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Abstract 
While the literature is clear about excessive tillage decreasing soil carbon (C) content, there are few experimental 
studies that document the comparative effects of soil and crop management on C sequestration. Using 
micrometeorology we measured CO2 flux from a maize crop grown on both no-till and tilled soils in 
north-central Ohio. We used Bowen Ratio Energy Balance (BREB) systems to quantify the flux between the 
atmosphere and either the soil surface (at crop planting) or 0.2 m above the canopy once the crop was established 
and growing. The no-till plot sequestered 263 g CO2 m

-2 (90% confidence interval -432.1 to -99.9) while the 
tilled plot emitted 146 g CO2 m

-2 (90% confidence interval -53.3 to 332.2) during 104 days of the 2015 growing 
season; a net difference of 410 g CO2 m

-2. The difference is statistically significant at the 90% confidence level 
(based on a bootstrap analysis). The results indicate that no-tillage practices can sequester C, maintain soil 
productivity, and ensure landscape sustainability. 

Keywords: carbon dioxide, CO2 flux, no-till, tillage, carbon sequestration, climate change mitigation, Bowen 
ratio 

1. Introduction 
The principal sinks for removing CO2 from the atmosphere are usually assumed to be oceans and forests; 
however, oceans will absorb less CO2 as they warm (Morrison et al., 2015) and forest area is shrinking due to 
agriculture and other land use changes (FAO, 2016). It has been shown that soil could be a strong sink for 
atmospheric CO2 (Paustian et al., 2016), partially offsetting increasing global greenhouse gas (GHG) emissions 
(Tubiello et al., 2015; EPA, 2014; Scripps Institution of Oceanography, 2016). Jenny’s (1941) classic work 
provides the basis for the collective understanding of the processes by which soils emit and sequester C through 
soil-climate-vegetation interactions. These processes depend on many factors including soil type, climate, crop, 
and agricultural management practices.  

While agriculture is a major contributor to increases in GHG emissions, careful implementation of agricultural 
practices to enhance C sequestration presents an opportunity to manage soils to mitigate climate change. In 
particular, the practice of reduced tillage, especially no-till, has been found to reduce CO2 emissions from soils 
and potentially sequester C (Schlesinger, 1999; West & Post, 2002; O’Dell et al., 2014). Studies suggest that 
tillage can influence plant physiology including increased rooting depth from decreased moisture in surface 
layers of tilled soil (Dwyer et al., 1996) or decreased mechanical resistance (Cox et al., 1990). Other studies 
indicate that tillage effects on plant physiology may interact with climate as Yu et al. (2016) found that no-till 
likely increased yield during drought periods by conserving soil moisture. Since arable land represents more than 
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10% of the global land base (FAO, 2011), arable soils could provide a C sink to offset fossil fuel emissions 
(Paustian et al., 2016; Lal, 2004).  

Yet recent literature provides a conflicting story of the potential impact of different agricultural practices on soil 
C. While West and Post (2002) found significant increases in soil organic C (SOC) in the top 7-cm of soil in 
no-till practices compared to tillage across 67 long-term studies, Vanden Bygaart et al. (2003) and Angers et al. 
(1997) did not find any differences between no-till and conventional tillage when sampling to a deeper soil depth. 
Vanden Bygaart and Angers (2006) note the obstacles in comparing measured SOC values due to differences in 
equivalent soil sampling depth, bulk density, landscape, climate, soil type and experiment duration. Another 
confounding factor is the lack of a standardized description of tillage, and the variety of related practices used in 
many research reports. Measurement difficulties also complicate the issue—changes in soil C can take up to a 
decade to detect if trends are measured using destructive sampling (Smith, 2004). Recently, several publications 
have been critical of conservation agriculture and no-till because some studies concluded that no-till does not 
increase C sequestration or increase crop yields (Baudron et al., 2012) especially in low yield environs common 
in Sub-Saharan Africa (Cheesman et al., 2016).  

