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Abstract 
The aim of this wok was to evaluate the agronomic performance of three-waycross maize hybrids grown in 
different environments, to determine linear associations and to employ multivariate analysis for the measured 
traits. The experimental design used was randomized blocks in factorial scheme, arranged in three replicates. The 
three-way cross maize hybrids evaluated evidence phenotypic variability for the traits spike diameter, spike 
length, number of rows with grains, number of grains per row, cob mass and spike grains mass. The growing 
environment of Campos Borges-RS favors the increment of spike diameter, number of grains per row, spike 
mass, cob diameter, cob mass, mass of a thousand grains, spike grains mass and grain yield. Significant 
interactions between three-way cross maize hybrids and growing environments are verified for plant height, 
spike insertion height and prolificity. The traits spike diameter, mass of a thousand grains and mass of grains per 
spike present positive correlation with maize grain yield. The distinction of three-way cross hybrids is based on 
spike insertion height, spike diameter, plant height and mass of a thousand grains. The hybrids 2B688 HX® and 
2A55 HX® are genetically closer, according to the biometric approach of canonical variables.  

Keywords: Zea mays L., strategy of breeding, genotype × environment interaction 

1. Introduction 
Maize (Zea mays L.) has an outstanding role in the world agribusiness scenario because it provides many 
products for human and animal diet, also being used for ethanol production and other branches of industry 
(Demetrio, 2008). Maize is the second most cultivated crop in the world, with 177 million hectares sown in the 
2015/2016 growing season (USDA, 2016). An area of 16.2 million hectares was grown in Brazil during the 
2015/2016 agricultural year, with production of 84 million tons of grains, ranking the country as third larger 
producer of this cereal (USDA, 2016). The southern region produced 31% of the national total, playing 
important role in the agricultural scenario (CONAB, 2016). Due to the large number of maize genotypes 
available for farmers, the decision making about which is the most suitable for their economic and technological 
conditions becomes crucial. Hence, it is necessary to carry out trials of agronomic performance to evaluate the 
genotypes recommended for specific areas of cultivation, generating trustworthy and useful information for 
farmers.  

There are many genetic bases of maize genotypes available in the market. The single cross hybrids are originated 
from crossing between two homozygous lineages, enhanced by the specific combining ability and heterosis 
effects (Nardino et al., 2016; Demari et al., 2016). Single cross hybrids are potentially more productive than the 
other types of hybrids, however, they demand improved environment and cultural traits. Three-waycrosshybrids 
results from crossing between a homozygous lineage and a single cross hybrid, being phenotypically uniform, 
with productive potential intermediate to single and double cross hybrids, however, presenting better adaptability 
to environment variations due to its greater genetic base, compared to single cross hybrids (Singh et al., 2012). 
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The double cross hybrids come from the cross between two single cross hybrids, and due to their broad genetic 
constitution, they present greater stability and lower cost of production (Emygdio et al., 2007).  

One of the major obstacles to maize breeding programs is the instability of genotypes behavior due to 
environmental variations (Szareski et al., 2018). Thus, the comprehension of genotype × environment interaction 
(G×A) becomes indispensable for maize breeding and genotypes recommendation (Maia, 2006). Grain yield in 
maize is determined by the genotype’s genetic constitution and its plasticity in different environment conditions. 
Considering different environments, importance must be given for G×E interaction (Cruz et al., 2012; Szareski et 
al., 2017; Carvalho et al., 2017). Growing environment is constituted by meteorological and edaphic elements, 
and cultural traits, which may differentially influence genotypes behavior (Galon et al., 2010). Grain yield is a 
complex trait determined by association of severalcharacters and expression of many genes, being highly 
dependent of environment conditions (Ribeiro, 2012).  

