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Abstract 

Soil borne archaea in agricultural systems is crucial for cycling of nutrient such as Nitrogen, Carbon and Sulphur. 
The objective of the study was to assess the effect of different tillage systems on functional archaea diversity in a 
15 years cereal-legume rotation field using Illumina sequencing platform for archaea 16S rRNA gene. The 
treatments in the study included conventional tillage with stubble removed (T), no-till with stubble removed 
(NT), conventional tillage with stubble incorporated (TS) and no-till with stubble retained (NTS). The results 
showed that the dominant soil archaea phyla was Crenarchaeota (> 96%), followed by Euryarchaeota with a 
lower abundance of < 3% and then Parvarchaeota and other bacteria phyla made up < 1% across the treatments 
and depths. The treatment means were ranked as NT > NTS > TS > T for 16S rRNA number of OTUs, Shannon 
and Simpson indices calculated for the 0-10cm soil depth. Analysis of factor effect revealed that tillage but not 
stubble retention or their interaction significantly influenced (P < 0.01 and P < 0.05) 16S rRNA diversity. Non 
metric Multidimensional Scaling (NMDS) analysis clearly grouped the microbial communities according to 
depths. Linear Discriminant Analysis Effect Size (LEfSe) identified Crenarchaeota and Thaumarchaeota (to 
genus level) as significantly enriched clades in 0-10 cm depth of T while Euryarchaeota and Thermoplasmata 
were significantly enriched in TS. The conservational tillage systems (NT and NTS) promoted even distribution 
of archaea diversity while conventional tillage systems (T and TS) enriched the archaea communities identified 
in the study.  

Keywords: 16S rRNA gene, Archaea diversity, stubble retention, tillage systems 

1. Introduction 

Archaea constitutes a domain of microbes that exhibit diverse functional metabolic activity, habitat and typically 
adapted to chronic energy stress conditions than bacteria (Swan & Valentine, 2009). Archaea may obtain their 
source of energy from inorganic compounds such as ammonia or sulfur, use sunlight as a source of energy in 
non-oxygen-generating photosynthesis, or by autotrophic fixation of atmospheric CO2 as a source of carbon 
(Pratscher et al., 2011; Zhalnina et al., 2012). However, their utilization of organic carbon source is still 
inadequately understood (Zhalnina et al., 2012). In non-extreme terrestrial environment such as agricultural soil, 
archaea play crucial functional roles in the cycling of nutrients such as carbon, nitrogen and sulphur (Jarrell et al., 
2011) but also have the potential to contribute to atmospheric greenhouse gas emission (Offre et al., 2013). For 
instance, in the carbon cycle, methanogenesis and anaerobic methane oxidation are important intermediate steps 
that are performed exclusively by anaerobic Euryarchaeota and Methanomicrobia respectively (Offre et al., 
2013). Also in the nitrogen cycle, Crenarchaeota (Thaumarchaeota and Candidatus Nitrososphaera) are reported 
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to be involved in fixation of dinitrogen (N2) gas, oxidation of ammonia to nitrite, and denitrification (Taylor et al., 
2010).  

The 16S rRNA marker gene has become the gold standard in molecular identification of archaea and bacteria 
diversity (Case et al., 2007). These small subunit ribosomal RNA genes are universally present in archaea and 
bacteria and contain both highly conserved fragments and variable regions that allow for the discrimination of 
different taxonomic levels (Vos et al., 2012). Illumina high-throughput sequencing platform has been employed 
to study microbial community composition and is reported to be accurate and rapid in the identification than 
traditional methods such as culture and serial dilution methods, Biolog system and biomarkers which often 
isolate only a few soil microbes (Klingler et al., 1992). Soil archaea are difficult to culture but molecular 
methods have been used to demonstrate the presence of archaeal 16S rRNA gene sequences in agricultural, 
grassland and forest soils (Navarrete et al., 2011).  

In agricultural fields, tillage practices negatively affect soil chemical, physical and biological properties by 
exacerbating soil degradation which may consequently trigger changes in the soil microbial community structure 
and composition (Dorr de Quadros et al., 2012). It is widely accepted that no-till, residue retention, cover crops 
and crop rotations are conservation agriculture practices that protect soil, water, nutrients and increase microbial 
activity and biomass (Feng, 2003). However, varying research outcomes have been reported (Kaurin et al., 2015; 
Dong et al., 2017) making specific impacts of conservation agriculture practices on soil bacteria and archaea 
particularly complex to explain (Ng et al., 2012).  

