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Abstract 
Understanding agricultural biodiversity is critical to formulate breeding strategies for crop improvement and it 
impacts both, conservation and collection activities. Especially germplasm collections serve as valuable 
resources, thus, their adequate characterisation is of utmost importance. Although Uganda ranks seventh in 
African sesame production, meagre research was conducted to determine the current genetic diversity among its 
germplasm. Therefore, in the present study part of the sesame germplasm conserved at the National Semi-Arid 
Resources Research Institute (NaSARRI) in Uganda focusing on 85 established lines was genetically and 
phenotypically characterised. Population genetic and structure analyses revealed rather a low extend of genetic 
diversity (expected heterozygosity [HE], or gene diversity [D]) ranging from 0 to 0.38 per entry, but a high 
extend of admixture within and between entries. This decrease of heterozygosity is supported by a fixation index 
(FST) of 0.530, indicating a medium genetic differentiation among entries. The analysis of quantitative and 
qualitative agromorphological traits revealed a great inter-trait variability among the entries and further indicated 
a certain conservation of some of the traits reflecting the geographic origin of the analysed entries. Based on both, 
the genetic and phenotypic characterisation, a selection of 26 superior entries is proposed, which may form a 
valuable basis both for farmers and breeders. 
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1. Introduction 
Sesame (Sesamum indicum L.) is a primarily self-pollinated diploid with 2n = 26 chromosomes. It belongs to the 
Pedaliaceae (order Lamiales), a small family of 15 genera and 70 species characterised by annual and perennial 
growth forms. Sesame is an important and ancient crop cultivated in hot, dry climates for its oil and protein-rich 
seeds (Bedigian et al., 1986). Domesticated in the Indian subcontinent (Bedigian, 2003), currently, sesame is 
grown throughout the tropical and subtropical regions of the world with Sudan, China, India, and Myanmar 
being the top producers in 2014, together covering 46% of the world production (FAO, 2015). On the African 
continent, Uganda with an annual production of 124,300 tonnes ranks seventh in sesame production (FAO, 2015). 
Sesame, commonly known as simsim in Uganda, was introduced from Kenya in 1910 and since then has been 
distributed, cultivated, and used (Rubaihayo et al., 1997). Its adaptability to harsh climatic conditions including 
heat and drought makes it a favourable crop in north-eastern Uganda. Especially in the last decade, sesame has 
experienced a worldwide boom increase in its production to 158 per cent from 2004 to 2014 (FAO, 2015). 
Although sesame accounted for 83 per cent of total agricultural sales in 2014 in Uganda (Proctor, 2015), neither 
its production nor its productivity increased markedly since 2005 (FAO, 2015).  

To sustain a level of high productivity and yield, or even to increase it, sesame breeding strongly relies both on 
genetic diversity and genetic purity. For the former, available germplasm collections serve as an important source 
for the breeders to combat new pests and diseases, and to produce better adapted varieties for the changing 
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environments. However, to be able to utilize the wealth of diversity in germplasm collections, their genetic and 
phenotypic characterisation is indispensable. Currently, genetic diversity is measured by using morphological, 
biochemical, and molecular markers, whereby the latter marker system became the most attractive one in recent 
years (Govindaraj et al., 2015). However, phenotypic characterisation is the first step in the classification and 
description of any germplasm. Several studies have exploited high genetic diversity in populations of sesame by 
analysing morphological traits only, thereby providing valuable information for cultivar selection to be used in 
different breeding programs (Arriel et al., 2007; Ansah et al., 2015; Falusi et al., 2015). Other studies were 
performed using a wide palette of molecular markers such as AFLP, ISSR, SSR and RAPD markers for 
germplasm diversity analysis and the construction of genetic maps (Laurentin et al., 2006; Sharma et al., 2009; 
Cho et al., 2011; Kumar et al., 2012; Alemu et al., 2013; Zhang et al., 2013; Dossa et al., 2016). Presently, 
combination of both morphological and molecular markers is increasingly becoming popular for analysing 
sesame diversity (Parsaeian et al., 2011; Pandey et al., 2015; Sehr et al., 2016).  

Germplasm characterization not only produces valuable agronomic and breeding data, but it is also useful for the 
identification of duplicates within and between collections. Furthermore, when genetic resources are kept ex situ, 
seeds are frequently regenerated to keep their viability and to replenish seed stocks. During this process, certain 
extent of gene flow may occur as the result of cross-pollination, as well as through physical mixing of seed lots. 
As a result, the quality and integrity of the germplasm might get severely reduced. Thus, especially when 
handling cross-pollinating species, additional planning, care, and special techniques are needed in order to ensure 
the physical/reproductive isolation of accessions that is required to preserve their genetic identity. For sesame, 
contradictory outcrossing values have been reported ranging from less than 1 to nearly 70 per cent (Yermanos, 
1980; Pathirana, 1994; Andrade et al., 2014) and still, sesame is mainly described as self-pollinated crop. 
Therefore, determining its regional outcrossing potential is of utmost importance not only for breeding, but also 
for conservation and collection activities and strategies.  