In order to comprehend genotypes inconsistencies in different environments, the multivariate analyses are to be 
employed, which consider the performance of different traits, generating a single tendency (Costa, 2010). These 
analyses applied in the dynamics of a breeding program may aid to distinguish genotypes more efficiently 
(Oliboni, 2009). The employment of multivariate techniques allows to comprehend genetic differentiations 
among genotypes, and to use this information to boost the crop breeding (Hallauer et al., 2010; Uitzil et al., 
2016). Therefore, the aim of this wok was to evaluate the agronomic performance of three-way cross maize 
hybrids grown in different environments, to determine linear associations and to employ multivariate analysis for 
the measured traits.  
2. Material and Methods 
The experiment was carried out during the 2014/2015 agricultural year, in two growing environments, which are 
characterized in the Table 1. 

 

Table 1. Characterization of the growing environments regarding geographic coordinates, altitude, soil type and 
climate 

Growing environment Latitude Longitude Altitude (m) Soil type1 Climate2 

Campos Borges, RS 28°52′31″ S 53°00′55″ O 513 Dark red latosol Cfa subtropical 

Salto do Jacuí, RS 29°5′16″ S 53°12′27″ O 306 Dark red latosol Cfa subtropical 

Note. 1 Classification according to methodology proposed by Santos et al. (2006); 2 Climatic classification 
according to Maluf (2000).  

 

The experimental design used was randomized blocks in factorial scheme, being two growing environments 
(Campos Borges, RS and Salto do Jacuí, RS) × six three-way cross maize hybrids (DKB566VTPRO®, 
2B339Hx®, 2A55Hx®, 2B688Hx®, AG8011®, KSP3248®), arranged in three replicates. Direct sowing system 
was used, with base fertilization of 300 kg ha-1 of NPK in the formula 10-20-20. For topdressing, it was used 200 
kg ha-1of urea at V4 and V6 vegetative stages (Fancelli & Dourado Neto, 2000). The sowing density for all 
genotypes was 75,000 plants per hectare. The experimental units were composed by four rows of five meters 
length, spaced 0.5 meters between rows. The useful plot was composed by two central lines, discarding 0.5 
meters of each extremity to minimize border effects. The management of pests and weeds was carried 
preventively, in order to minimize biotic effects.  

The traits of agronomic interest were determined based on the methodology proposed by Carvalho et al. (2014), 
sampling three plants aleatory in each experimental unity. The evaluated traits were: Plant height (PH), results in 
centimeters (cm); Spike insertion height (SH), results in meters (m); Spike diameter (SD), results in millimeters 
(mm); Spike length (SL), results in centimeters (cm); Spike mass (SM), results in grams (g); number of rows 
with grains in the spike (NRG), results in units; number of grains per row (NGR), results in units; cob diameter 
(CD), results in millimeters (mm); cob mass (CM), results in grams (g); mass of grains per spike (MGS), results 
in grams (g); mass of a thousand grains (MTG), results expressed in grams (g); grain yield (GY), results in kg 
ha-1.  

The data was subjected to analysis of varianceby the F test at 5% of probability. The variance analysis’s 
assumptionswere performed by the Shapiro-Wilk (1965) test in order to reveal the data normality. The 
homogeneity of residual variances was verified by the Hartley test (Ramalho et al., 2012). The joint analysis of 
variation sources was performed to revealinteractions between growing environments and three-way-cross-maize 
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hybrids. In case of interaction, the effects were sliced. Traits that did not reveal significant interaction were 
sliced for principal effects for each factor trough Tukey test at 5% of probability. Posteriorly, it was performed 
the Pearson’s linear correlation analysis for both growing environments in order to reveal the tendency of 
associations between traits. The next step was to perform the analysis of relative contribution by Singh (1981), 
and canonical variates (Cruz et al., 2014). All statistical procedures were performed though the Genes software 
(Cruz, 2013).  
3. Results and Discussion 
The analysis of variance revealed significant interaction for growing environments × three-way cross maize 
hybrids at 5% of probability for plant height (PH), spike insertion height (SH) and prolificity (PRO) (Tables 4, 5 
and 6). Evaluating grain yield components of maize hybrids grown in four different environments from southern 
Brazil, Nardino et al. (2016) found no significant interaction. Paixão (2008) verified significant genotype × 
environment interaction for plant height and spike insertion height, evaluating genotypes of broad genetic basis.  

