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Abstract 
Noni is a fruit crop well adapted to different soil and climatic conditions. Aiming to evaluate the physiological 
responses to salinity, noni seedlings were grown in two levels of NaCl (0 and 100 mM) in nutrient solution and 
the effects of salt stress on gas exchange, chlorophyll a fluorescence, photosynthetic pigments, relative water 
content and membrane integrity were assessed after 1, 10, 20, 30 and 40 days of salt stress. The experimental 
design was a completely randomized in 2 × 5 factorial arrangement with four replications. Salinity did not affect 
the intrinsic efficiency of water use, but reduced net assimilation of CO2, stomatal conductance, transpiration, 
carboxylation efficiency and contents of chlorophyll a, b, and total carotenoids. Salinity caused no major 
changes in chlorophyll fluorescence, however the stressed plants showed a decrease in photoprotection capacity 
by the cycle of xanthophylls. Salinity did not affect the water status of the leaves, but damages to the integrity of 
the membranes were observed due to duration of salt exposure. The data indicate that noni presents stomatal 
closure as a mechanism of salinity tolerance, reducing water loss by transpiration and maintaining the water 
status. 
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1. Introduction 
The increase in salinity of the soil solution beyond the tolerance capacity of the plants is an obstacle to 
agricultural production, particularily in irrigated soils of arid and semi-arid regions. In Brazil, the semi-arid 
region occupies an area of 969,589.4 km², located mainly in the Northeast part of the country (Brazil, 2007). In 
these areas, the scarce availability of water associated with use of brackish groundwater in irrigation, and 
climatic conditions, decreases the agricultural production, which is one of the main environmental obstacles to 
agricultural development in the region. 

Crops in arid and semi-arid regions are often irrigated with poor quality water at certain time of the year, since in 
most areas it is the only source of water. However, across most of the countries in the world, it has been 
successfully used with adoption of appropriate management practices of soil, water and the use of plants tolerant 
to salinity (Bezerra, Lacerda, Hernandez, Silva, & Gheyi, 2010). 

The salinity may decrease the absorption of water by plants, and provoke unbalanced nutrition, as well as modify 
the metabolic process and decrease the photosynthetic efficiency of crops (Munns & Tester, 2008; Iqbal, Umar, 
N. Khan, & M. Khan, 2014). Thus, plants need to use physiological and biochemical mechanisms to face the 
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osmotic and specific ion effects of salts. Therefore, it is necessary to understand the mechanisms of tolerance of 
plant to salinity for economical agricultural production. 

The study of physiological variables such as stomatal conductance and chlorophyll a fluorescence are important 
to explain the osmotic effects and water conditions imposed by salinity on photosynthetic efficiency of plants. In 
this context, some gas exchange and chlorophyll a fluorescence studies have been used as a nondestructive 
method for evaluating the plant’s tolerance to salinity (Silva, Ribeiro, Ferreira-Silva, Viégas, & Silveira, 2011; 
Azevedo Neto, Perreira, Costa, & Santos, 2011; Silva et al., 2014). These variables are of fast and non-invasive 
determination, which allow to monitor the development of the plant, providing qualitative and quantitative 
information on the physiological conditions of photosynthetic processes (Silva et al., 2011; Kalaji et al., 2014).  

The chlorophyll a fluorescence determines the state of energy distribution in the thylakoid membrane, the 
quantum efficiency of photosystem II (PSII) and the extent of photoinhibition (H. Wang, F. Wang, G. Wang, & 
Majourhat, 2007). Thus, the qualitative and quantitative information about the photosynthetic processes in 
chloroplasts show the functioning of the photosynthetic apparatus under different internal and external 
conditions (Roháček & Barták, 1999).  

Silva et al. (2011) reported that the salinity strongly reduces the gas exchanges and the photochemical activity in 
Jatropha curcura, caused by ionic stress. Therefore, evaluations of exchanges and chlorophyll a fluorescence 
can be utilized as tools to diagnose the integrity of photosynthetic apparatus under adverse environmental 
conditions (Gonçalves et al., 2010). 

Morinda citrifolia Linn, popularly known as noni, belongs to Rubiaceae family and is a medicinal plant used 
over 2000 years by the Polynesians (Chan-Blanco et al., 2006). The leaves and especially the fruits are 
consumed in different ways by many communities around the world due to the effects related to antioxidant, 
anti-inflammatory, analgesic, immunomodulatory, antibacterial, antitumor activity, sources of vitamins, among 
others (Chan-Blanco et al., 2006; Costa, Oliveira, Silva, Macini-Filho, & Lima, 2013).  

Noni cultivation can be a viable alternative for the arid and semiarid regions. The plant acclimatizes to diverse 
environmental conditions (Nelson & Elevitch, 2006), though some studies have shown that irrigation with saline 
water reduces its growth (Souto et al., 2015a; Souto, Cavalcante, Lima Neto, Mesquita, & Santos, 2016). 

Considering the medicinal importance of noni, its adaptive capacity, and the lack of information on its growth in 
saline environment, this study aimed to evaluate the gas exchange, the chlorophyll a fluorescene, and the 
pigment contents in noni plants under stress, for a better understanding of the tolerance mechanisms to salt stress 
of this species. 

2. Materials and Methods 
2.1 Growth and Treatment Conditions 

The experiment was carried out in a greenhouse, in a completely randomized design, by using the factorial 
scheme of five harvest times versus two NaCl levels of salinity in nutrient solution, with four replicates. The 
mean values of temperature, air relative humidity, and photosynthetic active radiation (at noon) were 25 °C, 81% 
and 1200 µmol m-2 s-1, respectively.  

Noni seedlings three months old and with four pairs of leaves were selected. Seedlings were transferred to 
containers with 12 L of Furlani (1998) nutrient solution, in a Floating hydroponic system. Noni seedlings 
remained in nutrient solution for four days for acclimation. After this period, the seedlings were submitted to the 
respective salt treatments (nutrient solution without NaCl – control or nutrient solution with 100 mM NaCl – salt 
stress). Sodium chloride was gradually added (25 mM day-1), to avoid osmotic shock. The volume of the 
solutions was completed daily with water and the renewal was performed weekly. The pH was maintained at 
6.0±0.2 by adding NaOH or HCl. The system was maintained under intermittent aeration of 15 minutes every 
hour, using an air compressor coupled to a timer.  

Plants from each treatment were harvested at 1, 10, 20, 30 and 40 days after the end of salt additions and shoot 
dry mass (SDM) was obtained after drying in an oven at 65 °C for 72 h. 

2.2 Gas Exchange 

Assimilation rate of CO2 (A), stomatal conductance (gs), transpiration (E), water use efficiency (WUE), 
carboxylation efficiency (A/Ci), and leaf temperature (Tf) were obtained with a LI-6400XT portable gas 
exchange measuring system (LI-COR Biosciences Inc., Lincoln, Nebraska, USA) containing a source of blue/red 
light. The measurements were performed every 10 days, from 8:00 a.m. to 10:00 a.m., under artificial saturating 
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