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Abstract 
The study was carried out to determine the effect of male planting date (MPD) and female plant population (FPP) 
on the grain yield (GY) performance of a three-way hybrid and to evaluate Hybrid-Maize simulation model for 
grain yield estimation in hybrid seed maize production. Fifteen treatment combinations of five MPD as a 
deviation from the female planting date and three FPP replicated three times were used. The Hybrid-Maize 
simulation model programme was used to forecast the possible GY outcomes for the fifteen treatments of the 
experiment using estimated parameters and weather data for the 2006/7 season. The field experiment produced 
significant (P < 0.005) main effects but non-significant interaction effects for GY, yield components and 
antheis-silking interval (ASI). Female seed yield was affected by time of male pollen shed relative to female 
silking: ASI, with highest yields associated with close synchrony (ASI= +/-3 days). ASI had a significant effect 
on the number of kernels per ear (KPE), with the greatest KPE (318) associated with an ASI of +/-3 days. FPP 
effects on yield are typical for maize, showing a curvilinear response from low to high density. The optimum 
population density for GY was 5.4 plants m-2. Simulation output from the Hybrid-Maize simulation model 
showed an overestimation of GY compare to the observed yield. Furthermore, the model was unable to predict 
yields for the low FPP of 2.7 plants m-2. We found that Hybrid-Maize simulation model has limited potential for 
simulating hybrid maize seed production, as it does not accommodate limitations that may occur during the 
growing season: difference in male and female planting dates, pollen density and dispersion. Hence, the fixed 
parameters for the Hybrid-Maize simulation model can only be used in maize commercial production. 

Keywords: maize, male planting date (MPD), female plant population (FPP), grain yield (GY), Hybrid-Maize 
simulation model 

1. Introduction 

Maize hybrid seed is a source of subsistence, an embodiment of technological change and vital input for 
commercial maize agricultural production (Tripp, 2001). A response to the expected rise in demand for maize is 
inevitable according to a report by Rosegrant et al. (1995). World demand in 2020 is predicated to rise to about 
138% of the 1995 demand. Given the limited opportunities for augmenting maize area in most countries, future 
output growth must come from intensifying production on current maize land. Shortage of maize hybrid seed in 
southern Africa is a major challenge considering efforts underway to increase maize production (Havazvidi & 
Tatterfied, 2006). Seed production and distribution is currently associated with reduced production base, poor 
seed quality, increased marketing outlets and increased marketing costs. Therefore there is the need to have 
increased yield per unit land area to sustain the market as well as to offset costs.  
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2. Materials and Methods 
2.1 Genetic Materials 

Parents of a CIMMYT three-way hybrid (CML395/CML444//CML443) were used in this research: single cross 
female parent (CML395/CML444) and an inbred male parent (CML443). The experiment was laid out according 
to a 5 × 3 two-way factorial arrangement in a Randomised Complete Block Design (RCBD). Treatments 
consisted of fifteen treatment combinations of first factor: five male planting dates (MPD) as a deviation from 
the female planting date (FPD) and second factor: three female plant populations [26,666 plants ha-1 (low), 
53,333 plants ha-1 (medium) and 80,000 plants ha-1 (high)]. The treatments were assigned randomly within 
blocks, with each treatment appearing once per block. The number of blocks was used as replications in which 
three replicates were used to produce 45 plots for the experiment.  

A female: male planting ratio of 3:1, which is commonly used in seed production, was used in this trial. Each 
plot occupied 66 m2 with border rows surrounding the block and border plots separating plots to minimize 
cross-pollination across the block and within the plots respectively. The experiment was isolated by distance and 
time to ensure that there was no cross pollination with adjacent fields. Detasselling of female single cross was 
done before they started shedding pollen: when the top 3-4 cm of the tassel were visible above the whorl and this 
continued on a daily basis until complete. Shoot begging of the female single cross ears was also carried out and 
shoot begs were only removed on plots where the male lines were shedding pollen to ensure that the pollen was 
coming from the specific male inbred line within a plot. The ears were covered back with the shoot bags as soon 
as the male line had reached complete anthesis stage per plot. Therefore, the source of pollen was only the 
specific male line within a given plot. Shoot begs were eventually removed after the silks had dried off and the 
ears were allowed to reach field maturity before harvesting commenced.  