Despite this increasing number of studies characterising sesame germplasm collections, knowledge of the 
genetic diversity of entries assembled on the African continent at the molecular levels is scarce (Gebremichael et 
al., 2011; Alemu et al., 2013; Nyongesa et al., 2013; Woldesenbet et al., 2015; Sehr et al., 2016). Common 
findings were a high amount of genetic diversity within accessions, especially of local origin, and the occurrence 
of a certain extent of admixture between the accessions, which could probably be attributed to cross-pollination 
and local seed exchange among farmers. Hence, the two main objectives of the present study were i) to analyse 
and categorize existing variation in the 85 sesame germplasm entries assembled in Uganda, based on their 
phenotypic and SSR-related genotypic characteristics, and ii) to select superior lines as a valuable basis both for 
farmers and breeders. Both objectives intend to impact not only sesame breeding and conservation strategies, but, 
in the long run, also intend to improve sesame performance and usage for farmers. 

2. Materials and Methods 
2.1 Plant Material and DNA Extraction 

A total number of 85 sesame entries were planted in the first rainy season (month of May) of 2010 in a 
randomized complete block design with three replications. These entries were comprised of germplasm 
accessions and breeding lines derived from genotypes and crosses of different countries of origin (China, 
Ethiopia, Kenya, Korea, Tanzania, Uganda, USA, and Zimbabwe) conserved at the National Semi-Arid 
Resources Research Institute (NaSARRI) in eastern Uganda (Table 1). Seeds stemming from selfed flowers of 
each entry were planted in a single-row plot of 2 m in length. Border rows were included at the beginning and 
the end of each replication to control border effects using the purple-coloured variety Sesim 2. Several flowers of 
five plants per entry were self-pollinated and two capsules per entry were randomly chosen and taken for further 
analyses. Seeds from the two capsules were germinated separately in Petri dishes. Eight seedlings from each 
capsule were picked for DNA extraction resulting in 1,360 samples (85 entries, á 2 capsules, á 8 seedlings). The 
extraction of genomic DNA was performed using the aerial parts of the seedlings following the protocol 
described by (van der Beek et al., 1992) with minor modifications for high-throughput handling using robotics. 
The extracted genomic DNA is deposited at the Repository Centre at the AIT Austrian Institute of Technology 
and is available upon request (Stierschneider et al., 2016). Detailed sample information is given in Appendix 1. 
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Table 1. List of countries of origin and the corresponding sesame entries 

Country of origin Total No. of entries Entry numbers  

China 20 036-055 

Ethiopia 5 003-007 

Kenya (ICRISAT) 14 073-086 

Korea 1 034 

Tanzania 1 035 

Uganda 25 001-002; 008-025; 029-030; 072; 098; 114; 118; 191

USA 16 056-071 

Zimbabwe 1 087 

 

2.2 Genotyping and Fragment Analysis 

Nine nuclear SSR markers with linkage groups indicated in square brackets (CL297 [LG3], CL569 [LG8], CL78 
[LG3], CL93 [LG15], GBssr_sa_08 [n/a], GBssr_sa_108 [n/a], GBssr_sa_123 [LG15], GBssr_sa_184 [n/a], and 
GBssr_sa_72 [LG5]) were applied as described (Sehr et al., 2016). PCR amplification was performed 
incorporating the FAM-labelled M13 primer according to (Schuelke, 2000) in a total volume of 25 µl consisting 
of 2.5 µl of 10x reaction buffer (Qiagen or LGC), 1 mM MgCl2, 0.25 µl of 20 mM dNTPs, 0.4 µl of 4 mM 
primer forward, 1.2 µl of 4 mM primer reverse, either 0.125 µl of 5 U/µl of HotStarTaq DNA Polymerase 
(Qiagen) or 0.25 µl of KlearTaq (LGC), 5 µl DNA (1:10) and ddH2O. MgCl2 was not included when K-Taq was 
used. The conditions of the PCR amplification were as follows: 94 °C (15 min), followed by 35 cycles including 
94 °C (30 sec), 50-55 °C (45 sec), 72 °C (1 min), ending in 72 °C (10 min) with a final halt at 4 °C. The PCR 
products were electrophoresed on 1% agarose gel. The SSR markers were applied via PCR in all 85 entries, 
however, the entries 029 and 030 were excluded from further analysis due to PCR failure. 