Regarding the variation source three-way cross maize hybrids, significant differences were evidenced for the 
traits spike diameter (DE), spike length (SL), number of rows with grains per spike (NRG), number of grains per 
row (NGR), cob mass (CM) and mass of grains per spike (MGS) (Table 2).  

 

Table 2. Averages of the traits spike diameter (SD), spike length (SL), number of rows with grains per spike 
(NRG), number of grains per row (NGR), spike mass(SM), cob diameter (CD), cob mass (CM), mass of a 
thousand grains (MTG), mass of grains per spike (MGS) and grain yield (GY) for the source of variation 
three-waycross maize hybrids 

Three-way cross maize hybrids SD (mm) SL (cm) NRG (unid.) NGR (unid.) SM (g) 

DKB 566 VTPRO® 44.9 ab 16.57 ab 14.77 c 36.22 a 145.82 a 

2B 339 Hx® 47.73 ab 16.68 ab 15.77 bc 34.94 a 184.88 a 

2A55 Hx® 42.29 b 15.34 bc 17.10 ab 30.66 ab 141.27 a 

2B688 Hx® 46.43 ab 13.79 c 18.22 a 28.61 b 136.13 a 

AG 8011® 44.80 ab 14.95 bc 16.68 abc 33.61 ab 129.46 a 

KSP 3248® 49.48 a 18.00 a 15.88 bc 36.16 a 203.70 a 
+CV (%) 7.31 9.29 7.72 10.69 30.94 
++R² 0.54 0.53 0.50 0.50 0.48 

Three-way cross maize hybrids CD (mm) CM (g) MTG (g) MGS (g) GY (kg ha-1) 

DKB 566 VTPRO® 25.5 a 21.01 b 213.16 a 114.75 ab 4179.00 a 

2B 339 Hx® 27.22 a 35.53 ab 257.15 a 130.37 ab 6497.00 a 

2A55 Hx® 26.93 a 28.49 ab 207.21 a 93.60 b 3552.00 a 

2B688 Hx® 28.18 a 26.38 ab 220.05 a 96.68 ab 3748.00 a 

AG 8011® 29.94 a 20.62 b 205.36 a 103.45 ab 5104.00 a 

KSP 3248® 27.98 a 42.44 a 284.65 a 159.68 a 5827.00 a 
+CV (%) 6.03 34.88 25.98 30.74 36.32 
++R² 0.48 0.53 0.44 0.51 0.51 

Note. * Means followed by the same lowercase letter in the column do not statistically differ by Tukey at 5% of 
probability; + Coefficient of variation; ++ Coefficient of determination. 

 

The variation source growing environments (Table 3) revealed significant differences for the traits spike 
diameter (SD), number of grains per row (NGR), spike mass (SM), cob diameter (CD), cob mass (CM), mass of 
a thousand grains (MTG), mass of grains per spike (MGS) and grain yield (GY). 

The hybrid KSP 3248 presented the highest magnitude for the traits SD, SL, SM, CM, MTG and MGS, differing 
from the hybrid 2A55Hx® for SD, from the hybrids 2A55Hx, 2B688Hx® and AG8011 for SL, from the hybrids 
DKB566VTPRO® and AG8011 for CM, and from the hybrid 2A55Hx® for MGS. The hybrid 2B688Hx® 
presented the highest magnitude for the trait NRG, statistically differing from the hybrids DKB566VTPRO®and 
KSP3248®.  

