0 10.00±0.00 a 0.0  9.50±1.59 a 10.5 

P (Melich I) 2.00±2.25 a 70.7 1.50±0.92 a 38.5  1.00±0.00 a 0.0 
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Table 5. Continued 

Biofertigation  
management 

Physical-chemical indicators 

Soil detph (cm) 

0-10 10-20  20-30 

Average±Sd CV Average±Sd CV  Average±Sd CV 

M5 

pH (CaCl2) 4.33±0.35 a 5.1 4.43±0.42 a 5.9  4.38±0.33 a 4.7 

Clay 

% 

30.00±16.12 a 33.8 27.75±11.13 a 25.2  29.75±11.28 a 23.8 

Sand 49.00±18.42 a 23.6 49.50±15.07 a 19.1  46.25±14.49 a 19.7 

Limo 21.00±2.91 a 8.7 22.75±4.75 a 13.1  24.00±3.90 a 10.2 

Ca 

cmolc/dm³ 

0.70±0.75 a 67.0 0.75±0.64 a 53.9  0.60±0.45 a 47.1 

Mg 0.30±0.32 a 66.7 0.33±0.30 a 58.2  0.25±0.16 a 40.0 

Al 0.23±0.35 a 98.5 0.23±0.35 a 98.5  0.15±0.21 a 86.1 

H + Al 5.58±3.11 a 35.1 4.43±2.15 a 30.5  4.33±2.04 a 29.6 

K 0.03±0.01 a 28.7 0.03±0.02 a 38.8  0.03±0.01 a 19.5 

CEC 6.58±2.65 a 25.3 5.53±1.89 a 21.5  5.18±1.96 a 23.8 

Organic Matter  g/dm³ 27.25±13.02 a 30.0 26.25±7.28 a 17.4  25.00±6.37 a 16.0 

Base Saturation 
% 

16.78±18.93 a 70.9 21.03±18.60 a 55.6  17.65±9.92 a 35.3 

Al Saturation 19.48±33.20 a 107.1 20.63±33.20 a 101.1  14.93±21.03 a 88.6 

Na 

mg/dm³ 

1.75±1.52 a 54.7 2.25±0.80 a 22.2  2.00±1.30 a 40.8 

Zn 0.50±0.13 a 16.3 0.33±0.51 a 98.5  0.48±0.57 a 75.7 

B 0.20±0.13 a 40.8 0.23±0.15 a 42.6  0.18±0.08 a 28.6 

Cu 0.13±0.08 a 40.0 0.10±0.00 a 0.0  0.40±0.95 a 150.0

Fe 26.25±12.69 a 30.4 25.75±8.15 a 19.9  21.50±6.43 a 18.8 

Mn 1.75±1.52 a 54.7 1.75±1.52 a 54.7  1.50±0.92 a 38.5 

K 11.50±5.44 a 29.7 12.50±7.96 a 40.0  12.50±4.00 a 20.1 

P (Melich I) 1.75±2.39 a 85.7 2.00±2.25 a 70.7  1.75±0.80 a 28.6 

M6 

pH (CaCl2) 4.58±0.46 a 6.3 4.40±0.23 a 3.2  4.40±0.13 a 1.9 

Clay 

% 

26.50±9.94 a 23.6 27.50±5.44 a 12.4  33.75±11.72 a 21.8 

Sand 50.25±17.64 a 22.1 51.50±9.23 a 11.3  42.75±17.30 a 25.4 

Limo 23.25±7.94 a 21.5 21.00±4.31 a 12.9  23.50±5.88 a 15.7 

Ca 

cmolc/dm³ 

0.90±0.62 a 43.5 0.58±0.35 a 38.6  0.53±0.40 a 47.6 

Mg 0.48±0.48 a 62.9 0.23±0.20 a 55.9  0.25±0.28 a 69.3 

Al 0.08±0.15 a 127.7 0.15±0.16 a 66.7  0.15±0.16 a 66.7 

H + Al 4.03±2.57 a 40.1 4.35±2.79 a 40.4  4.13±1.45 a 22.2 

K 0.14±0.34 a 152.5 0.03±0.01 a 18.6  0.03±0.01 a 17.6 

CEC 5.53±2.29 a 26.0 5.15±2.59 a 31.6  4.90±1.50 a 19.2 

Organic Matter g/dm³ 23.00±0.00 a 0.0 23.25±4.57 a 12.4  19.75±4.57 a 14.5 

Base Saturation 
% 

29.13±19.35 a 41.7 17.88±14.40 a 50.6  16.50±11.99 a 45.7 

Al Saturation 5.50±11.94 a 136.5 17.48±24.88 a 89.5  15.23±2.82 a 11.6 

Na 

mg/dm³ 

1.75±1.52 a 54.7 1.50±0.92 a 38.5  2.00±1.30 a 40.8 

Zn 0.43±1.03 a 152.9 0.53±0.69 a 82.8  0.43±0.61 a 90.9 

B 0.15±0.09 a 38.5 0.18±0.15 a 54.7  0.23±0.15 a 42.6 

Cu 0.10±0.00 a 0.0 0.10±0.00 a 0.0  0.10±0.00 a 0.0 

Fe 25.50±8.37 a 20.6 23.25±4.57 a 12.4  20.00±2.60 a 8.2 

Mn 2.00±1.30 a 40.8 1.25±0.80 a 40.0  1.25±0.80 a 40.0 

K 54.75±132.95 a 152.6 12.00±3.67 a 19.2  10.50±3.05 a 18.2 

P (Melich I) 2.25±2.00 a 55.9 1.75±0.80 a 28.6  1.75±1.52 a 54.7 
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Table 5. Continued 

Biofertigation  
management 

Physical-chemical indicators 

Soil detph (cm) 