Some older research papers and textbooks provide examples of results obtained in the USA showing that tilling 
enhances CO2 emissions (e.g., Reicosky et al., 1995; Bear, 1953; West & Marland, 2002). Similarly, recent work 
found greater C sequestration with no-till during the crop growing season using BREB in Lesotho and greater 
no-till sequestration when comparing fallow treatments with cover crops in Zimbabwe (O’Dell et al., 2014; 
O’Dell et al., 2015). Baker and Griffis (2005) compared the net ecosystem exchange (NEE) of contrasting tillage 
regimes and cover crops in a maize (Zea mays L.)-soybean (Glycine max L.) rotation using eddy covariance (EC) 
but found no significant differences in the NEE of strip tillage with a cover crop compared to conventional 
tillage with no cover crop. Hollinger et al. (2005) reported that maize sequestered C, while soybean emitted C 
during two years of a six-year maize-soybean rotation EC study. Using EC, Taylor et al. (2013) found that oat 
(Avena sativa L.) crops grown on fields converted from perennial hay/pasture were net emitters for more than 
three years while a control hay/pasture field sequestered C.  

Many researchers rely on SOC changes by soil depth as the means to determine if C is being accumulated. Yet 
without accurate surveying measurements from the bedrock to the soil surface any total SOC estimates will be 
incomplete and the resulting determinations of changes in accumulated carbon will be questionable. An obvious 
example could be the subsidence post measuring soil depth from the bedrock at the Everglades Agricultural Area 
in Belle Glade, FL where oxidation of SOC in a histosol profile has resulted in dramatic soil loss as evidenced by 
the subsidence post markings (Shih et al., 1998).  

Micrometeorological methods including BREB systems and EC provide alternative methodologies for 
investigating changes in crop and soil carbon inventories. These methods have been used to quantify the 
differences in CO2 flux between agricultural practices (Dugas et al., 1993; Taylor et al., 2013; O’Dell et al., 
2015). The exchange (flux) of CO2 between the surface and the atmosphere can alternatively be measured using 
static or dynamic chambers. Chamber systems have spatial and temporal challenges somewhat similar to soil 
sampling (Norman et al., 1997; Davidson et al., 2002; Reicosky, 1997; Reicosky & Lindstrom, 1995), and are 
therefore less frequently used in contemporary studies. While the EC and BREB approaches are technically 
demanding, we believe them to be the optimal approach to evaluate how soil C sequestration can be manipulated 
to intensify management impacts. EC and BREB systems measure the flux of CO2 between the atmosphere and 
the terrestrial system and by summing this flux, the NEE can be determined for a type of ecosystem over a 
period of time (Chapin et al., 2006). For the purposes of this paper the term sequestration is used to reflect the 
capture of atmospheric CO2 by the ecosystem or treatment, e.g., through photosynthesis, while CO2 emissions 
refers to a release of CO2 by the ecosystem to the atmosphere, such as through respiration. While the ecosystem 
includes soil, organic matter, plants and other biota, the NEE does not distinguish between the components of the 
ecosystem. The objective of the present study was to determine tillage effects on CO2 emissions during the maize 
growing season using the BREB methodology.  
2 Materials and Methods 
2.1 Site Description 

This study site was in north-central Ohio, USA (40.606° N, -82.674° W, 426 m asl.). Micrometeorological and 
soil properties were measured from 6 May to 17 August 2015. The soil series on the 9 ha research site are 
classified as Bennington (fine, illitic, mesic Aeric Epiaqualfs), Amanda (fine-loamy, mixed, active, mesic Typic 
Hapludalfs), Centerburg (fine-loamy, mixed, active, mesic Aquic Hapludalfs), and Condit (fine, illitic, mesic 
Typic Epiaqualfs) in USDA Soil Taxonomy (USDA Soil Survey Staff, 1999). The surface soil texture is a silt 
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loam and the study site has a slope of 2-6%. The climate is classified as humid continental (Dfb) according to 
Köppen climate classification, with mean annual rainfall of 955 mm. The study site was managed as an annual 
row crop production system under no-till for seven years prior to the present study. The prior year’s crop was 
maize.  

