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Abstract 
Basil (Ocimum basilicum L.) is a medicinal species of Lamiaceae family, popularly known for its multiple 
benefits and high levels of volatile compounds. The species is considered to be one of the most essential oil 
producing plants. Also cultivated in Brazil as a condiment plant in home gardens. The objective of this study was 
to evaluate the effect of salinity on the growth of basil in nutrient solution of Furlani and to identify variables 
related to the salinity tolerance in this species. The first assay was performed with variation of five saline levels 
(0 - control, 20, 40, 60 and 80 mM NaCl). In the second assay six genotypes were evaluated in two salinity levels 
0 and 80 mM NaCl. The height, stem diameter, number of leaves, dry mass and inorganic solutes in different 
organs, photosynthetic pigments, absolute membrane integrity and relative water content were evaluated. All 
biometric variables in basil were significantly reduced by salinity. Dry matter yield and percentage of membrane 
integrity were the variables that best discriminated the characteristics of salinity tolerance among the studied 
basil genotypes. Basil genotypes showed a differentiated tolerance among the genotypes, the ‘Toscano folha de 
alface’ being considered as the most tolerant and ‘Gennaro de menta’ as the most sensitive, among the species 
studied. 
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1. Introduction 
Basil (Ocimum basilicum L.) is a plant of the family Lamiaceae, a producer of essential oils of pharmaceutical 
importance, food, perfumery and cosmetics. It is also widely used in traditional medicine (Bharti, Barnawal, 
Wasnik, Tewari, & Kalra, 2016). The species is cultivated on a commercial scale in Asia, Africa, South America 
and the Mediterranean region, under natural conditions or in protected cultivation. The cultivation in 
greenhouses has the advantages of maximizing the yield and allowing a constant supply of material throughout 
the year (Sgherri, Cecconami, Pinzino, Navari-Izzo, & Izzo, 2010). 

The use of brackish water in irrigation can result in soil salinization and compromise plant growth. The 
productivity of the crops in a salinized environment depends on the amount of soluble salts and the capacity of 
the plants to tolerate saline stress (Cova, Azevedo Neto, Ribas, Gheyi, & Menezes, 2016). The reduction of the 
water potential in the culture medium, due to the higher concentration of soluble salts, affects the water 
absorption and, consequently, the turgescence and the cellular expansion. Moreover, saline stress also leads to a 
reduction of photosynthesis by the closure of the stomata and, therefore, limits the absorption of carbon dioxide 
and, consequently, the reduction of growth and productivity occurs (Farooq, Wahid, Kobayashi, Fujita, & Basra, 
2009).  

In saline soils the main ions found are Na+ and Cl-, which when absorbed and accumulated in excess may 
contribute to osmotic adjustment or become toxic (Flowers, Munns, & Colmer, 2015). Thus, the ionic 
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homeostasis between K+ and Na+ is fundamental for the regulation of the cellular osmotic potential (Zhu, 2003) 
and to avoid the deleterious effects of saline stress. 

The integrity of cell membranes, enzymatic activity and photosynthesis are metabolic and physiological 
indicative functions of tolerance variation in the species as they are sensitive to salinity. In order to evaluate the 
tolerance of plants to salinity, growth is considered to be an effective measure as it integrates a set of 
physiological mechanisms that occur in the plant (Niknam & McComb, 2000). Tolerant plants may have ionic 
compartmentation mechanisms, while in sensitive plants this mechanism is not efficient. Plant responses to 
saline stress are complex and may vary between cultivars of the same species (Maas & Hoffman, 1977; Niknam 
& McComb, 2000). The genotypic variability may provide a differential tolerance to saline stress between plants 
from the same species, as evidenced by several authors (Azevedo Neto, Pereira, Costa, & Santos, 2011).  

Knowing that basil is a very important crop, the objective of the present study was to evaluate the tolerance of 
six basil genotypes to saline stress and to classify them according to the degree of tolerance to stress. 

2. Material and Methods 
The study was conducted in a protected environment at the Federal Universidade do Recôncavo da Bahia, Centro 
de Ciências Exatas e Tecnológica, Cruz das Almas-BA (12º40′19″ S 39º6′23″ W), from January to March 2015. 
Two experiments were carried out: the first one was a completely randomized design with five saline levels and 
four replicates and the second one was a randomized block design with two saline levels and six genotypes with 
four replicates. 
2.1 Assay I: Experimental Conditions and Treatments 

Basil seeds var. Alfavaca basilicão, obtained at ISLA Sementes Ltda. were seeded in 150 mL plastic cups 
containing washed sand. At 21 days after emergence (DAE), when the seedlings presented a completely 
expanded pair of leaves, they were transferred to containers in a hydroponic “Floating” type system with aeration, 
containing 12 L of nutrient solution of Furlani (1998). After four days under these conditions, the seedlings 
received their respective saline treatments 0, 20, 40, 60 or 80 mM NaCl, corresponding to electrical 
conductivities of the nutrient solution of 2, 4, 6, 8 and 10 dS m-1. NaCl was gradually added (20 mM day-1), to 
avoid osmotic shock. The volume of the solutions was completed daily with water and the pH maintained 
between 6.0 and 6.5 by the addition of HCl or NaOH. Plants were harvested 17 days after the treatments were 
applied. 