The growing environment of Campos Borges, RS presented positive influence for incrementing grain yield of 
the evaluated three-way cross maize hybrid.  
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Table 3. Averages of the traits spike diameter (SD), spike length (SL), number of rows with grains per spike 
(NRG), number of grains per row (NGR), spike mass (SM), cob diameter (CD), cob mass (CM), mass of a 
thousand grains (MTG), mass of grains per spike (MGS) and grain yield (GY) for the source of variation 
growing environment 

Growing environment SD (mm) SL (cm) NRG (unid.) NGR (unid.) SM (g) 

Campos Borges-RS 47.90 a 15.89 a 16.40 a 34.63 a 186.69 a 

Salto do Jacuí-RS 43.72 b 15.88 a 16.40 a 32.11 b 127.07 b 
+CV (%) 7.31 9.29 7.72 10.69 30.94 
++R² 0.54 0.53 0.50 0.50 0.48 

Growing environment CD (mm) CM (g) MTG (g) MGS (g) GY (kg ha-1) 

Campos Borges-RS 28.10 a 34.40 a 264.73 a 138.61 a 5871.10 a 

Salto do Jacuí-RS 26.09 b 23.76 b 197.80 b 94.24 b 3764.90 b 
+CV (%) 6.03 34.88 25.98 30.74 36.32 
++R² 0.48 0.53 0.44 0.51 0.51 

Note. *Means followed by the same lowercase letter in the column do not statistically differ by Tukey at 5% of 
probability; + Coefficient of variation; ++ Coefficient of determination.  

 

These differentiations may occur due to variation in altitude between environments, thermal amplitude, energy 
balance, light quality on the crop canopy, and soil and climatic conditions. Elevated temperatures during the 
night promote higher energetic consumption due to the increment of cellular respiration, resulting in lower 
balance of photoassimilates and consequently, reducing grain yield (Fancelli & Dourado Neto, 2000; Carvalho et 
al., 2016).  

Regarding the trait PH (Table 4), the hybrid 2B339Hx® was superior in the growing environment of Campos 
Borges-RS. In the environment of Salto do Jacuí-RS, the hybrids 2B339Hx®, 2B688Hx® and AG8011® were 
superior. This differential behavior is explained because plant height is a quantitative trait controlled by many 
genes, with elevated influence of the environment on phenotype and being highly dependent of management 
techniques, population density (Abuzar et al., 2011; Szareski et al., 2017), cycle duration, as early genotypes 
may express shorter plants (Cruz et al., 2010). Spike insertion height (Table 4) is closely related to losses in 
mechanic harvest, therefore, uniformity of this trait is essential for an efficient mechanic harvest. Li et al. (2007) 
affirm that high values of spike insertion height strongly contribute for lodging in maize field. In the 
environment of Campos Borges-RS, the hybrid 2B339Hx® was superior to the others, however, in the growing 
environment of Salto do Jacuí-RS, the superior genotypes were DKB566VTPRO®, 2A55Hx® and 2B688Hx®.  

 

Table 4. Averages for growing environments × three-way cross maize hybrids interaction for the traits plant 
height (PH), spike insertion height (SH) and prolificity (PRO) 

Three-way cross maize hybrids 

Growing environments 

PH (m) SH (m) PRO (Unid.) 