The study site consisted of two adjacent square plots approximately 4.5 ha each; one plot managed as no-till and 
the other tilled. A BREB micrometeorological station was erected near the center of each plot. On the no-till plot, 
maize was planted directly without any tillage except for opening the seed slot (row cleaners were removed). The 
tilled plot was tandem disked (to manage crop residues), moldboard plowed to a depth of 15 cm, then tandem 
disked again followed by planting.  

Both plots were planted with maize (Zea mays L.) on 8-10 May 2015 at a population density of 84,000 plants 
ha-1 using 0.76-m rows using a John Deere 7200 6-row Conservation planter. Nitrogen (N) fertilizer was applied 
to both plots on 3 June 2015 as granular urea (46-0-0) at the rate of 224 kg N ha-1, phosphorus (P) was applied as 
triple super phosphate (0-45-0) at 112 kg P ha-1 and potassium (K) was applied as potash (0-0-60) at 112 kg K 
ha-1 prior to planting.  

2.2 Micrometeorological Measurements and Data Analysis 

Air temperature, vapor pressure and CO2 concentrations were measured before and after planting by the BREB 
systems, at 0.2- and 1.8-m height above the soil or canopy (note: the BREB units were raised incrementally as 
the maize crop grew, see below). The BREB units had shielded horizontal air intake tubes facing the direction of 
prevailing winds (west). Temperature was measured with negative temperature coefficient bead type thermistors, 
vapor pressure was measured with relative humidity probes (model HC2-S3-L, Rotronic, Switzerland supplied 
by Campbell Scientific, Inc, Logan, UT) and CO2 concentrations were measured with non-dispersive infrared 
gas analyzers (model LI-820, LI-COR Inc., Lincoln, NE). Five-second sensor data were averaged and recorded 
every five minutes using a data logger (Model CR3000, Campbell Scientific Inc.). To overcome sensor bias at 
the two heights, the intake tubes housing the sensors were attached at the end of a centrally mounted rotating arm 
that swapped the position of the atmospheric sensors every five minutes. To allow for equilibration after sensor 
rotation, the data logger waited two minutes before collecting 5-s readings in determining the 5-min average. As 
the crop grew, the BREB temperature, humidity and CO2 sensors were elevated so that the lowest sensor 
remained about 0.2 m above the crop canopy, with the height differential (1.6 m) between sensor intake points 
remaining constant.  

The BREB stations also measured net radiation, soil heat flux, soil temperature, and wind speed. Net radiation 
was measured with a net radiometer (NR Lite2, Kipp & Zonen, Delft, The Netherlands), soil heat flux with soil 
heat flux plates (model HFT3-L, Radiation Energy Balance System (REBS), Seattle, WA) and soil temperatures 
with four Type “T” thermocouples, two buried at 1.5 cm and two at 4.5 cm below the surface. Volumetric soil 
moisture content was measured 3 cm below the surface with a water content reflectometer (model CS616, 
Campbell Scientific, Inc, Logan, UT). Wind direction and speed were measured at the till BREB station with a 
wind monitor (Model 05305-5, R. M. Young, Inc. Traverse City, MI), and wind speed was measured at the no-till 
BREB station with a 3-cup anemometer (model 014A, Met One Instruments, Inc., Grants Pass, OR). Rainfall 
was measured at the no-till BREB station with a tipping bucket rain gauge (model TE525, Texas Electronics, 
Dallas, TX). Atmospheric pressure was recorded with one silicon altimeter/barometer pressure sensor (model 
MPX4115, Freescale Semiconductor, Inc., Tempe, AZ). All sensors except thermistors and thermocouples were 
new and factory-calibrated. Thermistors were created and calibrated in the laboratory; thermocouples were 
created and calibrated in the field.  