The resulting PCR products were diluted and mixed with Hi-Di Formamide and GeneScan 350/500 ROX dye 
Size Standard according to the manufacturers protocols (Life Technologies). The size of the fragments was 
resolved based on capillary electrophoresis using the ABI 3110 XL Genetic Analyzer. Allele calling was 
performed using GeneMapper® Software 5 (Applied Biosystems). Non-amplified loci were scored as missing 
data.  
2.3 Genetic Data Analysis 

To avoid allele frequencies bias due to full/half sibship and to be able to infer population genetic structure over 
the entire germplasm collection, clonality within the dataset was determined in silico by measuring the number 
of 100 per cent multilocus matches. Repeated matching multilocus genotypes were removed from the data set for 
subsequent analysis. Genetic variation was investigated on the entire dataset as well as on the reduced dataset 
using standard genetic diversity estimates per locus and entry including expected heterozygosity (HE; or gene 
diversity [D]), observed heterozygosity (HE), inbreeding coefficients (F, FST, FIS), gene flow (Nm), and an 
analysis of molecular variance (AMOVA) among and within the countries of origin with 999 permutations was 
performed. All computations were done using GenAlEx v. 6. 502 (Peakall et al., 2012). Population structure of 
the reduced set without repeated matching multilocus genotypes was examined using the Bayesian model-based 
approach implemented in Structure 2.3.4 (Pritchard et al., 2000; Anderson et al., 2008). The number of 
subgroups (K) evaluated ranged from 1-30. The analysis was performed using five replicate runs per K value, a 
burn-in period length of 10,000, and a run length of 50,000. The no admixture model was used to determine the 
correlated cluster. The R package pophelper (Francis, 2016) was used to determine the final K value based on the 
delta K algorithm (Evanno et al., 2005). Based on the Nei pairwise genetic distance matrix of the entire dataset, a 
neighbor-joining (NJ) tree using MEGA 6 (Tamura et al., 2013) was created to visualize genetic diversity and 
relationships among the genotypes.  

2.4 Phenotyping and Trait Statistical Analysis 

Seeds from the remaining selfed flowers from the plants used for genotyping that formed capsules were planted 
in the first rainy season (Mid-April) in 2011 and were phenotyped during the second season of 2011 (September) 
for evaluating agromorphological diversity on the total set of the germplasm (85 entries) at NaSARRI, Uganda. 
According to the official descriptors for sesame (IPGRI et al., 2004), the following 10 traits were measured in a 
quantitative approach and were used for further diversity analysis: days to flowering (DTF), days to maturity 
(DTM), plant height (PH [cm]), plant height to first capsule (HFC [cm]), plant height to first branch (HFB [cm]), 
number of branches (NB), length of capsule zone (LCZ [cm]), number of capsules on main stem (NCMS), number 
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of capsules on branches (NCB), and total number of capsules (TNC). The mean values across three replicates are 
shown in Appendix 2. Entry number 025, however, was measured only once per trait and exhibits very extreme 
numbers in comparison to all other lines. Since there was no validation of the traits through replicate 
measurements, this line was thus excluded from further statistical analysis. For an examination of the overall 
phenotypic diversity across all 10 traits, box plots were generated for each trait using R (R Core Team, 2015). 
Furthermore, individual trait values were standardized using a z-transformation for equal mean and standard 
deviation. Standardized data was then subjected to principal component analysis and principal component scores 
were determined for each line after applying the varimax rotation procedure using SPSS statistical software 
(PASW Statistics 18, IBM Corp., Armonk, NY, USA). In addition, 14 qualitative traits were measured per entry on 
the basis of the official descriptors for sesame (Table 2, Appendix 3). 

 

Table 2. Measured qualitative traits 

Qualitative traits Description Values 

Branching habit few (1-2 branches) 2 
medium (3-4 branches) 3 

Capsule length very short (23 mm) 1 
short (26 mm) 2 
medium (30 mm) 3 

Capsule pubescence weak 1 
medium 2 
strong 3 

Capsule width narrow 1 
medium 2 
broad 3 

Corolla pubescence weak 1 
medium 2 
strong 3 

Flowers per leaf axil one 1 
more 2 

Leaf blade colour at maturity light green 1 
medium 2 
purple 4 

Leaf blade length short 1 
medium 2 
long 3 

Leaf blade width narrow 1 
medium 2 
broad 3 

Petiole length short 1 
medium 2 
long 3 

Position of branches basal 1 
upper part 2 
middle part 3 
basal and upper part 4 