In the western Loess Plateau of China, conventional and traditional methods of soil preparation, application of 
Nitrogen fertilizers (Fan et al., 2005) and consistent crop residues removal from the fields are common farming 
practices (Lamptey et al., 2017) for the production of crops such winter and spring wheat, maize, soybean, potato 
among others (Nolan et al., 2008). These practices have worsened soil degradation processes, contributed to the 
decline of soil carbon and fertility (Zhang et al., 2016) and therefore, may impact microbial community structure. 
Conservation tillage techniques have been employed to improve soil physicochemical properties and greenhouse 
gas emissions for sustainable cultivation of spring wheat and field pea (Huang et al., 2013; Yeboah et al., 2016a, 
2016b; Yeboah et al., 2017) but the rate of adoption is still relatively low in the region. The impact of tillage 
practices on soil archaea community structure has received low specialised research attention in the study area. 
Therefore, the study hypothesized that withdrawal of tillage and retention of stubble from previous crops in 
rotation systems will influence functional soil archaea diversity. We set out an objective to investigate the effect 
of different tillage systems on functional archaea communities in the 15 years crop rotation field using the 16S 
rRNA marker gene.  

2. Materials and Methods 

2.1 Site Description 

The study was carried out in the Rainfed Agricultural Experimental Station of the Gansu Agricultural University 
(35°28′N, 104°44′E, elevation 1971 m above sea level), Dingxi, Gansu Province, Northwest China. The soil type 
in the site has a sandy loam texture with ≥ 50% sand and is locally known as Huangmian (Chinese Soil 
Taxonomy Cooperative Research Group, 1995), which is equated to the Calcaric Cambisol by the FAO soil 
classification (1990). The soil has organic matter content of < 14.75 g/kg (< 1.48%) and an average pH of about 
8.44. The annual temperature ranges between -22-38 oC in January and July respectively while the average 
long-term annual rainfall in the area is 390.7 mm per year.  

2.2 Design of Experiment 

This research was carried out in 2016 on a long-term field experiment which was initiated in 2001. Before then, 
the site had a long history of conventional tillage and continuous cropping of flax (Linum usitatissimum L.). The 
experiment is a two factorial design with two phases of rotation and four tillage treatments (Table 1) arranged in 
a randomised complete block design with three replicates. Spring wheat (cv. Dingxi No. 35) and Field pea (cv. 
Yannong) were sown in rotation with both phases represented in each year for the past 15 years and is also 
known as double sequence rotation (W→P→W and P→W→P sequence). The crop rotation started with spring 
wheat in the first phase, followed by field pea while the second phase started with field pea followed by spring 
wheat in that sequence each year for the past 15 years. In conventional tillage (T) plots, all the stubbles were 
removed before ploughing to a depth of 10–20 cm. Conventional tillage with stubble incorporated (TS) plots had 
all stubbles from the previous crop returned to those same plots after threshing and then incorporated into the 
soil during ploughing. In the No-till (NT) treatment plots, no ploughing was performed and all the stubbles were 
removed at harvest whiles in No-till with stubble retained (NTS) plots, all the stubbles from the previous crops 
were returned to the original plots and retained on the surface of the soil.  
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Table 1. Treatment codes and names 

Treatments code Treatment Name 

T Conventional tillage with stubble removed 

NT No-till with stubble removed 

TS Conventional tillage with stubble incorporated 

NTS No-till with stubble retained 

 

Each year, spring wheat was cultivated in early March at a rate of 187.5 kg ha-1 with a row spacing of 20 cm and 
harvested in late July to early August. Field Pea is sown in early April at a rate of 180 kg ha-1 with a row spacing 
of 24 cm and harvested in early July each year. Low rates of Nitrogen and Phosphorus fertilizers are applied at 
sowing with the no-till seeder at a rate of 105 kg N/ha as urea (46% N), 45.9 kg P/ha as calcium superphosphate 
(6.1% P) for spring wheat, 20 kg N/ha and 45.9 kg P/ha for field pea. 