Five-second micrometeorological measurements were averaged to calculate 30-min CO2 fluxes according to 
BREB system theory (Bowen, 1926; Kanemasu et al., 1979; Webb et al., 1980; Held et al., 1990; McGinn & 
King, 1990; Dugas, 1993; Perez et al., 1999, Rosenberg et al., 1983) using the following equations as reported by 
O’Dell et al. (2015). Values of the Bowen ratio () were derived as: 

 = [P  CP( L – U)]/[   (eL – eU)]                          (1) 

where, P is measured atmospheric pressure, Cp the specific heat capacity of air, L and U are the potential 
temperatures calculated from air temperatures measured at lower and upper positions, λ the latent heat of 
vaporization of water,  the ratio of the molecular weights of air and water, and eL and eU are the vapor pressures 
at lower and upper positions. 

Latent heat flux, LE (W m-2) was calculated as: 

LE = (Rn – G0)/(1 + )                                  (2) 
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where, Rn is the measured net radiation and G0 is the soil heat flux at the soil surface. The correction of soil heat 
flux for heat storage above the depth of the soil heat flux measurement, S, where, G0 = G0.06m + S was 
calculated as: 

S = C (T/t) z                                   (3) 

where, S is the change in heat storage above the soil heat flux plate, C the volumetric heat capacity of the soil, 
T the change in temperature (current minus previous) of the soil above the heat flux plate taken from average 
soil temperature measurements at 1.5 and 4.5 cm depths, t is the time step (s), z is the depth of the soil heat flux 
plate (6 cm). C was calculated (de Vries, 1963) as: 

C = Cm (1 – f) + Cw                                  (4) 

where, the volumetric heat capacity for dry soil is Cm (2.35 MJ m-3 K-1 (Ochsner et al., 2001)) the volumetric 
heat capacity of water is Cw (4.18 MJ m-3 K-1), and soil volumetric water content,  was based on measurements 
from soil moisture sensors in both the tilled and untilled plots. Soil porosity, f, was calculated as: 

f = 1 – (b/s)                                   (5) 

where, b is soil bulk density, measured at 1.31 and 1.5 Mg m-3 for the till and no-till plots respectively. Soil 
particle density, s, was assumed to be 2.65 Mg m-3.  

In practice, two additional terms enter into consideration in the surface energy budget: (a) the storage of heat in 
the canopy biomass and its water content and (b) the energy used in photosynthesis. Meyers and Hollinger (2004) 
report a combined influence on the surface energy budget comprising about 15% of the net radiation for a fully 
developed maize canopy in daytime. For the Ohio study reported here, canopy biomass was estimated from yield 
and the harvest index factor for rainfed maize (Djaman et al., 2013). Heat storage in the canopy at the final stage 
of plant growth at the end of the experiment was found to rarely exceed 1% of net radiation. The photosynthetic 
energy used was also estimated to be small, and hence both terms have been omitted from the simple surface 
energy budget on which the analysis to follow rests. Sensible heat flux, H (W m-2) was calculated as: 

H = Rn – G0 – LE                                   (6) 

Turbulent diffusivity for sensible heat, Kh (m
2 s-1) was calculated as: 

Kh = (H/bCp)  (z/ )                                (7) 

where, bCp is the volumetric heat capacity for air, z is the sensor separation distance (1.6 m). 

The CO2 flux, A, (kg m-2 s-1) was then calculated as:  

A = Kc (c/z)                                    (8) 

where, Kc is the turbulent diffusivity for CO2 (m
2 s-1), assumed to be equal to the turbulent diffusivity for sensible 

heat, and c is the average difference in CO2 density between measurement heights.  

The CO2 flux was corrected for temperature and vapor density differences in terms of latent and sensible heat 
flux using the following equation (Webb et al., 1980): 

Acorr = A + (c/a)  (0.649  10-6  LE + 3.358  10-6  H)                 (9) 

where, Acorr and A are in kg m-2 s-1, c is the average CO2 density at both measurement heights, a is the density 
of dry air. In practice, the correction is sufficiently small that its consequences are within the error bounds 
associated with the measurements made. 

