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Abstract 
Secretion of phenolic compounds is a major limitation for sugarcane in vitro shoot culture, causing a loss of 
regenerative capacity and subsequent cell death. In this study, micropropagation and phenolic secretion of four 
Saccharum genotypes were evaluated in presence of different antioxidants. Aseptic cultures of S. officinarum (PI 
184794 and PI 88652), S. sinense (PI 29109) and S. robustum (UNK R65P35) were propagated on medium 
containing antioxidants, citric acid (100 mg/L), L-cysteine (100 mg/L), polyvynylpirrolidone (300 mg/L) and 
L-glutathione (50 mg/L) in two consecutive subculture cycles. Interaction between genotypes and antioxidants 
was significant in both cycles. All genotypes showed good shoot formation, shoot vigor and color, except in PI 
88652 which had less shoot development in both the presence and absence of the antioxidants tested. PI 184794 
displayed the highest shoot proliferation in the presence of citric acid, and UNK R65P35 produced more shoots 
per explant in the 2nd subculture. For S. sinense (PI 29109), in both subcultures, most shoots were observed in the 
presence of polyvynylpirrolidone. Medium discoloration due to phenolic secretion was reduced in the presence 
of citric acid and polyvynylpirrolidone. The type of secreted phenolic compounds differed with genotype as the 
Principal Component Analysis of cultivation media separated PI 88652 from PI 29109 and UKN R65P35. 
Phenolic compounds varied in composition and were secreted at various levels as a function of genotype and 
antioxidant type. Loadings plots indicated the genotype and antioxidant separations were broadly driven by 
flavonoid compounds.  

Keywords: flavonoids, genotypic response, micropropagation, Saccharum 

1. Introduction 
The Saccharum genus belongs to the Andropogoneae tribe of the Poaceae (Gramineae) family (Daniels & Roach, 
1987). It is a perennial grass cultivated in tropical and subtropical regions of the world and the global crop 
production in 2014 was 1900 million metric tons (The Statistics Portal, 2017); in 2013, sugarcane ranked first in 
commodities (FAO, 2013).  

Sugarcane is asexually propagated by stem cuttings or by plants derived by micropropagation (Lal et al., 2015; 
Michael, 2007). Usually, the cane stems are infected by various pathogens without exhibiting any symptoms 
(Parmessur et al., 2002), and the propagation rate from field-grown stems is low. In contrast, micropropagation 
provides a rapid multiplication of healthy sugarcane shoots once aseptic cultures are established. Besides 
multiplication, in vitro cultures are also used in detection and elimination of sugarcane virus diseases (Snyman et 
al., 2012) and are a preferred form for conservation of genetic resources, either by preserving shoots in slow 
growth conditions or by cryopreservation.  
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During in vitro organogenesis or somatic embryogenesis, browning of sugarcane culture caused by phenolic 
secretion can be a major limitation causing a loss of regenerative capacity and subsequent cell death. According 
to Ndakidemi et al. (2014), the relationship between medium chemical compounds and phenolic exudation 
influences substantially the intensity of medium discoloration, rooting, explant browning and tissue deterioration. 
In a culture establishing phase, the phenolic secretion and its oxidation can affect the culture initiation and 
development (Kerns & Meyer, 1986; Kumari & Verma, 2001). Thus the prevention of culture browning is 
essential in micropropagation of Saccharum plants. Studies conducted by Qin et al. (1997) indicated that 
sugarcane has a high content of phenolics, and their oxidation is affected by genotypes, the sources of explants 
and exogenous growth regulators. Similar observations were recorded for Gossypium spp., cotton (Ozyigit et al., 
2007) and Strelitzia reginae, bird of paradise (North et al., 2012). Lux-Endrich et al. (2000) suggested that the 
composition and synthesis of phenolic compounds in plant tissue may be determined by genetic and 
environmental conditions.  

