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Abstract 
Non-structural carbohydrates (NSC) accumulation and photosynthesis traits were studied in two rice (Oryza 
sativa L.) genotypes maintained under control (22/30 °C - night/day) and at high night temperatures (HNT) 
(28/30 °C) conditions from heading to milk stage. Rice cultivars were Nagina22 - N22 and BRS Querência - 
Quer, which are tolerant and sensitive to high temperatures, respectively. The source-sink flow related attributes 
were tested to understand the nature of NSC accumulation and translocation. Compared to N22, Quer maintained 
higher stem starch in glucose on seventh day after heading and at milk stage independently of imposed 
temperatures. However, the levels of starch in glucose were lower for N22 meanwhile their total sugar 
concentration (TSC) were higher at control and at HNT at milk stage as compared to Quer. N22 maintained 
unaltered the spikelet sterility and 1000-grain weight across environments showing a consistent trend with its 
stem NSC translocation. Both genotypes showed similarity in some gas exchange and chlorophyll fluorescence 
performance suggesting unaffected photosystem II photochemistry, linear electron flux, and CO2 assimilation. 
Beyond indicating that source functioning was not the limiting factor for low TSC and starch in glucose levels 
found in N22 on seventh day after heading stage. Moreover, our data suggest that the higher translocation 
capacity shown by N22 can be involved in their lower spikelet sterility and 1000-grain weight stability across the 
environments. These results indicate that selecting genotypes with higher capacity to stem NSC translocation at 
HNT could lead to more grain yield stability in future climate scenarios. 

Keywords: Oryza sativa L., night heat stress, photosynthesis, chlorophyll fluorescence, source-sink flow, yield 
components 

1. Introduction 

Rice (Oryza sativa L.) is one of the most relevant staple foods for more than half of the world’s population (Fan 
et al., 2016). Thus, rice production must be increased by 70% until 2050 to supply the growing demand for food, 
take into account the growth population and economic development (Godfray et al., 2010). Additionally, there is 
a consensus that in the future the climate changes will become a bottleneck for crop yield and its stability (Brito 
et al., 2010, 2011, 2016; Diola et al., 2011, 2013; Guimarães et al., 2017; Weber et al., 2014). In this way, 
projected climate changes could reduce crop yields in the future (Fan et al., 2016; Tian et al., 2015). There are 
differences in the magnitude and uncertainties among the various climate models published and agricultural 
implications of such extreme climate changes over the twenty-first century. However, historical climatic data 
show that global temperatures rose by about 0.5 °C between the preindustrial period and 1980-1999. Current 
climate projections encompass a range of 1.6-6.9 °C for the end of the twenty-first century, relative to the 
preindustrial period (Sanderson et al., 2010). Although projected impact of climate change on crop yield has 
been extensively published in the last decade, comparatively, there is still a lack of studies that highlight the role 
of high nighttime temperatures on rice physiological response and, consequently changes in the rice yield 
performance.  

There are various reports demonstrating the increase in CO2 concentration in the future, which could lead to a 
better photosynthesis performance and increases in carbohydrate metabolism enzymatic activity in the source 
(leaf) in the absence of other bottlenecks. Following this rationale, higher NSC could be accumulated in the sink 
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(grains) among crop plants. This could greatly increase the number of tillers, panicles, spikelet per panicle and 
proportion of filled spikelets, also enhancing 1000-grain weight (Shimono et al., 2009; Zhu et al., 2014). On the 
other hand, there are negative effects from heat stress, especially during the beginning of reproductive phase that 
could decrease rice grain yield and its components, by increasing the spikelets sterility rate, reducing grain filling 
period and disrupting the sink activity. 

Moreover, when photosynthesis reductions are accelerated leaf senescence is faster, decreasing the 
sucrose-starch conversion via enzymatic activity and consequently reducing the grain yield and the quality 
(Bahuguna et al., 2017; Chaturvedi et al., 2017; You et al., 2017). Considering that starch represents 80-90% of 
final grain weight, the events involving since grain filling and final yield are associated to assimilates supplied 
by current photosynthesis and stem NSC remobilization capacity (Yoshida, 1981). During the vegetative phase 
and until heading, carbon assimilates are partially and temporally stored in stems and leaf sheaths in rice plants 
as NSC, which are sinked for all events involving since reproductive organ formation until grain development 
and maturation phase (Morita & Nakano, 2011; Zhang et al., 2016). For rice, there are studies showing that the 
stem NSC contribution to grain yield must reach 28% (Pan et al., 2011; Yoshida, 1981). Besides, there are 
indications that stem NSC at full heading stage of rice can increase the grain ripening ratio in those plants 
submitted to heat stress, increasing its grain yield stability (Morita & Nakano, 2011). For those plants subjected 
to drought, pre-anthesis stem NSC accumulation have highlighted its potential to buffer grain-filling in both 
wheat and rice (Saint Pierre et al., 2010; Yang et al., 2001) and also has been associated to tolerance to long-term 
partial submergence in rice (Kato et al., 2014).  