2.3 Soil Sampling 

Soil samples were collected before seeding the field Pea phase of the experiment in April for the 2016 planting 
season. At sampling, three soil cores samples were randomly collected from each plot at the depth of 0-10 cm 
and 10-30 cm. The three soil cores from each plot were pooled to form a composite sample which was further 
divided into subsamples. The subsamples were stored on dry ice, conveyed to the laboratory and stored at -80 oC 
for molecular analysis.  
2.4 Soil DNA Extraction and Amplification 

Genomic DNA extraction from soil samples was done by the use MoBio PowerSoil® DNA Isolation Kit (MoBio 
Laboratories, Solana Beach, CA, USA) following the manufacturer’s instructions. PCR amplification of V3-V4 
of 16S rRNA (480bp with barcode) was executed using the primers 338F 5'-ACTCCTACGGGAGGCAGCA-3' 
and 806R 5'-GGACTACHVGGGTWTCTAAT-3' to identify archaea genes. Nanodrop 2000 Spectrophotometer 
(Thermo Fisher Scientific, Wilmington, USA) was used to determine the concentration of genomic DNA. Gel 
electrophoresis condition of 1% agarose gel and 120 V was used to run the gel for 30 min and subsequent 
visualization of the DNA fragments.  

2.5 DNA Sequencing and Data Analysis 

The 16S rRNA (V3-V4) hypervariable region of archaea was sequenced using Illumina Hiseq sequencing 
platform to obtain Paired-ends sequenced. PANDAseq software (Masella et al., 2012) was used to assemble the 
paired-end reads. Chimera were removed with USEARCH v7.1 (Edgar, 2010) by Denovo method and unique 
sequences were clustered at 0.03 cutoff (97% similarity) into representative operational taxonomic units (OTUs) 
using the UPARSE software (Edgar, 2013). Using UCLUST, the representative sequences were compared with 
the archaea 16S rRNA database of known species to classify each OTU. Alpha and Beta diversity analysis were 
performed for both treatments and samples using QIIME software. Diversity indices such as observed species, 
Chao1estimator, Shannon index, and inverse Simpson index were determined. Beta diversity analysis was based 
on the weighted and unweighted UniFrac evolutionary relationship or distance between species and was used to 
generate Non Metric Multidimensional Scaling analysis (NMDS) graphs. R statistical package (Kruskal-Wallis 
test function) was used to analyze Linear Discriminant Analysis Effect Size (LEfSe) to identify significantly (P < 
0.05) different biomarkers between treatments and the impact on the species or clades with Linear Discriminant 
Analysis (LDA) score > 3. Molecular analysis, sequencing reactions and sequence analysis were out sourced in a 
commercial laboratory (Genepioneer Biotechnologies, Nanjing, China).  

SPSS software’s (version 19.0; SPSS, Chicago, IL, USA) general linear model function was used to compare 
means, factor effect and interaction of factors on microbial diversity indices and their significant differences. 
Post Hoc analysis was tested by Tukey’s HSD Test (P < 0.05).  

3. Results  

A range of 11,093-20,601 clean tags were obtained per sample for archaea and bacterial 16S rRNA genes 
through sequence optimization and quality filtering. At 0.03 similarity cutoff (97%), a subsample of 11,093 16S 
rRNA clean tags gave 51 OTUs out of which 14 OTUs constituted 100% of the core microbiome in treatment 
samples. The OTUs were classified into 8 phyla, 8 classes, 8 orders, 5 families, 2 genus and other unidentified 
taxa at each taxonomic level. 

 



jas.ccsenet.org Journal of Agricultural Science Vol. 9, No. 11; 2017 

37 

3.1 Archaea Diversity and Community Composition 

The dominant Archaea phyla was Crenarchaeota (> 96%) while Euryarchaeota had a lower abundance of < 3% 
and Parvarchaeota and other bacteria phyla made up < 1% across the treatments and depths (Figure 1). The 
dominant Archaea classes recorded were Thaumarchaeota (phylum Crenarchaeota), Thermoplasmata (phylum 
Euryarchaeota) and Parvarchaea, order level; Nitrososphaerales (phylum Crenarchaeota), family level; 
Nitrososphaeraceae and genus level; Candidatus Nitrososphaera (Figure 1). However, the abundance of 
Crenarchaeota (phylum to genus) was averagely higher (> 98%) in the 0-10cm soil depth than 10-30 cm across 
the treatments.  

 

 

Figure 1. Phylum level OTU abundance profile of archaea and bacteria 16s rRNA genes 

Note. T: Conventional tillage with stubble removed; NT: No-tillage with stubble removed; NTS: No-tillage with 
stubble retained; TS: Conventional tillage with stubble incorporated. 0.10: soil depth of 0-10 cm; 10.30: soil 
depth of 10-30 cm. 