The possibility of controlling phenolic secretion from sugarcane explants by pretreatment with solutions of 
ascorbic or citric acid, polyvynylpirrolidone (PVP) and cysteine or culturing the explants on medium with these 
substances, or with activated charcoal has been suggested (Kumari & Verma, 2001; Lorenzo et al., 2001; Huang 
et al., 2003; Khan et al., 2007; Lal et al., 2015; Shimelis et al., 2015). However, there is little information on 
tissue culture responses of various sugarcane species to the type of antioxidants used during culturing and the 
type of phenolic compounds secreted. Adding from 0.5 to 1 g/L PVP to medium of callus derived sugarcane 
culture controlled tissue browning but was variety specific (Michael, 2007). Callus derived culture might exhibit 
somaclonal variation and compromise genetic integrity of propagated material (Nehra et al., 1992; Skrivin et al., 
1993; Sahijram et al., 2003; Bairu et al., 2006, 2008, 2011).  

The National Plant Germplasm System of the United States Department of Agriculture (USDA) preserves over 
400 sugarcane accessions in a clonal form as field plantings. The security backup of the field collection is done 
by cryopreservation of 0.6-1 mm shoot tips derived from aseptic shoot culture. The shoot cultures are established 
from apical fragments of field grown canes and it takes usually from 2 to 4 months (genotype dependent; 30-day 
subculture intervals), after contamination free shoots are obtained, to produce a sufficient number of shoots for 
cryopreservation. Rooting of the shoot culture is not necessary because the shoots will not be planted before 
cryopreservation; however, multiplication of a large number of shoots in a short time with a low benzyl 
aminopurine concentration is desired. Secretion of phenolic compounds and high genotypic variation in the 
cultivation of tissue culture affects the growth and multiplication of the shoots, and impedes the preservation of 
the Saccharum genetic resources. Limiting the phenolic occurrence in culture medium might improve shoot 
multiplication, and limit the number of subcultures needed to produce a large number of shoots, and also it might 
increase the shoot vigor that supports successful preservation of sugarcane.  
The objective of this study was to evaluate in vitro sugarcane shoot performance in the presence of phenolic 
compounds secreted into medium with selected antioxidants and to characterize the phenolic intensity and 
composition in the culture medium of three sugarcane species (S. officinarum, S. robustum and S. sinense).  
2. Material and Methods 
2.1 Plant material and Shoot Cultures 

Apical cane segments of four Saccharum genotypes were obtained from the USDA-ARS, National Germplasm 
Repository, Miami, FL and established aseptically in vitro at the USDA-ARS PAGRP Unit, Fort Collins, CO (S. 
officinarum PI 184794 and PI 88652, S. sinense PI 29109 and S. robustum UNK R65P35). After a 10 min 
sterilization in 70% isopropyl alcohol (1000033127, Cumberland Swan®) followed by 20% commercial bleach 
(6.0% NaOCl; 20 min), and three rinses in sterile water, the segments were cultured in GA-7 magenta™ vessels 
[WxLxH (77 ×77 ×97 mm); V8505, Sigma-Aldrich®] with 60 mL of Murashige & Skoog (1962) propagation 
medium (MS-519, Sigma-Aldrich®) with 20 g/L sucrose, 0.1 mg/L kinetin, 0.2 mg/L use µM for PGR n6-benzyl 
aminopurine and 8.0 g/L of agar (Sigma-Aldrich® A7002) with the pH adjusted to 5.8, autoclaved for 27 min at 
121 °C/22 psi. The cultures were grown in a growth chamber at 25±2 °C with a 16-h photoperiod with 50 
mol/m2/s light intensity provided by cool daylight fluorescent lamps (Osram Sylvania, Wilmington, MA). 
Regenerated shoots were excised and subcultured after 30 days.  