0-10 10-20  20-30 

Average±Sd CV Average±Sd CV  Average±Sd CV 

M7 

pH (CaCl2) 4.55±0.62 a 8.5 4.43±0.35 a 5.0  4.43±0.51 a 7.2 

Clay 

% 

27.50±10.52 a 24.0 27.75±7.28 a 16.5  30.25±13.08 a 27.2 

Sand 52.25±9.04 a 10.9 49.50±13.28 a 16.9  48.50±15.07 a 19.5 

Limo 20.25±1.52 a 4.7 22.75±6.80 a 18.8  21.25±5.72 a 16.9 

Ca 

cmolc/dm³ 

0.93±0.88 a 60.1 0.88±0.83 a 59.3  0.68±0.77 a 71.9 

Mg 0.45±0.42 a 58.8 0.35±0.28 a 49.5  0.33±0.51 a 98.5 

Al 0.13±0.20 a 100.7 0.20±0.29 a 91.3  0.13±0.20 a 100.7

H + Al 4.40±2.71 a 38.7 5.20±2.09 a 25.2  5.40±1.65 a 19.2 

K 0.03±0.01 a 24.6 0.03±0.01 a 28.7  0.03±0.01 a 22.6 

CEC 5.78±1.43a 15.6 6.43±1.16 a 11.3  6.40±0.55 a 5.4 

Organic Matter g/dm³ 25.25±10.59 a 26.3 25.00±3.67 a 9.2  27.25±9.76 a 22.5 

Base Saturation 
% 

26.58±30.95 a 73.2 20.30±19.74 a 61.1  16.40±21.54 a 82.6 

Al Saturation 11.78±21.97 a 117.2 18.50±29.55 a 100.4  15.00±21.16 a 88.7 

Na 

mg/dm³ 

2.00±1.84 a 57.7 2.00±1.30 a 40.8  2.00±1.30 a 40.8 

Zn 0.40±0.41 a 64.5 0.43±0.54 a 80.1  0.43±0.35 a 52.2 

B 0.20±0.13 a 40.8 0.15±0.09 a 38.5  0.20±0.13 a 40.8 

Cu 0.10±0.00 a 0.0 0.13±0.08 a 40.0  0.10±0.00 a 0.0 

Fe 26.00±4.11 a 9.9 25.75±4.93 a 12.0  24.75±9.76 a 24.8 

Mn 1.75±1.52 a 54.7 2.00±1.30 a 40.8  1.75±1.52 a 54.7 

K 13.50±5.44 a 25.3 11.50±5.44 a 29.7  11.00±4.11 a 23.5 

P (Melich I) 2.25±1.52 a 42.6 2.00±1.30 a 40.8  1.75±0.80 a 28.6 

M8 

pH (CaCl2) 4.65±0.67 a 9.0 4.55±0.21 a 2.8  4.48±0.15 a 2.1 

Clay 

% 

23.25±3.76 a 10.2 26.75±8.26 ab 19.4  34.75±6.92 b 12.5 

Sand 57.50±3.05 a 3.3 51.25±16.61 ab 20.4  37.75±10.26 b 17.1 

Limo 19.25±0.80 a 2.6 22.00±8.52 ab 24.3  27.50±4.21 b 9.6 

Ca 

cmolc/dm³ 

1.33±1.53 a 72.5 0.98±0.79 a 51.2  0.58±0.35 a 38.6 

Mg 0.70±0.76 a 68.0 0.48±0.35 a 46.7  0.28±0.08 a 18.2 

Al 0.10±0.23 a 141.4 0.10±0.00 a 0.0  0.08±0.08 a 66.7 

H + Al 4.60±2.56 a 34.9 4.43±1.84 a 26.2  4.85±1.08 a 13.9 

K 0.04±0.02 a 37.6 0.03±0.01 a 23.3  0.04±0.02 a 34.0 

CEC 6.65±1.88 a 17.8 5.88±2.53 a 27.1  5.73±1.35 a 14.8 

Organic Matter g/dm³ 25.25±7.62 a 19.0 22.25±7.28 a 20.6  23.25±4.57 a 12.4 

Base Saturation 
% 

30.80±30.16 a 61.5 24.60±12.01 a 30.7  15.33±4.89 a 20.1 

Al Saturation 10.05±24.17 a 151.1 7.53±5.79 a 48.3  8.00±9.45 a 74.2 

Na 

mg/dm³ 

2.25±1.52 a 42.6 2.00±1.30 a 40.8  1.75±1.52 a 54.7 

Zn 0.55±1.03 a 117.4 0.58±0.91 a 99.8  0.43±0.75 a 111.0

B 0.25±0.09 a 23.1 0.10±0.00 b 0.0  0.25±0.09 a 23.1 

Cu 0.10±0.00 a 0.0 0.10±0.00 a 0.0  0.13±0.08 a 40.0 

Fe 30.75±4.57 a 9.3 24.75±14.20 a 36.0  19.00±11.98 a 39.6 

Mn 2.75±2.72 a 62.1 1.75±1.52 a 54.7  1.50±0.92 a 38.5 

K 15.50±9.50 a 38.5 12.50±4.77 a 24.0  14.00±7.80 a 35.0 

P (Melich I) 2.00±1.30 a 40.8 1.75±1.52 a 54.7  1.75±1.52 a 54.7 
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Table 5. Continued 

Biofertigation  
management  

Physical-chemical indicators 

Soil detph (cm) 