2.2 Field Management 

Ploughing was carried out using a tractor-drawn heavy disc plough in September 2006 at CIMMYT-Harare 
Research Station. A pre-marked wire was used to mark planting stations at spacing of 0.75 m between rows and 
0.25 m within rows 4 m in length. Two seeds were sown by hand per planting hill and seedlings were thinned per 
planting hill four weeks after planting to achieve the three plant densities of 2.7 plants per m2 (26,666 plants per 
hectare), 5.3 plants per m2 (53,333 plants per hectare) and 8.0 plants per m2 (80,000 plants per hectare).  

A basal fertilizer application of 400 kg/ha of compound D fertilizer (8% N:14% P2O5:7% K2O) was broadcast 
and disc-incorporated by a tractor. Topdressing was split applied using ammonium nitrate (34.5% N): first 
application of 200 kg/ha was done at four weeks after crop emergence soon after thinning and the second, also of 
200 kg/ha was done six weeks after crop emergence. The trial was mainly rain-fed, however, irrigation water was 
applied when necessary, for example, under dry planting to facilitate germination and in the case of a long dry 
spell. Irrigation scheduling was determined by the stage of development of the plants and temperature. In general, 
an irrigation of seven mm/hr for six hours was applied just after planting to facilitate germination and thereafter 
irrigation interval ranged from 9 to 15 days depending on crop stage of development and temperature.  

2.3 Trait Measurements 

Measurements of variables: plant population density, planting dates of male line and female single cross, days to 
anthesis (DA), days to silking (DS), grain yield components and root lodging, were carried out in the net plot: 
three central female rows. The measurements were carried out at various stages of development and the data was 
used in the Hybrid-Maize simulation model as input data and also for general Analysis of Variance (ANOVA) for 
estimating potential yield and assessing the actual data.  

2.4 Hybrid-Maize Simulation Model 

Running the Hybrid-Maize simulation model in yield forecasting mode allowed real-time, in-season simulation of 
maize growth up to the date of simulation run, and also allowed forecasting of the possible outcome in final yield 
based on the up-to-date weather data of the current growing season, supplemented by the previously collected 
historical weather data for the University of Zimbabwe farm. Yield forecasts were made until the last day of the 
2006-7 seasons in the weather file. To use the yield-forecasting mode, a weather data file containing 17 years of 
reliable historical weather data [year, day, solar (MJ m-2), temperature-high (oC), temperature-low (oC), relative 
humidity (%), and rainfall (mm)] was used, in addition to weather data for 2006-7 seasons. Hybrid-Maize 
simulation model could not separate difference in male and female planting dates. Hence, female planting dates 
(FPD) were used to run the programme.  
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2.5 Statistical Analysis 

Analysis of variance (ANOVA) for grain yield components was performed using Agro-base GII Statistical 
Package (Agronomix Software Inc., 2007). A general linear model was used for the analyses of variance. 

3. Results 
An analysis of variance of the main effects of MPD and FPP, and the interaction of MPD and FPP for the 
following traits: DS, DA, ASI, EPP, plant density (PD), harvest density (HD), ear density (ED), kernels per ear 
(KPE), thousand kernel weight (TKW) and grain yield (GY) data is presented in (Table 1). There was no 
significant effect of MPD, FPP and the interaction between MPD and FPP on the number of days from sowing of 
the female plants to silking (DS). There was a significant difference (P < 0.05) for number of days from sowing 
to anthesis of the male plants for MPD. A delay in the MPD was accompanied by an increase in the number of 
days from sowing to anthesis of the male plants.  There was highly significant difference (P < 0.001) for ASI as 
a result of different male planting dates. ASI ranged from 7 to -15 days for the different MPD. Close synchrony 
between pollen shed of male inbred lines and silking of the female single cross (ASI = -3 days) was observed 
when male and female plants were sown on the same day. There was no close synchrony between pollen shed of 
male inbred lines and silking of the female single cross (ASI = > 3 days or < 3 days) for all the other male 
planting dates. FPP and the interaction of MPD and FPP had no observable effect on the ASI for parental 
components used, as their mean squares were not significant.  