2.2 Micropropagation and Antioxidants  

Excised shoots (from 15 to 20 mm long), 30±10 days old, 9 shoots per box, were transferred to fresh MS 
propagation medium (as described before) with the following antioxidants individually or in combination: 100 
mg/L of citric acid (C277, PhytoTechnology Laboratories), 100 mg/L L-cysteine (168149, Sigma-Aldrich®), 300 
mg/L PVP 40,000 (PX 1300, EM Science) and 50 mg/L L-glutathione (G4251, Sigma-Aldrich®). The selection 
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of the antioxidant type and concentration was based on in-house observations made during micropropagation of 
other plant species (data not published). After 30 days, cultures were transferred to fresh MS propagation 
medium with the same antioxidant treatment for another 30 days under same growing conditions, 9 shoots per 
box and 6 boxes per treatment.  

2.3 Assessment of Micropropagation and Phenolic Secretion 

Genotypic and antioxidant effects were evaluated by observing the number of shoots per explant, their vigor and 
color, and by assessing the intensity of medium color caused by phenolic secretion during two micropropagation 
cycles. The two cycles were selected due to previous observations in which the most intense medium 
discoloration appeared during this time. The shoot vigor was ranked: 1-poor vigor; 2-average good vigor; 3-fully 
healthy with excellent shoot vigor (adapted from Debnath, 2005). The shoot color was ranked as 1-brown; 
2-yellow; 3-light green; 4-dark green and the phenolic secretion intensity (color of medium) was ranked as 1-no 
phenolic secretion; 2-some; 3-moderate secretion; 4-heavy secretion. 

Analysis of secreted phenolic compounds was carried out in propagation media containing antioxidants (1) 100 
mg/L citric acid; (2) 100 mg/L L-cysteine; (3) 300 mg/L PVP; or (4) 50 mg/L L-glutathione) separately for the 
three genotypes (PI 88652, PI 29109 and UNK R65P35) at the end of the 1st subculture cycle (30 days after 
inoculation). The assay of phenolic compounds was performed according to Heuberger et al. (2014), with 
modifications as noted below.  

2.4 Preparation of Extract 

For metabolite profiling, an approximate 200 mg of culture medium pooled from the culture boxes in each 
treatment (four media combined with three accessions) was collected by a micropipette and kept in Eppendorf® 
tubes. The samples were freeze dried and homogenized in a bullet blender. A sequential extraction from 7.5 mg 
of culture medium was performed, first extracting with 1.0 mL methanol and secondarily with 1.0 mL of 
MTBE/MeOH/Water (6/3/1 v/v/v). The supernatant from each step was collected and pooled. The solvent was 
evaporated under nitrogen, and the metabolites re-suspended in 100 µL methanol and stored at -80 °C until 
further analysis. 

2.5 UPLC-MS Analysis (CSH Phenyl-Hexyl Method)  

The amount of each phenolic compound in each extract was determined by an ultra-performance liquid 
chromatography mass spectrometry (UPLC-MS) analysis (CSH Phenyl-Hexyl method); 5 μL of the methanol 
extract was injected twice (n = 2 replicates) onto a Acquity UPLC system (Waters Corporation, Milford, MA) in 
discrete, randomized blocks, and separated using a Acquity UPLC CSH Phenyl-Hexyl column, 1.7 μM, 1.0 x 
100 mm (186005402, Waters©), using a gradient from solvent A (water, 0.1% formic acid) to solvent B 
(Acetonitrile, 0.1% formic acid). Calibration was conducted using sodium iodide with 1 ppm mass accuracy. The 
capillary voltage was held at 2200 V, source temp at 150 °C, and nitrogen de-solvation temperature at 350 °C 
with a flow rate of 800 L/hr. 

2.6 Experimental Design and Statistical Evaluation  

Experimental design to evaluate the effect of the antioxidants and genotypes on the growth and phenolic 
secretion was fully randomized in a 2 × 4 × 5 factorial scheme (2 subculture cycles × 4 genotypes × 5 treatments 
with or without antioxidants) with six replications per treatment and nine shoots per replication (n = 54). The 
means were compared by Scott-Knott test at 5% probability. Pearson’s correlation coefficient was calculated to 
denote the relationship between phenolic secretion and number of shoot/explant, their vigor and color, during the 
1st and 2nd subculture cycles. Pearson correlation coefficient for each dependent variable between actual and 
predicted values was maximized, which is an indicator of the predictive performance of the algorithm. The 
hypothesis of the correlation coefficient was tested with a two-sided t test. Statistical analyses were performed 
with the SAS-9.4 program (SAS Institute, 2013).  