Stem color at maturity light yellow 1 
light green 2 
green 3 

 light purple 5 
 deep purple 6 
Stem fasciation absent 1 
 present 2 
Stem pubescence at maturity weak 1 
 medium 2 
 strong 3 
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2.5 Outcrossing Test 

In order to assess the rate of outcrossing present under natural conditions, a sibship analysis was performed. For 
this, a single farmer’s field was chosen where Sesim 2 was cultivated already for some generations and where 
off-type individuals used to appear. Capsules of individual plants were collected randomly on an area of approx. 
100 m². Seeds from each capsule were germinated and DNA was extracted from the seedlings as well as from the 
capsule tissue reflecting the maternal genetics. This way genomic DNA of seven different mother plants (A–G) 
and 128 seedlings were investigated (Table 3). Each plant was represented by one sampled capsule. From plants 
A, C, D, and E eight seedlings per capsule and from plants B, F and G 32 seedlings per capsule were analysed. 
SSR analysis was performed as described above. 

 

Table 3. Samples from farmer’s field analysed for outcrossing by sibship analysis 

Mother plant Capsules No. of seedlings 

A 4-loculed 8 

B 4-loculed 32 

C 3-loculed 8 

D 2-loculed (violet) 8 

E 4-loculed (green) 8 

F 4-loculed 32 

G 4-loculed 32 

 

2.6 Entry Selection 

In order to assemble a selection of good-performing entries, the entries were chosen based on their qualitative 
traits, overall hairiness, and high genetic diversity. For each qualitative treat (n = 10) the mean and the standard 
deviation was calculated. Only those entries having at least five traits above the single positive standard 
deviation value were chosen for the selection. The qualitative values for hairiness of stem, corolla and capsule 
were summed up, the mean and the standard deviation was calculated. The entries with values above the single 
positive standard deviation value were added to the selection. The same modus operandi was applied to genetic 
diversity. The entries with HE values above the single positive standard deviation value were considered for the 
selection. 

3. Results and Discussion 
3.1 Genetic Diversity and Germplasm Structure 

Obtaining unbiased estimates of genetic diversity is particularly critical for management and conservation of 
species. It has been shown that when full siblings were sampled, the estimates of population genetic parameters 
were affected, also depending on the software tools used (Anderson et al., 2008; Goldberg et al., 2010; Peterman 
et al., 2016). Thus, in order to be able to infer population genetic structure of the entire germplasm collection by 
ruling out a possible bias due to consanguinity, a reduced dataset was created by removing repeated matching 
multilocus genotypes, resulting in 666 remaining samples (Appendix 1).  

Heterozygosity and polymorphism were calculated based on the reduced dataset for each locus (Appendix 2) and 
for each entry (Appendix 3) separately. Per locus, the number of alleles ranged from 2-15, the HO values were 
very low (0.00-0.31), HE values were in the range of 0.03-0.83. Per entry, the calculated mean HE values (or gene 
diversity, D) varied from 0 to 0.378 (grand mean = 0.219), and the HO values ranged from 0 to 0.489 (grand 
mean = 0.137), whereby the following entries showed no gene diversity at all (HE and HO = 0): 002 (Sesim 2, 
Uganda), 036 (China), 067 (USA), 078 and 079 (Kenya), and 118 (Local Sesim 2, Uganda). This is in line with 
previous studies, where a gene diversity (HE, D) between 0 and 0.440 is described in African sesame lines 
(Gebremichael et al., 2011; Nyongesa et al., 2013; Sehr et al., 2016). Besides the fact, that in comparison to 
intronic SSRs, exonic SSRs contain less allelic variability because they are subjected to stronger selection 
pressure due to their functional significance (Li et al., 2004), low HE values can further be explained by genetic 
isolation, historical population bottlenecks, founder effects, inbreeding or selection processes. In the case of the 
herein analysed germplasm sample subset, the latter effects, inbreeding and selection in breeding processes, 
might have played a major role in declining heterozygosity, which is further reflected by an inbreeding 
coefficient (FIS) of 0.329 and a fixation index (FST) of 0.530, indicating a high extent of homozygote individuals 
and a medium genetic differentiation among entries, respectively. This is in line with the general knowledge, that 
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the higher the extent of domestication of a given crop is, the narrower is the range of its genetic diversity 
(Tanksley et al., 1997; Flint-Garcia, 2013). The relative measure of migration between the entries (Nm) was 
0.229, which falls in the range of previously described gene flow values of self-pollinated plant species 
(Govindaraju, 1989). However, gene flow is also described to occur to a certain extent in germplasm collections 
(de Vicente, 2005). Whereby it is unclear whether the Nm values of our dataset reflect recent gene flow levels 
(e.g. due to cross-pollination or local seed exchange among farmers) or are caused by the fixation of alleles 
during the breeding processes in evolutionary time.  