Thus, the current investigation was carry out aiming to evaluate the effects of high night temperature on NSC 
remobilization, photosynthesis performance and some yield components in two contrasting rice genotypes for 
heat tolerance. 

2. Material and Methods 
2.1 Plant Materials 

Two rice genotypes, a heat-tolerant, Nagina22 (N22) (Jagadish et al., 2010), and heat-sensitive, BRS Querência 
(Quer), based in our previous trials, were evaluated in this study. These genotypes have similar life cycles but 
significant differences in grain weight when grown under field conditions in previews trials conducted by 
Embrapa’s rice breeding program. 

2.2 Growth Conditions and Temperature Treatments 

Rice plants were grown in plastic pots (3.0 kg soil) in a greenhouse situated at Embrapa Temperate Climate. The 
plants were kept in the greenhouse from sowing procedures until plant heading stage (Figure 1A). Thereafter, 
half of plants from each genotype were taken to two growth chambers (Figure 1B) aiming to impose the 
temperature treatments. The growth chambers were set to maintain a temperature of 22.0/30±0.5 °C (night/day) 
for a control treatment and 28.0/30±0.5 °C (night/day), representing a high nightime temperature (HNT). The 
photoperiod used was, 10hrs in the dark period and 14hrs light period at 500 µmol m-2 s-1 approximately. 
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Landhausser, 2004). Glucose, fructose and sucrose determinations were carry out via gas chromatography 
(Streeter & Strimbu, 1998); the derivatization was done using HMKS:TMCS (3:1). 

2.5 Yield Components Measurements 

After the stress period, all genotypes were taken back to the greenhouse where were maintained until 
physiological maturity. After, some yield components were quantified harvesting each plant separately; the grain 
weight was adjusted to 14% moisture content; were quantified the panicle grain number, percentage of spikelet 
sterility, 10-panicle weight and 1000-grain weight. 

2.6 Statistical Procedures 

The homogeneity of variances was tested by the Bartlett test and Normality of data via Shapiro-Wilk test; 
subsequently data were subjected to analysis of variance (ANOVA). The Least Significant Difference (LSD) 
among the means was statistically analyzed using Student-Newman-Keuls method (p < 0.05). Additionally, when 
interaction effects were significant, unfold statistical procedures were done aiming to quantify the effects of 
treatments within each ambient temperature and comparisons for both genetic background within each 
temperature regime (control and under heat stress).  

3. Results 
In general, taking into account the values quantified in the two genotypes submitted to temperature regimes 
become evident that there were not significant differences in their CO2 assimilate rate and stomatal conductance. 
However, except for photosynthesis under control conditions on seventh and twenty-first days after heading 
phase when Quer showed the highest quantified values (Figure 2). 
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4. Discussion 
In this study, our results indicate that N22 maintain unaltered yield components such as spikelet sterility rate, 
grain per panicle and 1000-grain weight when submitted to high night temperature. On the other hand, Quer 
genotype showed an increase of 8% and a decrease of 12% for spikelet sterility percentage and 1000-grain 
weight, respectively. The endosperm cell of rice contributes for more than 90% of the grain weight of a caryopsis. 
Thus, the size of sink and/or low activity of enzymes involved in the carbohydrates metabolism could contribute 
to a low grain filling rate depending of their degree of sensibility to HNT. In this study, under optimum HNT the 
Quer genotype, which have a bigger panicle when compared to N22, showing a more sink strength with a 
decrease of 36% of stem starch concentration from heading to milk stage; in other way, when submitted to HNT 
its starch levels were unaltered during evaluated period. Results of different studies have indicated that enzyme 
activities involved in the breakdown of sucrose in the sink could influence the sink activity and, consequently 
define the local concentration sucrose-starch rate, as result of unloading of sucrose from phloem (Liang et al., 
2001; Ranwala & Miller, 1998). Besides, there is need to consider that SuSase is a main enzyme involved in the 
cleavage of sucrose in rice grains; because its importance in this event it have been considered as an important 
biochemical marker of sink activity (Kato, 1995; Liang et al., 2001; You et al., 2016; Zhang et al., 2014). In other 
way, AGPase has been also considered as a key enzyme participating in the starch synthesis, and its activity is 
associated with rate and quantity of starch synthesis (Ahmadi & Baker, 2001; Yang et al., 2004; Yang et al., 
2017). AGPase at the early grain filling stage were decreased as result of supra-optimal temperatures (Ahmed et 
al., 2015); under other abiotic stress, as such water deficit, SuSase and AGPase had its activities levels 
influenced. Our results suggest that the bigger capacity of N22 to maintain higher soluble sugar levels (fructose, 
glucose and sucrose) at milk stage can have contributed to their better yield component stability across night 
temperatures imposed.  