To explore the metabolome of the culture medium with emphasis on phenolic compound determination, samples 
from the first experiment were separated for another experiment and a fully randomized 3 × 4 factorial scheme 
(3 genotypes × 4 antioxidants) with three replications per treatment was considered. Analysis of variance was 
carried out for each compound using the Analysis of Variance (AOV) function in R, and p-values were adjusted 
for false positives using the Bonferroni-Hochberg method in the p adjust function in R (Benjamini & Hochberg, 
1995). Principal component analysis (PCA) was carried out on mean-centered and Pareto variance-scaled data 
using the PCA Methods package in R (Stacklies et al., 2007). The results were plotted as a function of retention 
time and the -log of the P-value. For all experiments, the differences between the data were considered 
significant at 5%.  
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3. Results  
3.1 Effect of Genotypes and Antioxidants on Growth Variables (Shoot Number, Color and Vigor) 

The subculture cycle factor (S) was significant only for the number of shoots/explant and in combination with 
the genotype (S×G) for the shoot vigor (Table 1). The genotype and antioxidants were significant for all the 
factors and presented very high values. A significant interaction was observed between the evaluated genotypes 
(G) and the applied antioxidants (A).  

The evaluated cultures showed good shoot formation, vigor and color, except the PI 88652 (S. officinarum), 
which displayed low proliferative capacity and shoot vigor in the presence and the absence of the four 
antioxidants (Table 2).  

S. officinarum (PI 184794) showed a significantly higher number of proliferated shoots in the presence of 100 
mg/L citric acid (12.53 shoots/explant) and a significantly lower number with 300 mg/L PVP (8.28 
shoots/explant). S. officinarum (PI 88652), S. robustum (UNK R65P35) and S. sinense (PI 29109) showed no 
significant improvement in shoot number with antioxidants in the medium compared to the control. The 
antioxidants had no effect on the shoot vigor S. officinarum (PI 88652), S. sinense (PI 29109) and S. robustum 
(UNK R65P35). However, S. officinarum (PI 184794) had significantly higher vigor with three of the 
antioxidants compared to PVP and the control. 

 

Table 1. Analysis of variance for number of shoots/explant (NS), shoot color (SC) and shoot vigor (SV) for four 
Saccharum genotypes 

Source of variation df MS shoot number Fr shoot number MS shoot color Fr shoot color MS shoot vigor Fr shoot vigor

Subculture cycle-S 1 6.564 5.126* 0.204 1.541ns 0.017 0.111 ns 

Genotype-G 3 706.570 551.805** 3.548 26.782** 11.678 77.852** 

Antioxidant-A 4 5.036 3.933** 1.7645 13.318** 0.267 1.778** 

S×G 3 0.284 0.222ns 0.1819 1.373ns 0.428 2.852* 

S×A 4 0.108 0.085ns 0.0479 0.362ns 0.0167 0.111 ns 

G×A 12 12.503 9.765** 1.114 8.412** 0.622 4.148** 

S×G×A 12 0.140 0.109ns 0.081 0.613ns 0.067 0.444 ns 

Error 200 1.280  0.132  0.150  

VC (%)  12.91  10.54  15.70  

Note. ns: not significant; * significant at 5% by F test; ** significant at 1% by F test; df: degree freedom; ms: 
mean square; Fr: F ratio; VC: variation coefficient. 