As expressed above, the purpose of the study was to explore the role of tillage within the context of CO2 
emissions and/or sequestration. In view of the experimental complexity and the unavoidable requirement for 
continuing instrument maintenance, we limited the study to the crop growth period. Sensor data recording began 
on 6 May 2015 (before seedling emergence) and extended to 17 August 2015 (crop senescence); therefore the 
104-day experimental period encompassed the entire period of crop growth. The sign conventions used in this 
analysis follow standard micrometeorological practice wherein CO2 flux is positive when CO2 is emitted from 
the surface and negative when sequestered/absorbed. Data recorded while rain was falling or when sensor 
failures resulted in incomplete datasets were omitted.  

Flux calculations during the night and transition periods (sunrise and sunset, when temperature differences were 
close to zero) are problematic, resulting in many periods of large uncertainty which produced spikes in 
calculations of CO2 flux, as also reported elsewhere (e.g., Gilmanov et al., 2003; Massman & Lee, 2002; Aubinet, 
2008; Savage et al., 2009). We utilized an algorithm to remove data spikes in the half-hour CO2 flux data using a 
median filter similar to that used with eddy covariance data (Papale et al., 2006). The strength in this approach 
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lies with the median’s resistance to local outliers. While a median filter can distort the flux signal, it is possible 
to adjust the window width and threshold value as a means to tune the median filter and limit this distortion. This 
limitation is solved with the use of a median filter extension called the Hampel identifier (Davies & Gather, 1993; 
Hampel, 1985). This filter depends on both the window width and an additional tuning parameter: a threshold. If 
the threshold value is reduced to zero the Hampel identifier functions as a typical median filter and if the 
threshold approaches infinity the filter effectively becomes an identity filter (Pearson, 1999). The parameters of 
the Hampel identifier for the two datasets were tuned by trial and error to best exclude outliers. The half width 
window was chosen to be 5 data points meaning that the window was in total 2.5 hours (five 30-min data points). 
The threshold value was chosen as 5. Spikes remaining after the application of the median filter may be a 
reflection of atmospheric phenomenon or artifacts of the BREB method, especially during night and transition 
periods.  

Once the data spikes were identified they were removed and the data gaps were linearly interpolated. The 
maximum range of removed and/or missing values interpolated was limited to two hours or less (four 30-min 
data points). “Absent data” for periods longer than two hours were not interpolated. For consistent comparison, 
the total sum of CO2 flux was calculated for the period when flux data was available for both till and no-till 
instruments.  

A non-parametric bootstrap procedure (Efron, 1979) was used to determine the variance around the time 
evolving accumulation of CO2, as described in O’Dell et al. (2015) and was performed with Stata version 14.1 
(Stata Corporation, College Station, Texas, USA).  

3. Results and Discussion 
Figure 1 provides graphs showing continual 30-min CO2 flux for each month. During May there were positive 
CO2 fluxes (emissions) from both the till and no-till plots with greater emissions from the tilled treatment. The 
tilled plot was plowed on 6 May 2015 (Day of Year (DOY) 126) and planted 8-10 May 2015 (DOY 128-130) 
and Figure 1 shows positive CO2 fluxes after plowing in May and during the period of emergence. For five days 
following tillage on DOY 126 the average daytime CO2 flux (between 1000 and 1600 hrs) for till and no-till 
were similar in magnitude at 0.61 +/- 0.03 and 0.40 +/- 0.02 g CO2 m

-2 hr-1 respectively (plus or minus standard 
error of the mean). During the subsequent five-day period in May (DOY 132-137) 9.1 mm of rain fell. Whereas 
before the rainfall the soil temperatures were similar (19.4 +/- 0.22 and 19.3 +/- 0.22 oC for till and no-till 
respectively), during the nine-day period (DOY 138-146) following the rainfall soil temperatures averaged over 
2 oC greater in the till than the no-till (17.4 +/- 0.29 and 15.2 +/- 0.20 oC respectively) due to collective effects of 
residue cover, albedo and greater evaporative cooling at the soil surface. The average daytime CO2 flux over the 
tilled plot (0.73 +/- 0.02 g CO2 m

