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Abstract 
The agriculture sector makes a significant contribution to the Indonesian economy and has become one of the 
sources of national income. Therefore, precise agricultural mapping is very important to national and regional 
administrations. Satellite remote sensing provides the most effective tool for identifying a wide expanse of 
agriculture croplands. However, cloud coverage in tropical regions limits the use of optical remote sensing. SAR 
is an active remote sensing technique, which offers completely cloud-free observation data. The multi-temporal 
ALOS-2/PALSAR-2 data were used in this study, complemented by optical multi-temporal remote sensing data, 
that is, Landsat 8 OLI for classifying complex agricultural croplands. The study area, located in the Klaten 
Regency, Central Java Province, with 112 km2 coverage, was selected because of its dynamic cropping pattern 
and complex agricultural land use types. In this study, the RGB composite of HH, HV and HV-HH, derived from 
ALOS-2/PALSAR-2 polarizations, was found to be effective at separating two types of paddy field cropping 
pattern: all-year paddy (paddy-I) and paddy upland fields (paddy-II). The multi-temporal Landsat 8 data were 
also found to be useful for observing the cropping pattern. Moreover, the classification accuracy, which was as 
high as 85.02% in terms of overall accuracy, with a kappa coefficient of 0.824, from multi-temporal 
ALOS-2/PALSAR-2 data, was obtained. These results show that multi-temporal ALOS-2/PALSAR-2 data are 
capable of discriminating between two different paddy field cropping types, as well as beneficial for 
discriminating between the cropping stage and cropping pattern information for several other land uses.  

Keywords: agricultural land use, multi-temporal SAR, ALOS-2/PALSAR-2, Central Java 

1. Introduction 
Indonesia, like many Southeast Asian countries, depends on agriculture as one of national income sources, as 
well as for economic growth and fulfilling the country’s consumption needs. According to Statistics Indonesia’s 
2014 report, the agricultural sector (including forestry and fishery) contributed 13.38% of Indonesia’s gross 
domestic product. Moreover, a substantial 32% of Indonesians in rural areas work in the agricultural sector. The 
agriculture croplands are mainly located on Java Island, where smallholding farmers cultivate agricultural 
cropland near volcanos due to the fertile soil available.  

The small-scale cultivated fields on Java typically follow the terrain contour. In general, horticultural crops are 
planted in upland areas, which range from flat to hilly, while paddy fields are mostly found in flat areas at lower 
altitudes. Agricultural parcels in Indonesia are small, around 0.3 ha per household (Agus & Manikmas, 2003), 
with many farmers often being sharecroppers who do not own their fields. Farmers have limited access to 
technology and are highly dependent on the seasonal weather for maintaining their crops. The intercropping 
method is usually applied to increase farmers’ incomes. As such, it is uncommon to find distinctive cropping 
patterns and types on adjacent agricultural croplands. These conditions increase the complexity of monitoring 
complex agricultural cropland on Java Island.  

The Indonesian government monitors agricultural areas on Java Island by using direct field surveys and the 
remote sensing technology. There are two kinds of remote sensing technology: optical and radar-based remote 
sensing. The optical remote sensing satellite captures the spectral value of the earth’s surface via sunlight 
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2013), given that the fertile soil resulting from the eruptions is highly beneficial to their agricultural activities. 
Therefore, many households depend on the agricultural sector and work as farmers or sharecroppers. Land use in 
the study area generally consists of woodland, settlements, paddy fields, upland fields, tobacco fields and mixed 
garden crops. The distribution of land covers differs in the northern and southern parts according to topographic 
conditions. The hilly northern part has woodlands, upland fields and mixed garden crops, while paddy fields, 
tobacco fields and some upland fields are located in the flat or gently sloping areas of the southern part. The 
settlements are spread across both southern and northern parts of the study area.  