 

Shoot color was significantly better for S. officinarum (PI 184794) and S. robustum (UNK R65P35) with some of 
the antioxidant treatments while the others were not significantly different. All of the genotypes tested were light 
green to dark green regardless of the antioxidant added to the culture medium. In general an intensive green 
color was observed on shoots of all genotypes grown on medium with L-cysteine.  
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Table 2. Effect of genotypes and antioxidants (GxA) on the number of shoots/explant, shoot vigor and color of 
four Saccharum genotypes (means of 1st and 2nd subculture cycles) 

Antioxidants 
S. officinarum 
PI 184794 

S. officinarum 
PI 88652 

S. sinense 
PI 29109 

S. robustum 
UNK R65P35  

Means 

Number of shoots/explant  

Control 11.23 aB 3.71 cA 10.13 bA 11.67 aA 9.18 

Citric acid 12.53 aA 2.42 dB 9.49 cB 10.77 bB 8.80 

L-cysteine 10.35 bB 4.46 cA 9.73 bB 11.28 aA 8.96 

PVP 8.32 bC 3.68 cA 10.45aA 11.29 aA 8.44 

L-glutathione 10.37 aB 4.12 cA 9.04 bB 10.26 aB 8.46 

Shoot vigor1  

Control 2.08 bB 1.92 bA 2.92 aA 2.83 aA 2.44 

Citric acid 2.58 bA 1.92 cA 2.58 bA 3.00 aA 2.52 

L-cysteine 2.75 aA 1.75 bA 2.75 aA 2.92 aA 2.54 

PVP 1.92 bB 1.83 bA 2.92 aA 2.75 aA 2.35 

L-glutathione 2.50 aA 2.00 bA 2.83 aA 2.58 aA 2.48 

Shoot color2  

Control 3.08 cB 4.00 aA 3.58 bA 3.08 cC 3.44 

Citric acid 3.00 bB 3.00 bB 3.25 bB 3.92 aA 3.29 

L-cysteine 3.58 bA 3.92 aA 3.58 bA 4.00 aA 3.77 

PVP 3.00 bB 3.75 aA 3.50 aA 3.58 aB 3.46 

L-glutathione 3.00 bB 3.83 aA 3.17 bB 3.25 bC 3.31 

Note. Means followed by the same lowercase letter (rows) and the same uppercase letter (columns) are not 
different from each other according to Scott-Knott test at 5% probability.  
1Shoot vigor rank: 1-poor vigor; 2-average good vigor; 3-fully healthy with excellent shoot vigor; 4-heavy 
secretion; 2Shoot color rank: 1-brown; 2-yellow; 3-light-green; 4-dark green.  

 

In all genotypes, the most shoots/explant was observed in the second subculture cycle (Table 3). The GxV 
interaction was indicated by the high shoot vigor maintained in S. sinense (PI 29109) and S. robustum (UNK 
R65P35) in the second subculture. 

 

Table 3. Effect of subculture cycle on the number of shoots/explant and the shoot vigor of four Saccharum 
genotypes 

Subculture Cycle 
S. officinarum 
PI 184794 

S. officinarum 
PI 88652 

S. sinense 
PI 29109 

S. robustum 
UNK R65P35  

Means 

Number of shoots/explant  

1st subculture 10.41 3.51  9.51  10.96 8.60B 

2nd subculture 10.71  3.84  10.03  11.15  8.93A 

Shoot vigor1 

1st subculture 2.30 bA 2.00 cA 2.77 aA 2.77 aA 2.46 

2nd subculture 2.43 bA 1.77 cB 2.83 aA 2.87 aA 2.48 

Note. Means followed by the same lowercase letter (rows) and the same uppercase letter (columns) are not 
different from each other according to Scott-Knott test at 5 % probability. 
1 Shoot vigor rank: 1-poor vigor; 2-average good vigor; 3-fully healthy with excellent shoot vigor. 