 

Table 1A. Mean square values of main effects of yield and yield components of the female of a three-way hybrid 
in seed production set up 

Source of  

variation 
Df 

Mean Squares 

DS 

(days) 

DA 

(days) 

ASI 

(days) 

PD 

(m-2) 

HD 

(m-2) 

ED 

(m-2) 
EPP KPE 

TKW 

(g) 

GY 

(t ha-1) 

Block 2 32744* 1022ns 17.24ns 0.973ns 0.829ns 2.188n 0.017ns 4004.252ns 36630.305*** 18.161***

MPD 4 4.644ns 51.565* 781.60*** 0.088ns 0.278ns 0.284ns 0.005ns 129321.602ns 5731.57ns 47.695***

FPP 2 4.642ns 24.503ns 20.36ns 40.649*** 42.197*** 27.702*** 0.103* 9532.41ns 5125.302ns 18.667** 

MPD×FPP 8 5.755ns 11.54ns 14.10ns 0.146ns 0.327ns 0.391ns 0.021ns 6434.618ns 3405.040ns 3.309ns 

Error 28 7198 14.591 20.148 0.35 0.325 0.709 0.021 7257.753 2507.921 3.08 

 

Table 1B. Summary of means of main effects of yield and yield components of the female of three-way hybrid in 
seed production set up 

 Factors ASI 
(days) 

PD 
(m-2) 

HD 
(m-2) 

ED 
(m-2) 

EPP KPE 
TKW
(g) 

GY 
(t ha-1) 

Yield Mean 
(%) 

Rank

MPD -10 days 7 4.9 4.64 4.44 1.00 202 507 4.33 97 3 

-5 days 2 4.8 4.33 4.45 1.02 343 454 6.76 151 2 

0 days -3 4.8 4.72 4.87 1.05 313 451 6.81 152 1 

5 days -12 5.0 4.66 4.65 1.00 120 456 2.61 58 4 

10 days -15 4.8 4.79 4.53 0.99 81 444 1.83 40 5 

FPP Low 3 3.1 2.86 3.17 1.11 214 482 3.20 72 3 

Medium 4 5.0 4.81 4.71 0.98 241 458 5.30 119 2 

High 5 6.4 6.20 5.88 0.96 181 446 4.90 183 1 

 Grand Mean 4.2 4.85 4.654 4.604 1.010 211.8 462.2 4.466 100  

 LSD (0.05) 4 0.57 0.53 0.82 0.14 81 48 1.70   

 CV 10.5 12.1 11.8 18.4 14.5 39.6 10.8 39.3   

Note. MPD = male planting date (Factor A), FPP = female plant population (Factor B), ASI = anthesis silking 
interval (days), EPP = ears per plant, PD = plant density per square metre, HD = harvest density per square metre, 
ED = ear density per square metre, KPE = Kernel per ear, TKW = thousand kernel weight, GY = grain yield 
(t/ha), %Mean yield = % of overall mean yield. 

*, **, *** = Mean square values significant at 0.05, 0.01 and 0.001 significance levels. ns = Mean square values 
not significant.  
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The relationship between GY and ASI showed that GY was greatest (6.81 t ha-1) where there was close 
synchrony between pollen shed of male plants and silking of the female single cross (ASI = +/-3 days) (Figure 
not presented). GY was less when ASI was either less than three days or greater than three days. A significant 
curvilinear regression was obtained between GY and ASI (R2 = 0.94).  
The relationship between GY and female plant density (FPD) is presented in Figure 2 and a quadratic equation 
was fitted to the data. As plant density increased from a low FPP of 3.1 plants m-2 to a medium FPP of 5.0 plants 
m-2, there was a corresponding increase in GY from 3.20 t ha-1 to 5.30 t ha-1. Yield declined from the medium 
FPP to the high FPP of 6.4 plants m-2. Based on the curvilinear relationship the estimated maximum GY was 
obtained at a FPP of 5.4 plants m-2. 