2.2 Remotely Sensed Data and Preprocessing 

ALOS-2/PALSAR-2 is provided by the Japan Aerospace Exploration Agency (JAXA) and delivers higher 
resolution SAR images than its predecessor, ALOS/PALSAR (Rosenqvist et al., 2014). This study used 
multi-temporal dual polarization and full polarization data in the highly sensitive mode with a 6.85 m resolution 
as the primary data. The dual polarization of PALSAR-2 consisted of HH and HV polarizations and the full 
polarization consisted of HH, HV, VH and VV polarizations. The first letter of polarization indicates the 
transmission direction, while the second letter indicates the received direction. H stands for horizontal and V for 
vertical direction. The complementary data are from Pleiades and the Landsat 8 Operational Land Imager (OLI), 
which hereafter will be referred to as Landsat 8. Pleiades is an ortho-rectified multi-spectral imagery satellite 
with a 0.5 m spatial resolution, while Landsat 8 is a multispectral image satellite with a 30 m spatial resolution. 
These complementary data were used for a preliminary study of the land use and cropping patterns in the study 
area. In addition, Pleiades was used for the base image in the georeference process. Table 1 describes the detailed 
acquisition of primary and complementary data used in this study. The date acquisition description in the 
yyyy.mm.dd format will be used hereafter. The field survey was performed twice, on March 25, 2017, and 
August 24-25, 2017, in order to validate the land use and cropping patterns in the study area.  

 

Table 1. Acquisition description of primary and complementary data used in this study 

Primary data 
Acquisition date in 
yyyy.mm.dd  

Complementary data 
Acquisition date in  
yyyy.mm.dd 

ALOS-2/PALSAR-2: Level 1.1  Pleiades Image 2015.08.26 

- Dual polarization  
(HH & HV polarizations) 

2015.01.30 Landsat 8 Images (12 images) 2015.01.05 2015.07.16 

2015.07.03 2015.02.22 2015.08.01 

2015.09.11 2015.03.26 2015.09.02 

- Full polarization  
(HH, HV, VH, and VV polarizations) 

2015.05.17 2015.05.13 2015.09.18 

 2015.05.29 2015.10.04 

 2015.06.14 2015.10.20 

 

2.2.1 ALOS-2/PALSAR-2 Preprocessing 

Sentinels Application Platform (SNAP) software from the European Space Agency (ESA) provides the tools for 
processing Sentinel-1 satellite data, as well as other satellite data, such as from PALSAR-2. The preprocessing 
steps are (i) calibration, (ii) multi-look with a 1:2 ratio for azimuth and range (JAXA, 2014), (iii) co-registration, 
(iv) speckle filtering for reducing the noise in SAR data, (v) geocoded processing and (vi) backscatter coefficient 
calculation.  

All PALSAR-2 data were stacked and co-registered together by using the Shuttle Radar Topographic Mission 
digital elevation model (SRTM DEM). The single product speckle filter was applied based on the Lee speckle 
filtering method with a window size of 5 × 5. The PALSAR-2 data were geocoded to the Universal Transverse 
Mercator (UTM) projection 49S with World Geodetic System 1984 (WGS84) datum. The topographic effect was 
corrected using the SRTM DEM. The results of the geocoded images formed a subset based on study area 
coverage and were confirmed to have a perfect fit with the Pleiades image. The backscatter coefficient in decibel 
units (dB) was then calculated using this formula (JAXA, 2017) where the Cf and A are calibration factors with a 
value of -83 and 32 dB, respectively.  

Backscatter coefficient = 10 × Log10(polarization) + Cf – A                  (1) 

2.2.2 Landsat-8 Preprocessing 

Landsat 8 data were processed using ERDAS Imagine 9.2 software. The preprocessing steps were (i) conversion 
from a digital number to a reflectance value with sun angle correction (USGS, 2014), (ii) the study area subset 
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Table 2. Training points and accuracy assessment points 

Class Name 
Temporal combination 

TP AAP TP AAP 

Paddy-I     

2015.01.30 (0130) 74 33   

2015.05.17 (0517) 70 30 119 50 

2015.07.03 (0703) 71 31   

2015.09.11 (0911) 56 24   

Paddy-II     

2015.01.30 (0130) 70 30   

2015.05.17 (0517) 73 30 117 50 

2015.07.03 (0703) 56 24   

2015.09.11 (0911) 35 15   

Upland fields 78  33 78  33 

Tobacco Fields 55 23 55 23 

Woodland 90 38 90 38 

Settlement 85 36 85 36 

Mixed garden crops 89 37 89 37 

Note. TP means training points, AAP means accuracy assessment points.  