0-10 10-20  20-30 

Average±Sd CV Average±Sd CV  Average±Sd CV 

M9 

pH (CaCl2) 4.90±1.11 a 14.2 4.73±1.16 a 15.4  4.63±0.73 a 9.9 

Clay 

% 

27.50±9.23 a 21.1 30.50±9.14 a 18.8  34.75±4.57 a 8.3 

Sand 51.00±11.25 a 13.9 46.75±12.07 a 16.2  38.75±8.75 a 14.2 

Limo 21.50±3.05 a 8.9 22.75±5.09 a 14.1  26.50±5.28 a 12.5 

Ca 

cmolc/dm³ 

1.73±2.67 a 97.2 1.28±2.40 a 118.1  0.83±1.35 a 103.0

Mg 1.08±2.06 a 120.4 0.75±1.58 a 132.7  0.48±0.88 a 115.8

Al 0.10±0.23 a 141.4 0.13±0.20 a 100.7  0.10±0.13 a 81.6 

H + Al 3.80±2.22 a 36.7 3.20±1.50 a 29.4  3.60±1.85 a 32.2 

K 0.06±0.09 a 106.1 0.02±0.01 a 21.3  0.03±0.01 a 23.1 

CEC 6.63±2.71 a 25.7 5.23±4.10 a 49.3  4.90±2.81 a 36.0 

Organic Matter  g/dm³ 24.00±3.18 a 8.3 24.00±3.18 a 8.3  20.50±5.28 a 16.2 

Base Saturation 
% 

37.83±45.79 a 76.1 31.00±39.18 a 79.4  24.58±27.82 a 71.1 

Al Saturation 8.00±19.79 a 155.5 15.38±25.41 a 103.8  12.93±15.80 a 76.8 

Na 

mg/dm³ 

2.50±0.92 a 23.1 2.00±1.30 a 40.8  2.00±1.30 a 40.8 

Zn 0.58±0.60 a 65.7 0.48±0.42 a 55.4  0.48±0.57 a 75.7 

B 0.18±0.15 a 54.7 0.23±0.15 a 42.6  0.23±0.08 a 22.2 

Cu 0.10±0.00 a 0.0 0.13±0.08 a 40.0  0.10±0.00 a 0.0 

Fe 23.00±11.33 a 30.9 21.25±11.13 a 32.9  19.00±14.17 a 46.9 

Mn 2.00±1.30 a 40.8 2.00±2.25 a 70.7  1.75±2.39 a 85.7 

K 21.50±36.69 a 107.2 9.00±3.18 a 22.2  10.50±4.00 a 24.0 

P (Melich I) 2.00±1.30 a 40.8 2.00±1.84 a 57.7  2.25±1.52 a 42.6 

M10 

pH (CaCl2) 4.78±0.54 a 7.1 4.45±0.42 a 5.9  4.38±0.15 a 2.2 

Clay 

% 

23.75±6.01 a 15.9 28.50±4.77 ab 10.5  34.00±3.90 b 7.2 

Sand 54.25±3.98 a 4.6 49.25±7.16 a 9.1  36.00±0.00 b 0.0 

Limo 22.00±4.50 a 12.9 22.25±3.28 a 9.3  30.00±3.90 b 8.2 