2.1.1 Biometry and Dry Mass Production 

The height of the plants, stem diameter (SD) and number of leaves (NL) were determined at the harvest. The 
height was measured with a graduated ruler, the main branch was measured from 0.5 cm from the insertion of 
the root to the apex of the main branch. The SD was measured with a digital caliper and counted the NL. 
Afterwards, the plants were collected and separated in leaves, stems and roots and the plant material was 
transferred to an oven with forced air circulation at 65 °C for 72 h. After this period, the determination of dry 
masses of leaf (LDM), stem (SDM) and roots (RDM) was performed on a precision scale. From the dry mass 
data of the plant parts, shoot dry mass (SHDM) and total dry mass (TDM) were calculated. 

2.1.2 Analysis of Inorganic Solutes 

For the determination of Na+, K+ and Cl- contents in leaves, stems and roots, the extracts were prepared as 
described by Jones Júnior (2001), with minor modifications. In test tubes, 0.1 g of dried (in oven) and powdered 
material (in Willye-type knife mill) and 10 mL of deionized water were added. The test tubes were heated at 
80 °C in a water bath for 1 h, being agitated every 15 min and then centrifuged at 5.000 × g. The supernatant was 
collected and stored at -20 °C for further analysis. The Na+ and K+ contents were determined by flame 
photometry (Faithfull, 2002) and the values of Cl- by spectrophotometry (Jones Júnior, 2001). 

2.2 Assay II: Treatment and Execution 

In the second assay, seeds of genotypes ‘Gennaro de Menta’, ‘Alfavaca basilicão vermelho’, ‘Alfavaca basilicão’, 
‘Toscano folha de alface’, ‘Limocino’ and ‘Grecco a palla’, obtained from the company ISLA Sementes Ltd., 
were used. The seedlings production and the cultivation system were identical to Assay I. The seedlings of each 
genotype were submitted to 0 and 80 mM of NaCl in nutrient solution of Furlani (1998), with electrical 
conductivities of 2 and 10 dS m-1, respectively. Addition of NaCl and control of nutrient solutions were also 
identical to those of Assay I. Plants were harvested after 20 days after the treatments were applied.  
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2.2.1 Dry Mass Production and Analysis of Inorganic Solutes 

At the end of the experimental period, the plants were separated into leaves, stems and roots to evaluate dry mass 
and determination of Na+, K+ and Cl- contents according to Experiment I. 

2.2.2 Photosynthetic Pigments 

To determine the levels of chlorophyll a, chlorophyll b and carotenoids (carotenes and xanthophyll), the samples 
were placed in 95% ethanol. Then, the spectrophotometric readings were performed at 649, 664 and 470 nm, 
according to the methodology described by Lichtenthaler and Buschmann (2001) and were calculated with 
Equations 1, 2 and 3, respectively:  

CHLa (µg ml-1) = (13.36	×	A664	– 5.19	×	A649)                       (1) 

CHLb (µg ml-1) = (27.43	×	A649	– 8.12	×	A664)                       (2) 

Car (µg ml-1) = (1000	×	A470	–	2.13	×	CHLa	–	97.64	×	CHLb)/209               (3) 

2.2.3 Absolute Integrity Percentage (AIP) of Cell Membranes and Relative Water Content (RWC) 

The AIP and RWC evaluations were performed on the third fully expanded leaf pair, for all genotypes except for 
‘Grecco a palla’, where they were determined in the main branch, adapting the methodology to the morphology 
of this genotype. The determination of AIP was performed according to Pimentel, Sarr, Diouf, Aboud, and 
Roy-Macauley (2002), where 10 leaf discs with known area were placed in threaded tubes with 10 mL of 
deionized water. The tubes were placed for 24 h in a dark place and after that the electrical conductivity of the 
water (free conductivity- FC) was measured. Afterwards, the tubes were placed in a water bath at 100 °C for one 
hour and after returning to the ambient temperature the electrical conductivity of the water (total conductivity TC) 
was again measured. It was calculated using Equation 4: 

AIP (%) = 100 –	(FC × 100/TC)                            (4) 