After grouping the entries according to their country of origin (n = 8, cf. Table 1), the degree of genetic diversity 
(HE, D) within a specific country of origin, ranged from a low value 0.18 up to 0.48 (Table 4). The mean number 
of alleles ranged from 1.44-4.78, whereby the highest allelic richness was seen in the entries stemming from 
Kenya and USA. Entries from Korea, Tanzania and Zimbabwe showed lesser number of alleles, which might be 
due to fact that these countries of origin comprise only one entry each. An AMOVA analysis was used to 
evaluate the diversity components within and between the individuals, which have been grouped into the 
respective countries of origin. The majority of the variance occurring among the individuals accounted for 57 per 
cent of the total variation, and seven per cent of the variation was attributed to differences among the countries of 
origin (Appendix 6). Similar results were also described, where differences among geographical regions were 
represented only by five per cent of the total variation in sesame lines (Laurentin et al., 2006; Woldesenbet et al., 
2015). 

 

Table 4. Mean values of population genetic parameters per country of origin: number of individuals (N), 
different alleles per locus (NA), number of effective alleles per locus (NE), expected and observed heterozygosity 
(HE and HO), and the fixation index (F) 

Population China Ethiopia Kenya Korea Tanzania Uganda USA Zimbabwe 

Entries 20 5 14 1 1 25 16 1 

N 162.22 25.44 87.78 10.89 11.00 207.11 135.56 10.00 

NA 4.00 2.67 4.78 1.44 1.78 4.33 4.78 1.89 

NE 2.59 1.90 2.80 1.33 1.46 2.39 2.43 1.76 

HO 0.18 0.15 0.14 0.15 0.11 0.15 0.17 0.10 

HE 0.41 0.37 0.48 0.18 0.25 0.42 0.42 0.33 

F 0.58 0.54 0.70 0.14 0.45 0.61 0.56 0.70 

 

In order to resolve the relationships among the entries, a NJ tree based on pairwise population matrix of Nei 
unbiased genetic distance values was generated (Figure 1). The entries present in the Ugandan germplasm 
collection showed very little to no relationship with respect to their country of origin. Five entries from Kenya 
maintained their genetic identity and relationship, but the remaining entries were well intermixed. The Sesim 
2-related local selection number 188 and the entry number 016 showed identical marker alleles, in contrast to the 
related entries number 098, 114, and 191, which were highly divergent from their supposed ancestor, Sesim 2. 
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Table 6. Outcrossing values by testing 128 individuals from seven mother plants at the nine microsatellite loci 

Mother plant Affected marker Total individuals Affected individuals Outcrossing [%] 

A 2 8 1 12.5 

B 2 32 1 3.1 

C 1 8 1 12.5 

D 4 8 1 12.5 

E 2 8 1 12.5 

F 8 32 12 37.5 

G 7 32 19 59.4 

 

3.4 Proposed Selection of Well-Performing Entries 

The generated genetic and phenotypic datasets will serve as a valuable knowledge base for the selection of 
superior genetic material. In order to assemble a selection, the entries were chosen as described above based on 
their quantitative traits, their overall hairiness, and their genetic diversity. 

Taking all 10 quantitative traits into consideration, the best performing entries are 008, 010, and 017 originating 
from Uganda, 004 from Ethiopia, 035 from Tanzania, 087 from Zimbabwe, and 044 from China (characterised 
by at least five traits above the single positive standard deviation; marked in Figure 1 with an asterisk (Appendix 
2). Based on the same scheme, the least performing entries (characterised with at least five traits below the single 
negative standard deviation) are coming from China (040, 042, and 050) and USA (057, 067, 068, and 070). The 
13 most hairy entries with sums above the positive standard deviation value (sum > 6.5) are composed of six 
entries from the USA, four from Uganda, two from China, and one from Ethiopia (marked in Figure 1 with a 
triangle). The genetically most diverse entries representing HE values above the positive standard deviation value 
(HE ≥ 0.31) are 010 and 012 originating from Uganda; 043 and 055 from China; 058 from USA; 073, 077, 082 
and 085 from Kenya, and 087 from Zimbabwe (marked in Figure 1 with an upward arrow). The entries 020 
(Uganda), 055 (China), 058 and 060 (both USA), are characterised by both, hairiness and high genetic diversity, 
whereas the entries 010 (Uganda) and 087 (Zimbabwe) are characterised by the combination of good quantitative 
trait performance and high genetic diversity. The combination of hairiness and good quantitative trait 
performance is given in the entries 004 (Ethiopia) and 008 (Uganda). Summarized, a core selection composed of 
26 entries is suggested (Table 7). 
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Table 7. Proposed selection of 26 entries 