-2 hr-2) during this nine-day period following rain was three times greater than 
over the no-till (0.21 +/- 0.01 g CO2 m

-2 hr-2), consistent with expected rates of microbial decomposition (Swift 
et al., 1979). Greater emission of CO2 is expected following intensive tillage due to aerobic and anaerobic 
decomposition of exposed organic matter that was occluded in aggregates and unavailable to degradation prior to 
tillage (Elliott & Coleman, 1988; Beare et al., 1994; Six et al., 2000).  
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long-term soil health and environmental sustainability, no-till fields are impacted greatly by high rainfall because 
the soil surface cover prevents the soil from drying which slows soil warming, retards crop growth and 
development, and enhances denitrification conditions. Linn and Doran (1984) found maximum production of 
CO2 by soil microbes when the percentage of water-filled pores approached 60% and they found on average 
greater percentages of water-filled pores in no-till compared to tilled soils. Greater precipitation during the first 
part of June likely contributed to greater microbial respiration on the no-till plot during that month. 

The BREB stations continued measuring fluxes through August 17 (Figure 1). The mean 30-min CO2 flux graph 
illustrates large negative daytime fluxes as well as large positive night time fluxes, with the net accumulation 
being negative for both plots during August (Table 3). Table 1 shows that the crop and soil managed under no-till 
had on average less emission at night in August and greater sequestration during the day than soils that had been 
intensively tilled.  

Monthly evapotranspiration (ET) was estimated from the BREB latent heat fluxes, calculated as ET = LE/λ, and 
was compared with monthly precipitation rates in Table 4, expressed in units of mm per period. Comparison of 
monthly ET with rainfall can indicate water availability for crop growth (Dı́az-Zorita, et al., 2002; FAO, 1985). 
During May and June, precipitation exceeded ET; from May through July—the period with the most rain—the 
tilled ET was greater than no-till ET. During August—when ET was more than double the precipitation—the 
no-till and tilled ET were similar suggesting that most ET was from canopy transpiration and/or soil moisture 
conserved by the no-till residue that became available for the final period of crop growth during a dry period. 
Consistent with evapotranspiration, a comparison of sensible and latent heat flux showed greater latent heat flux 
for the till treatment and greater sensible heat flux for the no-till during May and June, while differences were 
not detected during July and August. A comparison of net radiation and soil heat flux did not show discernable 
differences between the two treatments. 

 

Table 4. Monthly evapotranspiration computed from latent heat flux for each treatment compared with monthly 
measured precipitation 

Treatment May June July August Sum of period 

------------------------------------------- mm -------------------------------------------

Monthly precipitation 82.6 300 93.0 22.1 497 

Till 71.3 89.4 109 58.9 329 

No-till 49.1 62.8 97.3 58.1 267 

 

Average CO2 flux by time of day for each month (Figure 2) summarizes the diurnal flux patterns and their 
change over time. These graphs show a more consistent and smooth behavior for the daytime hours with greater 
variability at night, especially for the tilled treatment. During July and August, crop growth dominates the 
daytime flux resulting in smaller differences between treatments. However following the tillage in May, the tilled 
plot showed greater soil respiration (emission) than the no-till, a trend that continued through July and August at 
night. Calculated 30-min fluxes of CO2 were totaled by month and for the period from May 6 through August 17 
for the till and no-till plots (Table 3). These calculations show that no-till sequestered 263 g CO2 m

-2 while the 
tilled plot emitted 146 g CO2 m

-2 during the 104 days of measurement, a difference of 410 g CO2 m
-2.  

A rolling bootstrap simulation (Figure 4) was used to estimate the CO2 accumulation variance for each treatment 
(at 90% confidence interval). Data for periods when either treatment did not have values for over two hours were 
removed leaving ca. 75% of the original data (we also removed the first 10 days to create the initial set for 
resampling data). The 90% confidence intervals of the bootstrap distribution are shown in grey (Figure 4). The 
bootstrap accumulation for this 104 day period was 146 g CO2 m

-2 (90% confidence interval -53.3 to 332) for the 
till plot and -263 g CO2 m

-2 for the no-till plot (90% confidence interval -432 to -99.9).  
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accumulated more biomass than the untilled—a conclusion that is compatible with farming expectations that 
tilling is economically beneficial over the short term. 