 

 
Figure 2. Relationship between grain yield and female plant density 

 

The relationship between grain yield and female harvest density showed that lowest grain yields were noted for 
low HD (3 plants m-2) for all MPD with the exception of MPD +10 days where the highest HD (6 plants m-2) had 
the lowest yield of (0.9 t ha-1) (Figure not presented). Increased HD from low to medium HD resulted in a 
corresponding increase in GY. A general decline in GY was noted with further increase in HD from medium to 
high HD (6 plants m-2) with the exception of MPD of -5 and +5 days where there was a continuous increased 
grain yield of 8.07 and 3.70 t ha-1 respectively. Harvest density may also be related to the linear relationship 
between PD at emergence and ED at harvest (Figure not presented). This explains the general relationship of GY 
and HD. A positive correlation (R2 = 0.97) between PD at emergence and plant or ear density at harvest was 
noted. At low FPP, ED was greater than HD, while at high FPP, ED was less than HD. 

Yield components may help to understand variation in GY of seed maize across environments. Yield components 
of the female of the three-way hybrid in relation to PD, ASI, EPP, KPE and TKW varied as a function of MPD 
and FPP.  

The relationship between ED and GY showed a positive correlation (R2 = 0.97), which showed that an increase 
in ED resulted in a corresponding increase in GY (Figure not presented). Maximum GY (5.3 t ha-1) was obtained 
at ED of 4.71 ears m-2. Further increase in ED from 4.71 ears m-2 resulted in a decline in GY. 

A negative correlation (R2 = 0.53) between EPP and PD at emergence showed that an increase in PD at 
emergence resulted in a corresponding decline in EPP (Figure not presented). An increase in PD at emergence 
from 3.1 plants m-2 to 5.0 plants m-2 resulted in a decline in EPP from 1.11 to 0.98 ears m-2. Further increase in 
PD at emergence to 6.20 ears m-2 resulted in a continuous decline of EPP to 0.96 ears m-2.  

The quadratic equations fitted to the data on relationship between GY and FPD for the two FPP (high and 
medium) showed that there was a significant correlation (R2 = 0.97) between grain yield and female planting 
date for high (8.0 plants m-2) and medium (5.3 plants m-2) FPP, respectively (Figure 3). GY was greatest for high 
FPP as compared to medium FPP. Quadratic equation for low FPP is missing, as the simulation model could not 
deal with low population density (2.7 plants m-2).  
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Figure 3. Relationship between grain yield and female planting date 

 

3.2 Simulation Output for Hybrid-Maize Simulation Model 

Hybrid-Maize simulation model simulates the growth and yield of maize so as to enable the evaluation of grain 
yield using different combinations of planting date and plant density. The greatest yield of 12.04 t ha-1 was noted 
for high FPP (80 000 plants ha-1) (Table 2) and the data showed that the general trend was that the greatest yield 
was obtained for high FPP for the entire female planting dates. The model could not deal with low FPP (2.7 plants 

m-2) resulting in missing output that was noted for the simulation model output. The model could also not cope 
with a hybrid seed field situation of male and female planting dates, which are different. As a result FPD used in 
this trial were assumed to be MPD. Thus, FPD in the model was used to estimate GY. 

 

Table 2. Grain yield output for the Hybrid-Maize simulation model 

Female plant population  
(Plants ha-1) 

Female planting date 
Simulated yield (t ha-1) 

Grain yield (t ha-1) Rank 

80 000 13/10/06 11.96 2 

53 333  10.94 5 

26 666  * . 

80 000 18/10/06 12.04 1 

53 333  11.03 4 

26 666  * . 

80 000 23/10/06 11.31 3 

53 333  10.40 7 

26 666  * . 

80 000 28/10/06 10.82 6 

53 333  9.97 9 

26 666  * . 

80 000 2/11/06 10.16 8 

53 333  9.41 10 

26 666  * . 

Note. * Missing data from output. 