Entry No. Entry name Country of origin Gene diversity (D, HE) Hairiness (sum) Quantitative traits1 

004 Local 158-2 Ethiopia 0.12* 7* PH, HFB, NCMS, NCB, TNC 

008 EM 15-3-2 Uganda 0.29* 7* PH, HFC, HFB, NB, NCB, TNC 

010 AD-1-1-1 Uganda 0.38* 6* PH, NB, LCZ, NCMS, NCB, TNC 

012 U 1-7-1 Uganda 0.35* 6* DTF, DTM 

017 Ajimo A1-6 × 7029-1-1 Uganda 0.17* 4* PH, HFC, LCZ, NCMS, NCB, TNC

020 U1-7 × Eva-1-1-1 Uganda 0.30* 7* NCMS, TNC 

021 Y-1 × Local 158-1-1 green Uganda 0.29* 7* DTF, DTM, NB 

025+ Oyam hairy Uganda 0.29* 7* DTF, DTM, PH, HFC, HFB 

035 NAL 79.309.16.1 Tanzania 0.25* 3* DTF, DTM, PH, HFC, HFB, NB 

042 4036-1-2-2-4 China 0.30* 5* 

043 4036-1-2-3 China 0.37* 5* 

044 4036-1-2-4 China 0.14* 5* DTF, DTM, PH, HFC, HFB, NB 

045 4036-1-10-2-1 China 0.20* 8* 

055 1438-1-10-3 China 0.36* 7* LCZ, NCB 

058 Renner 1-3-1-10-2 USA 0.33* 8* 

059 Renner 1-3-1-14 USA 0.27* 9* 

060 Renner 1-3-1-15 USA 0.30* 7* LCZ 

061 Renner 1-3-1-16 USA 0.28* 7* NB 

064 UCR 3-1-2-1 USA 0.30* 8* LCZ, NCMS 

066 UCR 3-1-2-3 USA 0.25* 7* 

073 ICEASE 00001 Kenya 0.35* 4* DTF, DTM, NB 

077 ICEASE 00005 Kenya 0.31* 4* DTF, DTM, PH, NB 

082 ICEASE 00018 Kenya 0.35* 4* 

084 ICEASE 00020 Kenya 0.30* 4* HFB 

085 ICEASE 00022 Kenya 0.35* 3* NB 

087 OTIS Zimbabwe 0.32* 3* DTF, DTM, HFC, HFB, NB 

Note. *Values above the positive standard deviation (HE > 0.31; hairiness sum > 6.5). 
1Only traits with values above the positive standard deviation are shown. Number of branches (NB), number of 
capsules on main stem (NCMS), number of capsules on branches (NCB), and total number of capsules (TNC), 
days to flowering (DTF), days to maturity (DTM), plant height (PH), plant height until first capsule (HFC), plant 
height until first branch (HFB), and length of capsule zone (LCZ). 
+Entry number 025: only one measurement has been done per trait, thus, the values of this entry should be taken 
with care. 

 

4. Conclusion 
Presence of genetic variability in crops is essential for its further improvement by providing opportunities for the 
breeders to develop new varieties and hybrids. Existing variation in part of the sesame germplasm conserved at 
NaSARRI in Uganda comprising 85 lines stemming from eight countries of origin was categorized through 
phenotypic (quantitative and qualitative) and genetic characterization. Despite a rather low genetic diversity (HE 
grand mean = 0.219), we detected a strong admixture within and between the entries, which could be the result 
of the concerted action of several causes such as a differing ancestry (most likely due to the breeding process 
itself, but also due to cross-pollination) or due to material exchange between locations. Thus, if the maintenance 
of the genetic integrity of germplasm is attempted, causes of gene flow must be prevented where possible. On 
the basis of the phenotypic and genetic characterisation, we defined a core selection of 26 superior entries 
characterised by high genetic diversity, hairiness, and overall good performance of quantitative 
agromorphological traits. These entries form a valuable repertoire of the sesame germplasm to be used by 
breeders and farmers in Uganda. 
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Appendix 
 