Campos  
Borges-RS 

Salto do 
Jacuí-RS

Campos  
Borges-RS

Salto do  
Jacuí-RS 

Campos  
Borges-RS 

Salto do 
Jacuí-RS

DKB 566 VTPRO® 2.28 abA 2.02 bB 1.2 bA 0.96 dB 0.98 aA 0.97 aA 

2B 339 HX® 2.34 aA 2.17 aB 1.36 aA 1.32 aA 0.98 aA 0.88 abA

2A55 HX® 1.95 bB 2.12 abA 0.97 eA 1.1 cdA 1.07 aA 0.78 bB 

2B688 HX® 2.03 bB 2.16 aA 1.04 deA 1.15 bcA 0.99 aA 0.91 abA

AG 8011® 2.20 bA 2.18 aA 1.19 bcA 1.22 abcA 0.95 aA 0.98 aA 

KSP 3248® 2.05 cA 2.04 bA 1.19 bcA 1.21 abcA 0.97 aA 0.95 aA 

+CV% 2.90 7.37 9.07 

++R² 0.83 0.76 0.59 

Note. * Means followed by the same lowercase letter in the column and uppercase letter in the row do not 
statistically differ by Tukey at 5% of probability; + Coefficient of variation; ++ Coefficient of determination.  
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There were no differences among genotypes for the trait Prolificity (PRO) (Table 4) in the growing environment 
of Campos Borges-RS. However, in the growing environment of Salto do Jacuí-RS, the hybrid 2A55Hx® 
reduced this trait in 27%. Prolific plants are generally more tolerant to adverse conditions due to their plasticity 
under stress situations, and may positively influence grain yield when population density is below the ideal 
(Sangoi et al., 2010). The optimization of number of grains per unity of area is possible through the increment of 
populational density and the number of spikes per plant, depending on the genotype’s genetic base (Lopes et al., 
2007; Szareski et al., 2016).  

The Pearson’s linear correlation performed for 13 traits revealed 78 associations, of which 43 were significant 
(Table 5). Correlation is a statistic estimator that measures the level of association between two variables. 
Thereby, correlated traits occur when a variation in one trait is followed by a simultaneous variation in the other 
(Ramalho et al., 2012). The knowledge about phenotypic, genetic and environment correlation is essential for 
simultaneous selection of more than one trait, or when the character of interest presents low heritability or is 
difficult to be measured (Falconer & Mackay, 1996).  

The trait PH is strongly and positively correlated with SH (r = 0.75) due to the tendency of spike height to 
variate in accordance to plant height. Thus, higher plants tend to have spikes farther from the soil surface.The 
trait SH presents moderate and positive correlation with SD (r = 0.45), SM (r = 0.39), CM (r = 0.35), MTG (r = 
0.41), MG (r = 0.44) and GY (r = 0.46), being a morphological trait that possible may be used in indirect 
selection of grain yield components. The trait SD presented strong and positive correlation with SM (r = 0.86), 
CM (r = 0.85), MTG (r = 0.86), MG (r = 0.90), CD (r = 0.73) and GY (r = 0.62), and moderate and positive 
correlations with SL (r = 0.37) and NGR (r = 0.43). Thus, plants with wider spikes tend to present increment in 
several grain yield components, such as mass of grains per spike and mass of a thousand grains, and 
consequently, greater grain yield. The trait SL evidenced strong and positive correlation with NGR (r = 0.78), 
moderate and positive with SM (r = 0.57), CM (r = 0.53), MTG (r = 0.46) and MG (r = 0.59). Plants with longer 
spikes tend to present higher number of grains per row, thus, spikes with more grains, resulting in an increment 
of cob and spike mass.  

 

Table 5. Estimates of Pearson’s linear correlation for the traits plant height (PH), spike insertion height (SH), 
prolificity (PRO), spike diameter (SD), spike length (SL), number of rows with grains per spike (NRG), number 
of grains per row (NGR), spike mass (SM), cob diameter (CD), cob mass (CM), mass of a thousand grains 
(MTG), mass of grains per spike (MGS) and grain yield (GY) 

SH PRO SD SL NRG NGR SM CD CM MTG MGS GY 

PH 0.75** -0.12* 0.10 0.01 -0.23 0.18 0.07 -0.14 -0.08 0.11 0.14 0.32 

SH - -0.03 0.45** 0.31 -0.24 0.31 0.39* 0.12 0.35* 0.41* 0.44** 0.46* 

PRO  - 0.27 0.06 -0.02 0.10 0.31 0.31 0.20 0.18 0.20 0.32 

SD - 0.37* 0.00 0.43** 0.86** 0.73** 0.85** 0.86** 0.90** 0.62**

SL - -0.49 0.78** 0.57** 0.10** 0.53** 0.46** 0.59* 0.27 

NRG - -0.49** -0.14 0.29 -0.07 -0.21 -0.21 -0.20 

NGR - 0.57** 0.18 0.43** 0.48** 0.67** 0.34* 

SM - 0.64** 0.89** 0.88** 0.92** 0.52**

CD - 0.71** 0.53** 0.57** 0.38* 

CM - 0.84** 0.86** 0.54**

MTG - 0.90** 0.60**

MGS - 0.61**

Note. * Significant values at 5% of probability; ** Significant values at 1% of probability.  