Ca 

cmolc/dm³ 

1.50±0.79 a 33.1 0.80±0.75 a 58.6  0.48±0.24 a 31.6 

Mg 0.65±0.54 a 52.5 0.30±0.23 a 47.1  0.28±0.24 a 54.5 

Al 0.08±0.15 a 127.7 0.18±0.15 a 54.7  0.10±0.00 a 0.0 

H + Al 4.00±2.16 a 34.0 5.03±2.10 a 26.3  4.80±1.06 a 13.8 

K 0.04±0.01 a 21.5 0.04±0.01 a 20.1  0.06±0.07 a 70.9 

CEC 6.18±1.40 a 14.2 6.13±1.15 a 11.8  5.60±0.65 a 7.3 

Organic Matter  g/dm³ 27.00±0.00 a 0.0 23.25±4.57 a 12.4  21.50±7.41 a 21.6 

Base Saturation 
% 

36.63±25.99 a 44.6 19.68±20.09 a 64.2  14.75±10.17 a 43.3 

Al Saturation 4.40±8.81 a 125.9 16.90±21.13 a 78.6  11.65±4.53 a 24.5 

Na 

mg/dm³ 

2.00±1.30 a 40.8 2.75±0.80 a 18.2  1.50±0.92 a 38.5 

Zn 0.73±0.85 a 73.3 0.60±0.85 a 89.2  0.55±0.87 a 99.0 

B 0.18±0.15 a 54.7 0.18±0.15 a 54.7  0.23±0.08 a 22.2 

Cu 0.13±0.08 a 40.0 0.10±0.00 a 0.0  0.50±1.17 a 147.0

Fe 28.75±13.15 a 28.7 27.25±10.18 a 23.5  26.50±16.04 a 38.0 

Mn 2.00±1.30 a 40.8 1.50±0.92 a 38.5  7.75±21.48 a 174.2

K 15.50±5.44 a 22.0 14.50±4.77 a 20.7  23.50±26.55 a 71.0 

P (Melich I) 2.25±0.80 a 22.2 2.00±1.30 a 40.8  2.25±0.80 a 22.2 

Note. Sd: standard deviation, CV: coefficient of variation (%), CEC: cation exchange capacity. 
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Table 6. Counts of viable microbial cells in different soil depth after in the planting of Brachiaria brizantha cv 
Marandu and of the use of biofertigation management (M1 a M10) with cattle slaughterhouse 
wastewater/manure 

Biofertigation management Soil detph Actinomycete Total Bacterias Fungi 

 --------- cm ------- ----------------------------- Log (CFU g-1) -----------------------------