Interestingly, even under HNT the evaluated genotypes showed similarity in some gas exchange and chlorophyll 
fluorescence performance e.g. Pn, gs, F0, Fm, Fv/Fm, YII, NPQ, qP and ETR, suggesting unchanged photosystem 
II photochemistry, linear electron flux, and CO2 assimilation, indicating that photosynthesis machinery was not 
the limiting factor for lower TSC and starch levels found in stem of N22 on seventy day after heading stage 
when compared to Quer. On the other hand, its higher sink strength when submitted to HNT can originated from 
its heat tolerance characteristics as reported by different authors (Mutum et al., 2016; Poli et al., 2013; Prasanth 
et al., 2016). Additionally, was highlighted that N22 had the strongest sink associated to accelerated senescence 
during stress imposing period.  

Studies involving the approaches that aim to quantify the heat-stress effects on rice physiological performance 
and their yield components and identification of genetic variability have become increasingly in last decade. 
However, few studies have concentrate efforts to evaluate rice biochemical/physiological responses under high 
night temperatures (Chaturvedi et al., 2017) and there are scarcity of information about rice plant responses 
when are submitted to high night supra-optimal temperatures. Different studies have suggested that the amount 
of NSC mobilization in the post-heading stem could result from sink strength and environment/management 
(Chen & Wang, 2008; Kim et al., 2011; Li et al., 2017; Morita & Nakano, 2011; Wada et al., 2017; Yang et al., 
2000). In other way, NSC level at maturity cannot be attributed to lower mobilization because additional 
photoassimilate re-accumulation can be result from its semi-perennial characteristics. Besides, accumulation, 
remobilization and re-accumulation of NSC in stem can be influenced by genotype, environment and genotypes 
environment interaction. In this sense, in the next step efforts will be concentrating to monitor NSC dynamics 
from heading until maturity phase in different organs, i.e. leaves, stem and spikelets in development aiming to 
elucidate these responses and define the more adequate organ and best phase to validate this approach as proxy 
for rice physiological breeding.  

Accumulation and mobilization of NSC in plant’s rice are mediated by various enzymes, which include catalysts 
of starch synthesis/breakdown and sucrose synthesis/breakdown or proteins responsible by its transport across 
organs. Different reports indicate the role of enzymes such as α-amilase, AGPase, BE, SSS, GBSS, plastidial 
FBPase, and sucrose synthase, i.e. Susy and Susase in the accumulation and remobilization of NSC in rice (Fu et 
al., 2011; Ishimaru et al., 2004; You et al., 2017). Considering the complexities o stem NSC dynamics and the 
underlying events culminating to carbohydrate allocation and its utilization, lead us to think that  in the future, 
NSCs oscillation probably will be serve as proxy for sink strength selection criterion rather than a direct target 
for breeding under climate change scenarios. Summarizing, rice plants can be affected by complex genome x 
environment x management interactions which results in phenotypic plasticity as a result of the variability of 
genetic components. Whether by on side, recently advances have been made in genetic analysis, propitiated by 
development of new approaches as such CRISPR/Cas (Cong et al., 2013) and base editor (Liang et al., 2017), on 
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the other hand, in respect to non-invasive physiological phenotyping, there are scarcity of large-scale analyses of 
the underlying physiological mechanisms that plants trigger in response to environmental stimulus. In this sense, 
even in an initial phase, our data indicate that external phenotype such as spikelet sterility and 1000-grain weight 
is determined by the sum of the complex interactions resultant of an internal, physiological, and biochemical 
phenotype. A high-dimensional physiological phenotyping across scales is needed that integrates the precise 
characterization of the internal phenotype into high-throughput phenotyping of whole plants and canopies 
(Großkinsky et al., 2015).  

In conclusion, the results indicate that high night temperature imposed from heading to milk stage can leading 
changes in source-flow-sink related attributes in contrasting genotype, leading to changes in nature of NSC 
accumulation and translocation. These results suggest yet that higher translocation capacity shown by N22 can 
contribute to their lower spikelet sterility rate and higher 1000-grain weight stability across the environments 
tested. Moreover, indicate that selecting genotypes with higher capacity to stem NSC translocation at HNT could 
lead to more grain yield stability especially for those regions where occurrence of high night temperature during 
critical reproductive phase is common. 
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