 

The trait NGR correlated moderately and positively with SM (r = 0.57), CM (r = 0.43) and MTG (r = 0.48), and 
strongly and positively with MG (r = 0.67), however it presented correlation of weak and positive magnitude 
with GY (r = 0.34). Spikes with more grains per row tend to be longer, presenting greater mass of grains, 
incrementing grain yield. Number of grains per row is the yield component that most contribute for grain yield in 
maize open pollinated varieties. However, prolificity, number of rows with grains per spike and mass of grains are 
determinant for grain yield (Balbinoti Junior et al., 2005).  
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The trait SM presented very strong and positive correlation with CM (r = 0.89), MTG (r = 0.88), MG (r = 0.92), 
and moderate and positive with CD (r = 0.64) and GY (r = 0.52). Spike mass is given by the sum of spike grains 
mass and cob mass, justifying the positive relation evidenced for these components. Performing similar study, 
Lopes et al. (2007) verified that mass of grains per spike is positively correlated with eight of the nine 
explanatory variables. Besides, 75% of the explanatory variables are positively correlated among themselves, 
evidencing the complexity of relations in maize spike traits. This fact implies the difficulty of selecting maize 
genotypes because it jeopardizes the identification of characteristics of more interest. Therefore, the ideal 
procedure was to slice correlations in direct and indirect effects in order to evaluate the degree of importance of 
each explanatory trait on the dependent variable (Daros et al., 2004; Ferrari et al., 2016).  

The interest on evaluating the relative contribution of traits for diversity lays on the possibility to discard 
characters which poorly contribute to discriminate the genotypes, reducing labor, time and money spent on 
experimentation (Rotili et al., 2012; Nardino et al., 2017). The dispensable traits in studies of genetic divergence 
are those with few variations among genotypes, or redundant for being correlated with other traits, such as plant 
height and spike height, which commonly are measured in maize breeding programs (Miranda et al. 2003). In 
this study, the evaluated traits (Table 5) SH (20.083%), SD (18.373%), PH (14.414%), MTG (10.887%) 
presented the higher percentages of contributions, confronting the previous affirmation. Analyzing maize 
genotypes, Silva and Peluzio (2014) concluded that traits with higher contribution for divergence were plant 
height (24.63%), plant green mass (10.28%), spike diameter (11.32%) and number of grains per row (9.11%), 
totalizing 55.34% of contribution. In the three-way cross maize hybrids evaluated, it is suggested to discard CD 
(1.225%), PRO (1.454%), CB (2.035%), NGR (3.412%) and MG (3.367%) due to their low percentage of 
contribution for genotypes’ discrimination.  

The canonical variates analysis is an alternative procedure to evaluate the degree of similarity among hybrids, 
considering both the residual covariance matrix and the covariance between phenotypic means of the evaluated 
traits. This technique is based on a large number of correlated original characteristics, achieving linear 
combinations in such way the correlation between them is null (Kendall, 1950). Hence, Table 6 and Figure 1 
represents the grouping of six three-waycross maize hybrids for the 13 measured traits. 

 

Table 6. Relative contribution for diversity of six three-way cross maize hybrids in two growing environments by 
Singh (1981), considering the following traits: plant height (PH), spike insertion height (SH), prolificity (PRO), 
spike diameter (SD), spike length (SL), number of rows with grains per spike (NRG), number of grains per row 
(NGR), spike mass (SM), cob diameter (CD), cob mass (CM), mass of a thousand grains (MTG), mass of grains 
per spike (MGS) and grain yield (GY) 

Trait S.J Value (%) 

PH 93.64 14.41 

SH 130.47 20.08 

PRO 9.44 1.45 

SD 119.36 18.37 

SL 62.34 9.56 

NRG 37.72 5.80 

NGR 22.17 3.41 

SM 38.31 5.89 

CD 7.96 1.22 

CM 13.22 2.03 

MTG 70.73 10.88 

MGS 21.87 3.36 

GY 22.37 3.44 
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