 

3.3 Comparison of Predicted Yield and Observed Yield 

Comparison of model predicted grain yield and observed grain yield (Figure 4) showed that there was an over 
estimation of predicted versus the observed yield. At low observed yield there was a high-predicted yield.  
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Figure 4. Comparison of predicted yield and observed yield of the maize three-way hybrid 
 

4. Discussion 
A short ASI is a key trait for obtaining high grain yield in maize seed production (Bolanos & Edmeades, 1993). 
It is the same case in hybrid maize production where female plants are totally dependant on male plants for the 
supply of pollen. In this experiment, a shift in the interval from close synchrony (+/-3 days) was associated with 
a decline in GY for the female of the three-way hybrid. Similar results were documented in reports by Bolanos 
and Edmeades (1993), and Edemeades et al. (2000). An increased ASI could reduce kernel number because of 
lack of pollen for late-appearing silks while early appearing silks may have reduced receptivity to the pollen. A 
shift in ASI from close synchrony reduced grain yield. Close synchrony between pollen shed of male and silking 
of female (ASI = +/-3 days) gave the greatest yield. There are two possible reasons for such a significant 
enhancement in grain yield: i) a much larger fraction of late-emerging silks are pollinated when pollen shed is 
delayed relative to silking hence there is prolongation of the effective flowering period; and ii) all the early 
emerging silks are pollinated as well because they remain receptive to pollen for several days after they appear 
(Bassetti & Westgate, 1993a, 1993b). This showed that timing of silking of the female population in relation to 
pollen shed of male population is a crucial management variable in hybrid seed production as it impact on potential 
grain yield as evidenced by the highly significant variability in grain yield for ASI. These results are similar to 
findings by Edemeades et al. (2000), and Bolanos and Edmeades (1993), showing significant increase in ASI when 
plants were exposed to drought during the time bracketing flowering and consequently causing reduction in GY.  

Delaying pollen shed to maximize pollination by late planting of male line (MPD = +5 and +10 days) did not 
increase GY but increased the potential risk of out-crossing from foreign pollen sources. This was contrary to 
literature: Fonseca et al (2004) using simulated data reported that delaying pollen shed from the original 1.2 to 3 
days resulted in nearly 68% of the silks being pollinated causing a 23% increase in potential kernel yield. If the 
interval were increased to 5 days, potential kernel yield would be increased by about 38%, indicating the potential 
of increasing GY by late planting of male line. Hence, the best approach to managing floral synchrony will depend 
on the time from planting to pollen shed and silking of the respective parents. 

Maize is sensitive to intra-specific competition as evidenced by the highly significant effect of FPP on GY. Stand 
density affects plant architecture, alters growth and developmental patterns and influences carbohydrates 
production and partition. Increased FPP from low (3.1 plants m-2) to medium (5.30 plants m-2) density resulted in 
increased yield. A further increase in FPP from medium to high (6.4 plants m-2) resulted in a decline in GY in 
agreement with reports by Edmeades and Daynard (1979a), Tetiokago and Gardner (1988), Echarte et al. (2000), 
and Sangoi et al. (2002). For each production system there is a population that maximizes the utilization of 
available resources, allowing the expression of maximum attainable GY on the environment. In this work, 
optimum density was noted from the regression equation to be 5.4 plants m-2. When the number of individual 
plants per unit area was increased beyond this optimum density, there was a series of consequences that were 
detrimental to ear ontogeny and resulted in barrenness hence the decline in GY (Sangoi et al., 2002).  

Decline in GY when plant density increased beyond the optimum density is usually associated with a decline in 
the harvest index and increased stem lodging caused by increase in inter-plant competition for solar radiation, 
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soil nutrients and soil water (Tollenaar et al., 2000). This also results in limited supplies of photosynthetic 
photon flux density, carbon and soil nutrients and consequently increases barrenness and decreases kernel 
number per plant, kernel size and kernel weight. Edmeades et al. (2000) also reported interplant and intraplant 
competition affecting ASI as the underlying cause of the significant reduction in GY. Intraplant competition may 
exist between ear and stem or root growth resulting in significant decline in GY. 