 

3.2 Phenolic Secretion and Correlation With Growth Variables 

All the factors and interactions were significant for phenolic secretion (Table 4). Phenolic secretion into the 
medium and its intensity (measured by the medium discoloration) was significant for the genotype × antioxidant 
× subculture interaction.  
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Table 4. Analysis of variance for phenolic color rank in medium with shoot cultures of four Saccharum species 

Source of variation df ms  Fr  

Subculture cycle-S 1 0.600 3.529ns 

Genotype-G 3 9.6778 56.928** 

Antioxidant-A 4 2.598 15.282** 

S×G 3 1.167 6.863** 

S×A 4 1.402 8.248** 

G×A 12 1.125 6.622** 

S×G×A 12 0.580 3.411** 

Error 200 0.170  

VC    

Note. ns: not significant; * significant at 5% by F test; ** significant at 1% by F test; df: degree freedom; ms: 
mean square ; Fr: F ratio; VC: variation coefficient.  

 

Variations in the medium color intensity due to phenolic secretion were observed in both cycles for all genotypes 
(Table 5). In the 1st subculture cycle the genotypes showed different phenolic intensity. S. officinarum (PI 184794) 
and S. robustum (UNK R65P35) presented lowest phenolic secretion in the presence of PVP (2.50; 2.50, 
respectively). The activated charcoal (AC) induced the lowest discoloration of medium for S. robustum (UNK 
R65P35). No difference in medium discoloration between the applied antioxidants was observed in S. sinense (PI 
29109) culture media. 

 

Table 5. Effect of antioxidants (A) and subculture cycles (S) on the phenolic secretion1 in cultures of four 
Saccharum spp. genotypes 

Antioxidants 
S. officinarum 

PI 184794 
 S. officinarum 

PI 88652 
S. sinense 
PI 29109 

S. robustum 
UNK R65P35 Means 

1st SC 2nd SC  1st SC 2nd SC 1st SC 2nd SC 1st SC 2nd SC 

Control 2.67a 3.00a  4.00a 4.00a 2.83b 3.67a 4.00a 4.00a 3.52A 

AC 2.83a 3.00a  4.00a 3.67a 3.17b 3.67a 3.00b 3.50a 3.35B 

L-CYS 3.33a 2.00b  4.00a 4.00a 4.00a 4.00a 4.00a 4.00a 3.67A 

PVP 2.50b 3.00a  3.00a 3.33a 3.17a 3.50a 2.50b 3.33a 3.04C 

L-GLUT 3.50a 2.50b  3.67a 3.83a 3.17a 3.00a 3.67a 4.00a 3.42B 

S Means 2.97a 2.70b  3.73a 3.77a 3.27b 3.57a 3.43b 3.77a 3.42B 

G Means 2.83c  3.75a 3.42b 3.60a  

Note. Means followed by the same lowercase letter (rows) and the same uppercase letter (columns) are not 
different from each other according to Scott-Knott test at 5 % probability.  
1Phenolic secretion rank: 1-no phenolic secretion; 2-some; 3-moderate secretion. AC: ascorbic acid; L-CYS: 
L-cysteine; PVP: polyvinylpyrrolidone; L-GLUT: L-glutathione. 

 

Except in PI 184794, all other genotypes in the 2nd subculture cycle did not show any effect of the antioxidants 
on the medium discoloration. PI 184794 showed the lowest phenolic rank in the presence of L-cysteine (2.00) 
and L-glutathione (2.50). Antioxidants did not present effect on phenolic rank in both subcultures for PI 88652. 

For S. sinense (PI 29109) and S. robustum (UNK R65P35), the average ranking for culture medium discoloration 
due to phenolic secretion seemed to be slightly higher in the 2nd subculture than in the 1st one. The expectation 
was to observe less phenolic secretion with each subsequent subculture, as it was observed for S. officinarum (PI 
184794). However, an increase in phenolic secretion in in vitro cultivation of other sugarcane genotypes was 
noticed, even in the 4th and 5th subculture (data not shown).  