Appendix 1. List of investigated sesame entries 

AIT entry no. Entry name Country of origin Type of material 
Number of  

individual samples 

Number of  

remaining samples 

in reduced dataset*

001 Sesim 1 Uganda Released 2001, local  

selection from EM 14 

16 2 

002 Sesim 2 Uganda Released 2001, local  

selection from EM 15 

16 1 

003 Local 158-1 Ethiopia Breeding line 16 3 

004 Local 158-2 Ethiopia Breeding line 16 7 

005 Local 158-3 Ethiopia Breeding material 16 3 

006 Local 158-4 Ethiopia Breeding material 16 9 

007 Local 158-5 Ethiopia Breeding material 16 5 

008 EM 15-3-2 Uganda Breeding material 16 13 

009 Adong 4-4 Uganda Breeding material 16 6 

010 AD-1-1-1 Uganda Breeding material 16 12 

011 U 1-7 Uganda Breeding material 16 10 

012 U 1-7-1 Uganda Breeding material 16 15 

013 EM 15-1-5 Uganda Breeding material 16 9 
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014 Ajimo A1-5 Uganda Breeding material 16 11 

015 Ajimo A1-6 Uganda Breeding material 16 5 

016 Sesim 2 × 5181-2-2-1 Uganda Selected line from a cross 16 11 

017 Ajimo A1-6 × 7029-1-1 Uganda Selected line from a cross 16 7 

018 Local 158 × 7029-7 Uganda Selected line from a cross 16 12 

019 Local 158 × 6022-1-2-1 Uganda Selected line from a cross 16 5 

020 U1-7 × Eva-1-1-1 Uganda Selected line from a cross 16 14 

021 Y-1 × Local 158-1-1 green Uganda Selected line from a cross 16 10 

022 Y-1 × Local 158-1-2-1 purple Uganda Selected line from a cross 16 6 

023 (Y-1 × Local 158-1-2-1)  

× Renner 1-3-1 

Uganda Selected line from a cross 16 9 

024 (Y-1 × Local 158-1-2-1)  

× Renner 1-3-2 

Uganda Selected line from a cross 16 6 

025 Oyam hairy Uganda Introduced line,  

unknown origin 

16 2 

029 Kidetok SPSS purple Uganda Landrace N/A N/A 

030 Otara Awelo-2 purple Uganda Landrace N/A N/A 

034 Early Russian Korea Breeding line 16 11 

035 NAL 79.309.16.1 Tanzania Breeding line 16 11 

036 4036-1-1-2-1 China Breeding line 8 2 

037 4036-1-1-2-5 China Breeding line 16 9 

038 4036-1-1-2-6 China Breeding line 16 12 

039 4036-1-2-2-1 China Breeding line 16 13 

040 4036-1-2-2-2 China Breeding line 16 4 

041 4036-1-2-2-3 China Breeding line 16 5 

042 4036-1-2-2-4 China Breeding line 16 13 

043 4036-1-2-3 China Breeding line 16 16 

044 4036-1-2-4 China Breeding line 16 8 

045 4036-1-10-2-1 China Breeding line 16 5 

046 1438-1-6-1 China Breeding line 16 9 

047 1438-1-6-1-1 China Breeding line 16 6 

048 1438-1-6-2 China Breeding line 16 14 

049 1438-1-6-3 China Breeding line 16 14 

050 1438-1-6-10-2 China Breeding line 16 14 

051 1438-1-6-18-1 China Breeding line 16 3 

052 1438-1-10-1-1 China Breeding line 16 6 

053 1438-1-10-2-1 China Breeding line 16 12 

054 1438-1-10-2-2 China Breeding line 16 3 

055 1438-1-10-3 China Breeding line 16 9 

056 Renner 1-1-1-6-2 USA Breeding line 16 8 

057 Renner 1-3-1-4 USA Breeding line 16 4 

058 Renner 1-3-1-10-2 USA Breeding line 16 13 

059 Renner 1-3-1-14 USA Breeding line 16 9 

060 Renner 1-3-1-15 USA Breeding line 16 13 

061 Renner 1-3-1-16 USA Breeding line 16 11 

062 Renner 1-3-1-17 USA Breeding line 16 2 

063 Renner 1-3-1-19 USA Breeding line 16 8 

064 UCR 3-1-2-1 USA Breeding line 16 8 

065 UCR 3-1-2-2 USA Breeding line 16 13 

066 UCR 3-1-2-3 USA Breeding line 16 11 

067 UCR 3-1-4 USA Breeding line 16 1 

068 UCR 3-1-5 USA Breeding line 16 6 
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069 UCR 3-1-6 USA Breeding line 16 8 