4.1 Relationship between Grain Yield, Harvest Density and Other Yield Components  

Relationship between GY and HD showed that as HD increased there was an increase in GY and GY showed a 
response to HD that produced maximum value at the optimum HD. At low HD, grain yield was not compensated 
by increased KPE, TKW or EPP while substantial low EPP occurred above the optimum HD (Tetiokago & 
Gardener, 1988). However, exceptions were observed in this experiment contrary to other reports in literature. A 
continuous increase in grain yield as HD increased from medium to high for MPD (-5 and +5) was noted. This 
could be accounted for by the fact that increased HD was used as an efficient management tool for maximizing 
grain yield by increasing the capture of solar radiation within the canopy for the two MPD. The linear 
relationship between the GY and HD was further explained by the linear relationship between plant density at 
emergence and plant or ear density at harvest. As plant density increased at emergence a corresponding increase in 
the number of plants or ears harvested at maturity was noted. This was contrary to a report by Sangoi et al. (2002), 
which showed that high rates of planting slowed the rates of axillary buds more than they do the shoot apex.  

Grain yield and its components: EPP, KPE and TKW showed a dependence on the ASI. According to a report by 
Edmeades et al. (2000), GY and its component: KPE, show a dependence on ASI of the general form GY = 
exp(a+b*ASI). In this experiment, for all measured yield components there was a general significant reduction in GY 
with increase in main effects of MPD and FPP.  

4.2 Relationship between Plant Density at Emergence and Ears per Plant 

An increase in PD at emergence resulted in a corresponding decline in EPP; the linear relationship indicated 
negative correlation (R2 = 0.53), being noted in agreement with some reports in literature (Edmeades & Daynard, 
1979). According Edmeades and Daynard (1979) as plant density is increased, the ratio of ear growth rate (i.e. 
rachis + developing grain) to total shoot growth declines drastically. This decline can be attributed largely to 
decline in radiation reaching the ear leaf at high densities relative to low and medium population densities. The 
ear leaf provides a large proportion of assimilates to the ear. An unfavourable environmental condition through 
intraplant competition reduces dry matter partitioning from the ear leaf to the ear resulting in cessation of ear 
development and ear abortion. This is illustrated in this work by the reduction in EPP with an increase in PD at 
emergence. High plant densities produced low plant growth rate (PGR), whereas low plant densities induced 
high PGR.  

4.3 Simulation Output for Hybrid-Maize Simulation Model 

Contrary to several reports (Jones & Kiniry, 1986; Yang et al., 2006) Hybrid-Maize simulation model had an 
overestimation of GY potential of the female of the three-way hybrid for high and medium FPP. Greatest GY 
was noted for high FPP (12.04 t ha-1). Delay in the female planting date resulted in a decline in yield for the two 
FPP as a result of reduced growing season for the late planted female population and also due to reduced grain 
filling period. An over estimate of the actual yield was also noted from the simulation output which might be due 
to the fact that the Hybrid-Maize simulation model did not take into account other limiting factors during the run 
of the season, which might have also reduced the potential yield. Its inability to separate male and female 
planting dates in seed production is another factor that might have contributed to an over estimation of the actual 
yield. The assumption from the model is that there is no limitation in pollen density and timing of pollen shed, 
which is contrary to variation brought about by the MPD and use of a male inbred line. The inability of the 
simulation model to estimate yield for low FPP (2.7 plants m-2) is another limitation the model has for simulating 
hybrid maize seed production. 

5. Conclusion 
Female seed yield was affected by time of male pollen shed relative to female silking (ASI), with highest yields 
associated with close synchrony (ASI= +/-3 days). Also, female seed yield was greatest at medium FPP of 5.4 
plants m –2. ASI had a significant effect on KPE, with the greatest KPE (318) associated with close synchrony 
(ASI= +/-3 days). Specific optimum plant density and male planting dates in relation to the female for hybrids 
should be determined to attain maximum GY in maize seed production.  

From this study we found that Hybrid-Maize simulation model has limited potential for simulating hybrid maize 
seed production, as it does not accommodate limitations that may occur during the growing season: difference in 
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male and female planting dates and pollen density and dispersion. Hence, the fixed parameters for the 
Hybrid-Maize simulation model can only be used in maize commercial production. 

Simulation of maize grain yield in hybrid maize seed production can only be done if the model has the ability to: 

a) Deal separately with male and female planting dates. 

b) Determine pollen flow from male plants to female plants. 

c) Deal with variation of population ratio for both male and female parents. 

We suggest that seed producing companies may use the Hybrid-Maize simulation model to determine the yield 
potential of three-way hybrids, taking other factors of production constant except low female population density. 
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