M1 

0-10 7.42±0.03 8.52±0.09 6.74±0.01 

10-20 6.91±0.03 8.36±0.07 5.42±0.01 

20-30 6.15±0.04 7.25±0.04 3.15±0.01 

M2 

0-10 7.39±0.02 8.25±0.02 6.11±0.03 

10-20 7.01±0.01 7.74±0.07 5.75±0.07 

20-30 6.38±0.02 7.08±0.01 3.53±0.01 

M3 

0-10 5.42±0.03 11.19±0.09 5.93±0.04 

10-20 5.23±0.06 10.89±0.05 5.74±0.02 

20-30 5.96±0.03 8.26±0.06 -a 

M4 

0-10 4.78±0.01 12.14±0.02 6.14±0.04 

10-20 4.37±0.03 11.37±0.03 5.94±0.03 

20-30 5.55±0.07 8.27±0.02 -a 

M5 

0-10 4.51±0.09 12.85±0.03 6.38±0.01 

10-20 3.55±0.06 12.05±0.03 6.39±0.02 

20-30 5.46±0.03 8.26±0.02 -a 

M6 

0-10 3.24±0.09 12.54±0.03 5.43±0.01  

10-20 2.31±0.06 11.36±0.03 5.09±0.02 

20-30 5.04±0.03 7.74±0.02 -a 

M7 

0-10 2.85±0.09 14.11±0.03 5.74±0.01 

10-20 1.26±0.06 13.13±0.03 5.49±0.02 

20-30 4.85±0.03 7.86±0.02 -a 

M8 

0-10 2.78±0.09 15.06±0.03 6.21±0.01 

10-20 1.61±0.06 13.85±0.03 5.87±0.02 

20-30 5.32±0.03 8.27±0.02 -a 

M9 

0-10 4.12±0.09 13.01±0.03 6.33±0.01 

10-20 3.79±0.06 12.40±0.03 5.83±0.02 

20-30 5.55±0.03 8.01±0.02 -a 

M10 

0-10 3.57±0.09 13.05±0.03 6.54±0.01 

10-20 3.21±0.06 12.66±0.03 6.17±0.02 

20-30 5.64±0.03 8.34±0.02 -a 

Note. a: values below 25 colonies. CFU: colony-forming unit. M1-M8: Biofertigation management (See the 
Table 1).  

 

3.2.5 Characterization of Microbial Diversity by DGGE Profile 

After the biofertigation managements, changes in the DGGE profile of the NFB and AMF communities were 
observed (Figures 4, 5, 7 and 8). We observed a decrease in the amount and an increase in the intensity of the 
bands which shows a reduction in species richness, but an increase in the in the pre-existing microbial 
community. These changes may be due to the difference in the sample collection period and the soil 
humidification. Due to the sensitivity the environmental and anthropogenic interferences, the NFB and AMF 
communities and the soil microbial activity are good indicators to soil quality (Barros et al., 2010). 

Management without addition of fertilizer or wastewater/manure (M1) had greatest similarity in the profile of 
NFB bands with the M2 and M3 managements (Figure 7). The M7 and M8 with wastewater from the receiving 
box had the same band profile. These results demonstrate the influence of the chemical composition of the 
wastewater/manure on the NFB community (Figure 6). In addition, the changes on the NFB were due to the 
addition of NPK sources and dolomitic limestone. Biotic and abiotic factors, including soil acidity, affect the 
NFB community and decrease the symbiotic association efficiency between NFB and plants (Rufini et al., 2011). 
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Second factor and perhaps most important is the time of germination and or growth. NFB may be free-living or 
symbiotic. Thus, they can grow and multiply on the soil without necessarily being associated with another living 
organism. However, the AFM depend on being associated with the plants roots for growth and reproduction 
(Moreira & Siqueira, 2006). Moreover, the sexual reproduction of AFM depends on spore germination (Madigan 
et al., 2010; Moreira & Siqueira, 2006). In this context, to verify the alterations on the AMF community after the 
management of depends on a longer time than the NFB. However, the seven months of soil management could 
have been adequate to investigate microbial changes in soil. Several authors have shown that the soil microbial 
community undergoes rapid changes in relation to environmental conditions (Faleiro & Andrade, 2011; Barros et 
al., 2010; Moreira & Siqueira, 2006). Furthermore, the AMF communities were most similar among samples 
from a similar geographical location (Figures 5 and 8). The AMF has also divergence in management types 
within a given location (Schneider et al., 2015).  

Therefore, the DGGE profile of NFB and AMF before and after biofertigation was a good parameter to diagnose 
the efficacy of wastewater/manure as an alternative biotechnological irrigation, which will provide a reduction in 
the water demand of the water bodies. 

4. Conclusions 
In this study, we had the following conclusions:  

(1) Biofertigation with wastewater form the green line of a cattle slaughterhouse contributes for development of 
forage crops in Cerrado soil.  

(2) The nutrients of wastewater from the green line do not have a significant infiltration in the soil. 

(3) Biofertigation with wastewater or manure from the green line has a positive influence on the increase in the 
number of viable microbial cells and the amount and intensity of NFB and AMF bands on the DGGE.  

(4) The increase of the microbial biomass in the soil causes an increase, directly proportional, in the biomass 
productivity of Brachiaria brizantha cv. Marandu.  

(5) The evaluation of the NFB and AMF communities by DGGE showed to be a good parameter to study the 
changes caused by biofertigation managements in the Cerrado soil. 

(6) The wastewater may be a viable alternative to reduces or eliminates the use of commercial fertilizers for 
Marandu grass production in the Cerrado soil.  
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