 

Table 5. Accumulation rates of CO2 by the canopy assuming that nighttime losses from the soil are representative 
of the daytime mean fluxes (g CO2 m

-2 hr-1) as shown in Table 1  

Till May June July August 

Daytime flux 0.651 0.128 -1.16 -2.17 

Nightime flux 0.69 0.084 1.04 2.21 

  Excess daytime vs night -0.039 0.044 -2.2 -4.38 

No-Till May June July August 

Daytime flux  0.292 0.161 -1.33 -2.4 

Nighttime flux 0.36 0.179 0.412 0.701 

  Excess daytime vs night -0.068 -0.018 -2.74 -3.10 

 

The present results indicate that no-till practices can reduce the loss of CO2 from the crop surface during the 
growing season, when compared with soil tilled after seven years of no-till. When combined with cover crops, it 
is possible that no-till practices could produce a substantial net annual sequestration of CO2. In the present study 
tillage resulted in increased CO2 loss from the soil that appears to have continued throughout the study period. 
Tillage exhumes buried C sources and provides a means for the soil organisms to mineralize previously occluded 
organic matter and accelerate decomposition of recently buried crop residue. This study shows that more CO2 
flux can be lost from the terrestrial system to the atmosphere during the first year of a transition from a no-till to 
a conventionally tilled management practice, confirming that tilling increased the decomposition and respiration 
of crop residues during the growing season resulting in a net C loss from soils.  

In addition to sequestering C, the retention of residues on the soil surface has many positive effects on soil by 
improving soil aggregation, reducing erosion, and the retention and transport of heat, water and air in the soil 
(Larson et al., 1978). Though there were periods of high rainfall during the growing season, during drought 
conditions no-till surface residue can reduce soil moisture loss (Anderson, 2015). While it appears that climate 
patterns are becoming more erratic and extreme—as evidenced in this study—no-till can be an important 
management tool to enhance the role of soil in mitigating increased atmospheric CO2 levels. While C can be 
sequestered in humid areas under intensive agriculture, sequestering C in areas with marginal soils and rainfall 
will likely require that winter cover crops be used to further produce biomass that will be needed if soil C levels 
are to be improved.  
4. Conclusions 
The present study found that the CO2 flux for a growing season over an experimental tilled plot was 410 g CO2 
m-2 greater than over an adjacent untilled plot. It is recognized that our maize yields were likely affected by 
excessive precipitation resulting in water-logged soil conditions, N loss, denitrification and retarded crop growth. 
Higher emissions under the tilled treatment were likely due to a release of organic matter built up during seven 
preceding years of no-till practice, as reported in other studies. Subsequent tillage could remove more stored 
organic matter but would result in lower emissions over time (less new previously occluded organic matter 
becoming available for mineralization). The ability of no-till to keep the soil cooler may reduce decomposition 
and preserve soil C providing a co-benefit in adapting to rising global temperatures. While our maize yields were 
much less than average yields for this area, our results show that no-till can be an important practice that not only 
minimizes C loss from soil but can also be an important tool for sequestering C in an environment becoming 
more and more CO2 enriched. 

Although the results of this experiment add observational data in support of no-till as a practice to sequester C, 
more data are needed to understand and quantify these differences under varying climate regimes. To understand 
the potential magnitude of emissions, factors that impact those emissions, and the overall potential for 
agriculture to become a recognized climate change mitigant warrants further study. While no-till could reduce 
CO2 emissions when considering agricultural practices to offset emissions from other sectors, it can only be one 
small part of an agricultural program that ensures annual net agricultural C sequestration in high yield environs. 
Comparative studies of a suite of practices such as the use of cover crops, reduced tillage, and reduced fallow 
periods are likely necessary to reveal the extent of net soil C sequestration across a greater range of arable soils.  
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