The RWC was determined according to Barr and Watherley (1962), in which 10 leaf discs with known area were 
removed and weighed to obtain the fresh mass (FM). The disks were then placed in Petri dishes, immersed in 
deionized water and left for 24 hours in a refrigerator. After this period, the discs were wiped with paper towel 
and weighed to obtain the turgid mass (TM). Afterwards, they were taken to dry in an oven until constant weight 
was obtained. The RWC was calculated as described in Equation 5: 

RWC (%) = [(DM –	FM)/(DM – TM)] ×	100                      (5) 

2.2.4 Statistical Analysis 

For the first assay, the results were submitted to analysis of variance (F test) and regression, using the Sisvar 4.6 
statistical software (Ferreira, 2011). In the second assay, the results were submitted to analysis of variance (F-test) 
and the means compared by the Scott-Knott test at 0.05 probability.  

3. Results and Discussion 
3.1 Assay I 

The variables plant height, stem diameter (SD) and number of leaves (NL) presented linear decreasing behavior 
with the increment of sodium chloride in the nutrient solution (Figure 1). Comparing the control treatment with 
the one using 80 mM NaCl, reductions of 37.31 and 27.5% were observed for height, SD and NL, respectively. 
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(Marschner, 2012). These results suggest a higher selectivity of K+ ion transport in relation to Na+ for the leaves, 
as well as a mechanism of Na+ retention in stem and root tissues, avoiding damage due to toxicity in the leaves. 

The osmotic adjustment, that is, the accumulation of solutes is an important mechanism, under conditions of 
saline stress, to obtain a gradient of favorable water potential and maintenance of cellular turgor. The 
accumulation of the inorganic solutes (K+, Na+ and Cl-) has a lower energy cost for the cells when related to the 
accumulation of compatible organic solutes (Flowers, Munns, & Colmer, 2015). However, there must be a 
balance between these ions, because Cl- and Na+ can be toxic when in excess in plant tissues. In this way, the 
accumulation of K+ favors ionic homeostasis, reducing the toxic effects of Na+ (Munns & Tester, 2008).  

Among all the variables studied in Assay I, the DM variable was the most accurate indicator of salinity effect, 
associated with the Cl- accumulation data. In this way, a larger reduction of DM occurred in the tissues with 
higher Cl- accumulation (leaves and stems) and, as the smallest DM reduction was in the root, where there was 
less accumulation of DM. The Cl- is a predominant anion under saline conditions (Tavakkoli, Rengasamy, & 
McDonald, 2010), when absorbed by the roots is easily translocated to the tissues of the aerial part (Li, Tester, & 
Gilliham, 2017), justifying its large accumulation in leaves and roots. 

In this study, it is considered that 80 mM NaCl significantly decreased (50 to 60%) the dry mass production of 
basil organs in Assay I, this concentration was used for the subsequent salt stress experiments.  

3.2 Assay II 

Salinity reduced significantly the dry matter yield of leaf (LDM), stem (SDM), roots (RDM) and total (TDM) of 
basil genotypes, except for the ‘Toscano folha de alface’ (Figure 4). The highest reductions of LDM (54%), SDM 
(71%), RDM (55%) and TDM (61%) were observed in the ‘Gennaro de menta’ genotype. The reduction 
percentage in biomass production has been considered an effective indicator of tolerance to salt stress in plants 
(Munns, 2002). These data indicate that the ‘Toscano folha de alface’ genotype was more tolerant and the 
Gennaro de menta the most sensitive to salt stress when compared to each other (Figure 4).  

The results of this study corroborate with the studies of Barbieri et al. (2012) and Prasad, Lal, Chattopadhyay, V. 
K. Yadav and A. Yadav (2007), who reported genotypic variability of basil in tolerance to saline stress. Barbieri 
et al. (2012) verified that the differentiated tolerance among the genotypes of this species was related to the 
morphological, physiological and metabolic adaptive characteristics to stress.  

The Na+ levels in the leaves (Figure 5A) of all basil genotypes were lower than in the stem (Figure 5B) and in 
the roots (Figure 5C). A significant variation might be observed between the mean values in the genotypes 
related to the rates of Na+ in leaves (0.126 to 0.337 mmol g-1 DM), stem (1.814 to 3.414 mmol g-1 DM) and roots 
(2.338 to 3.720 mmol g-1 DM). It is interesting to note that the Na+ content in leaves of the ‘Toscano folha de 
alface’ genotype (0.126 mmol g-1 DM) was 64% lower than the mean leaf content of the other genotypes (0.348 
mmol g-1 DM). In this way, it can be inferred that there was a restriction in the transport of Na+ to the leaves, 
with a retention of these ions in the roots of the genotype. This might explain, at least in part, the greater 
tolerance of this genotype to saline stress since such restriction inhibits Na+ accumulation at toxic levels in 
leaves (Munns & Tester, 2008). 
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