In both subculture cycles, the intensity of medium color caused by phenolic secretion was negatively correlated 
with the number of shoots/explant (-0.2520; -0.2391, respectively, p < 0.01) (Table 6). Negative correlation 
indicated an inhibitory effect of phenolic compounds on in vitro shoot proliferation. Correlation between 
phenolic secretion and shoot vigor was not significant in either cycle (p > 0.05); however, in the 2nd subculture, a 
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in comparison to other flavonoid sources. Despite the high levels of dihydroxyflavone-rhamnoside and 
hydroxyl-methoxyflavone, S. robustum (UNK R65P35) showed good shoot proliferation. 

Another observation pertains to the variation in genotypic responses between the two subculture cycles in shoot 
vigor and phenolic secretion. In PI 184794, during the 1st cycle, phenolic secretion was higher than in the 2nd 
cycle in the presence of L-cysteine and L-glutathione, disagreeing with Lorenzo et al. (2001) that observed an 
increase of phenol compounds in sugarcane cultivar C-1051-73 when the culture medium was changed. This 
might be a genotype specific reaction of S. officinarum (PI 184794) considering that S. sinense (PI 29109) and S. 
robustum (UNK R65P35) had the lowest phenolic ranks on the 2nd subculture cycle. The make-up and synthesis 
of phenolics in plant tissue may be determined by genetics and environmental conditions (Lux-Endrich et al., 
2000). The results of this study agree with Rodrigues et al. (2011) and Kala et al. (2012), who observed that 
Saccharum sp. and Psidium sp. genotypes showed variation in secretion of phenolic compounds. Genotype 
dependence of the in vitro organogenesis responses was also reported by Gandonou et al. (2005) for nine 
sugarcane (Saccharum sp.) commercial cultivars. Another aspect to consider is the relation between auxin 
metabolism and phenolic secretion (Lorenzo et al., 2001). In studies on the effect of phenolic acids and their 
derivatives upon the growth of Avena sativa L. coleoptiles, Wolf et al. (1976) reported different effects of 
phenolic compounds on the plant growth and inhibition in the presence of indole acetic acid oxidation. 

Based on Pearson’s correlation coefficient, in both subculture cycles the number of shoots/explant was 
negatively correlated with phenolic secretion. Kerns and Myer Jr. (1986) emphasized the phenolic secretion and 
other exudate discharge observed during explant initiation into tissue culture systems lessened with growth and 
development. However, controversial opinions have been published on the relation between cell and tissue 
proliferation and low intensity of phenolics found in different species as Medicago sativa L. (Cvikrová et al., 
1996), Nicotiana tabacum L. (Chirek, 1990) and Pinus sp. (Herman, 1991). Lorenzo et al. (2001) showed that 
the increase of phenolic content during the first three days of sugarcane culture is due to the most intensive cell 
division period, but later the secretion decreased. 

The separation by principal components suggests that phenolic compounds, as flavonoids, are secreted at 
different levels as a function of the genotype and antioxidant. These aspects were observed by other authors for 
cotton (Ozyigit et al., 2007) and Hawk tea (Tan et al., 2016). These results suggest that additional antioxidant 
types, not included in this research, might be effective in controlling phenolic secretion in diverse Saccharum 
genotypes. 

5. Conclusions 
The research reinforced the strong interaction between Saccharum genotypes and phenolic secretion into in vitro 
shoot culture medium. The studies demonstrated that including citric acid (100 mg/L S. officinarum PI 184794) 
or PVP (300 mg/L S. robustum UNK R65P35 and S. sinense PI 29109) in culture medium reduced the medium 
discoloration caused by the phenolic secretion. The number of shoots was negatively correlated with the 
phenolic secretion; hence, antioxidants might promote shoot development. The high levels of flavonoids 
secretion by S. officinarum PI 88652 had an adverse effect on in vitro shoot development and the culture vigor. 
The ability of S. officinarum and S. robustum in vitro cultures to produce flavonoid compounds in the presence 
of antioxidants might be a desired characteristic in producing flavonoids on a larger scale throughout the year 
under controlled environmental conditions. 
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