 

Table 3. Polarization composition for classification process 

Combination name Polarization composition description Number of bands 

0130_A 2015.01.30 (HH, HV) 2 

0130_B 2015.01.30 (HH, HV, HV-HH) 3 

0517_A 2015.05.17 (HH, HV) 2 

0517_B 2015.05.17 (HH, HV, HV-HH) 3 

0517_C 2015.05.17 (HH, HV, VH, VV) 4 

0517_D 2015.05.17 (HH, HV, VH, VV, HV-HH) 5 

0703_A 2015.07.03 (HH, HV) 2 

0703_B 2015.07.03 (HH, HV, HV-HH) 3 

0911_A 2015.09.11 (HH, HV) 2 

0911_B 2015.09.11 (HH, HV, HV-HH) 3 

Temp_comb_1 2015.01.30 (HH, HV) 

2015.05.17 (HH, HV) 

2015.07.03 (HH, HV) 

2015.09.11 (HH, HV) 

8 

Temp_comb_2 2015.01.30 (HH, HV, HV-HH) 

2015.05.17 (HH, HV, HV-HH) 

2015.07.03 (HH, HV, HV-HH) 

2015.09.11 (HH, HV, HV-HH) 

12 

Temp_comb_3 2015.01.30 (HH, HV) 

2015.05.17 (HH, HV,VH, VV) 

2015.07.03 (HH, HV) 

2015.09.11 (HH, HV) 

10 

Temp_comb_4 2015.01.30 (HH, HV, HV-HH) 
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3.2.1 ALOS-2/PALSAR-2 Backscatter Coefficient Characteristics 

Figure 5 shows the averages of the training points of land use classes based on the backscatter coefficient from 
HH and HV polarizations from each PALSAR-2 data. Figures 5(a) and 5(b) shows the averages of training points 
for woodland, settlements, upland fields, tobacco fields and mixed garden crops. The HH and HV polarizations 
of the paddy-I and paddy-II classes from each acquisition date were shown in Figures 5(c) and 5(d) respectively. 
In Figure 5(a), the settlement class showed the highest HH polarization backscatter coefficient around -5 dB to 
-3 dB. It can be seen in Figure 5(b) that the HV polarization backscatter coefficient of settlement and woodland 
classes were almost identical and higher than the other classes. The HV polarization value for these classes was 
around -14 dB to -12 dB. The dense vegetation and the home gardens close to the settlement areas influenced the 
HV polarization behavior. The HV polarization for settlement appeared similar to the woodland area. The mixed 
garden crops also have higher HV polarization backscatter coefficient than upland fields and tobacco fields. Thus, 
the HV polarization was found to be more sensitive to buildings and tall or dense vegetation.  

In Figure 5(c), the HH polarization of the paddy-I class has a lower backscatter coefficient and more repeated 
patterns than the paddy-II class. This backscatter coefficient pattern was similar to the paddy field pattern 
presented in the study from Zhang et al. (2009). The dynamic pattern of the backscatter coefficient from the 
paddy-I class was influenced by the moisture conditions, which changed during the paddy growing stages. As 
can be seen in Figure 5(c), the HH polarization of paddy-I class shows two graphs involving opposite temporal 
patterns. The first pattern consists of the paddy-I class from the acquisitions from January 30 (paddy I_0130) and 
July 3 (paddy I_0703), 2015. The second pattern concerns acquisitions from May 17 (paddy I_0517) and 
September 11 (paddy I_0911), 2015. However, all of the backscatter coefficients from the PALSAR-2 acquisition 
dates were low, with a value below -15 dB. Thus, the sample points were selected in the same stage of the paddy 
fields. Paddy I_0130 in Figure 5(c) represents the repetition of paddy cultivation in this study area.  

The backscatter coefficient of paddy I_0517 and paddy I_0703 also increased from the backscatter coefficient in 
the acquisition date. Thus, the backscatter coefficient of HH polarization from the paddy-I class revealed the 
paddy fields’ characteristics. In contrast to the paddy-I class, the HH polarization backscatter coefficient of the 
paddy-II class, as can be seen in Figure 5(c), showed an inconsistent temporal change and a high backscatter 
coefficient. The high backscatter coefficient is related to low moisture conditions or a rough surface, such as that 
in the dry condition area. In Figure 5(d), the HV polarization backscatter coefficient value of the paddy II_0130, 
paddy II_0517, paddy II_0703 and paddy II_0911 classes were around -22 dB to -16 dB, that is, the same range 
as the upland fields class. This result was expected because the paddy-II class fields became upland fields when 
there was minimum water availability. 
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