 

3.2 LEfSe Analysis of Significantly Enriched Archaea Communities in Treatments 

LEfSe analysis was used to identify significantly (p < 0.05) abundant and enriched microbial communities with 
LDA score > 3 in treatments and was presented from domain to genus levels (Figures 2a and 2b). Enriched 
microbial communities were only recorded in the two treatments of conventional tillage (T and TS). In the 
conventional tillage with stubble removed (T), Crenarchaeota (phylum to genus); Thaumarchaeota, 
Nitrososphaerales, Nitrososphaeraceae, Candidatus Nitrososphaera were enriched in the 0-10 cm soil layer. 
However, conventional tillage with stubble incorporated (TS) during ploughing enriched members of the phylum 
Euryarchaeota and class Thermoplasmata in the 10-30 cm layer.  
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Crenarchaeota and Thaumarchaeota (previously a class of Crenarchaeota but now a novel phylum) were 
significantly enriched from phylum to genus in the 0-10 cm soil layer conventional tillage with stubble removed 
(T) treatment probably because of the chronic stress imposed by the annual ploughing of this field. The clade 
Thaumarchaeota predominantly comprise of ammonia oxidizing members (Zhalnina et al., 2012) that carry the 
amoA genes and oxidize ammonia using ammonia monooxygenase (AMO) enzyme during nitrogen cycling 
(Taylor et al., 2010; Shen et al., 2013). The other enrichment was detected in the conventional tillage with 
stubble incorporated (TS) plots at the 10-30 cm soil layer and the phylum Euryarchaeota and its class 
Thermoplasmata were the significantly enriched clades. Euryarchaeota constitute a diverse group consisting of 
extreme halophiles, thermophilic heterotrophs and anaerobic methanogens (Bapteste et al., 2005) that are 
involved in carbon cycling in their environment. Thermoplasmata is a recently discovered methanogenic class 
that can reduce methanol with hydrogen (Dridi et al., 2012) and may also use methylamines as substrate for 
methanogenesis (Poulsen, et al., 2013). 

In the present study, the no-tillage systems (NT and NTS) recorded the highest archaea diversity respectively and 
our findings are congruent with Dorr de Quadros et al. (2012). Also, Dong et al. (2017) have recently reported 
that NT practices markedly enhanced the abundance of Thaumarchaeota (previously a class of Crenarchaeota 
but now a novel phylum) in the topsoil after 22 years of no-tillage managements in Northern China. On the 
contrary, archaea were found not to be affected by the different forms of tillage practices in the experiment 
conducted by Kaurin et al. (2015) who compared minimum tillage to conventional mouldboard ploughing. In 
no-tilled soil, physical disturbance is absent hence there is less soil aeration than in tilled soils and this may 
promote the growth of anaerobic microbes (Dorr de Quadros et al., 2012). Withdrawal of tillage in NT gave 
significantly high Shannon species diversity index and Inverse Simpson evenness index; however, only 
numerically high means were obtained for Chao1 richness estimator and number of observed species. 
Irrespective of the tillage practice, the archaea community was evenly distributed but the species diversity was 
relatively low across the treatments. In the study, treatment influenced clustering of microbial communities by 
NMDS was not obvious but clear depth wise distribution was observed. This may be explained by complex 
interaction of factors and mechanism that influence microbial activity and function in agro-ecosystem 
(Detheridge et al., 2016). 

5. Conclusion 

The dominant archaea phyla identified across the treatments and depths in the study site were Crenarchaeota, 
Euryarchaeota and Parvarchaeota, with Crenarchaeota making up > 96% of the total abundance. The treatments 
ranked as NT > NTS > TS > T for the various diversity indices calculated for 16S rRNA genes in the 0-10 cm 
topsoil. Factor effect analysis also revealed that tillage significantly influenced archaea diversity in this study. 
Conventional tillage with stubble removed (T) significantly enhanced the enrichment of Crenarchaeota and 
Thaumarchaeota in the 0-10 cm soil layer while Euryarchaeota and Thermoplasmata were stimulated in the 
10-30 cm layer of tillage with stubble incorporated (TS). No-till promoted even distribution of archaea diversity 
but T and TS enriched the archaea clades detected in the study. The study results provide practical implications 
and benefits for the adoption of conservation tillage practices on soil microbes which are major drivers in the 
below ground plant-soil ecosystem. 
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