070 UCR 3-1-7 USA Breeding line 16 10 

071 UCR 3-1-8 USA Breeding line 16 10 

072 Ajimo A1-6 × 7029-1-9 Uganda Selected line from a cross 16 12 

073 ICEASE 00001 Kenya, ICRISAT Breeding line 16 11 

074 ICEASE 00002 Kenya, ICRISAT Breeding line 16 10 

075 ICEASE 00003 Kenya, ICRISAT Breeding line 16 4 

076 ICEASE 00004 Kenya, ICRISAT Breeding line 16 2 

077 ICEASE 00005 Kenya, ICRISAT Breeding line 16 6 

078 ICEASE 00006 Kenya, ICRISAT Breeding line 16 1 

079 ICEASE 00007 Kenya, ICRISAT Breeding line 16 3 

080 ICEASE 00008 Kenya, ICRISAT Breeding line 16 4 

081 ICEASE 00015 Kenya, ICRISAT Breeding line 16 10 

082 ICEASE 00018 Kenya, ICRISAT Breeding line 16 14 

083 ICEASE 00019 Kenya, ICRISAT Breeding line 16 5 

084 ICEASE 00020 Kenya, ICRISAT Breeding line 16 13 

085 ICEASE 00022 Kenya, ICRISAT Breeding line 16 7 

086 ICEASE 00096 Kenya, ICRISAT Breeding line 16 4 

087 OTIS Zimbabwe Breeding line 16 9 

098 Local Sesim 2 Uganda Selection of Sesim 2,  

distributed to farmers (2004-07)

16 11 

114 Local Sesim 2 Uganda Selection of Sesim 2,  

distributed to farmers (2004-07)

16 8 

118 Local Sesim 2 Uganda Selection of Sesim 2,  

distributed to farmers (2004-07)

16 1 

191 Local Sesim 2 Uganda Selection of Sesim 2,  

distributed to farmers (2004-07)

16 4 

Note. *Repeated matching multilocus genotypes calculated by GenAlEx were removed from the data set 
resulting in 666 remaining samples. 

 

Appendix 2. Heterozygosity, F-statistics and polymorphism are presented per locus 

 
CL297 Contig1 

CL569 

Contig1

CL78  

Contig1 

CL93  

Contig1
GBssr_sa_08 GBssr_sa_108 GBssr_sa_123 GBssr_sa_184 GBssr_sa_72

N 657 647 656 649 653 645 658 660 625 

NA 2 4 2 3 7 15 14 11 3 

NE 1.03 1.86 1.98 1.06 1.88 4.86 5.79 4.26 1.09 

HO 0.00 0.16 0.15 0.03 0.17 0.30 0.31 0.27 0.04 

HE 0.03 0.46 0.50 0.06 0.47 0.79 0.83 0.77 0.08 

F 0.91 0.65 0.69 0.44 0.64 0.62 0.63 0.65 0.56 

Note. Sample size (N), number of alleles (NA), number of effective alleles (NE), observed heterozygosity (HO), 
expected heterozygosity (HE), and the fixation index (F) calculated using GenAlEx. 

 

Appendix 3. Heterozygosity, F-statistics and polymorphism are presented as mean values per entry 

Entry N NA NE HO HE F 

Line001_Sesim1 2.00 1.22 1.22 0.11 0.11 0.00 

Line002_Sesim2 0.89 0.89 0.89 0.00 0.00 

Line003_Local158-1 2.89 1.33 1.27 0.22 0.15 -0.50 

Line004_Local158-2 6.78 1.44 1.19 0.16 0.12 -0.23 

Line005_Local158-3 2.78 1.78 1.59 0.19 0.30 0.29 

Line006_Local158-4 9.00 1.78 1.50 0.14 0.26 0.46 

Line007_Local158-5 5.00 1.56 1.28 0.07 0.18 0.61 
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Line008_EM15-3-2 12.78 1.78 1.52 0.21 0.29 0.20 

Line009_Adong4-4 5.67 1.44 1.39 0.17 0.21 0.21 

Line010_AD-1-1-1 11.67 2.89 2.01 0.30 0.38 0.16 

Line011_U1-7 9.67 2.22 1.48 0.23 0.26 0.03 

Line012_U1-7-1 14.89 2.00 1.80 0.17 0.35 0.47 

Line013_EM15-1-5 8.67 1.78 1.62 0.08 0.27 0.61 

Line014_AjimoA1-5 10.44 1.78 1.63 0.09 0.26 0.57 

Line015_AjimoA1-6 5.00 1.44 1.31 0.04 0.17 0.60 

Line016_(Sesim2×5181)-2-2-1 10.67 1.78 1.40 0.19 0.22 0.11 

Line017_AjimoA1-6×7029-1-1 6.78 1.44 1.31 0.17 0.17 0.01 

Line018_Local158×7029-7 11.67 1.78 1.65 0.20 0.28 0.28 

Line019_(Local158×6022)-1-2-1 4.67 1.33 1.15 0.13 0.10 -0.23 

Line020_(U1-7×Eva)-1-1-1 13.67 2.00 1.63 0.11 0.30 0.47 

Line021_(Y-1×Local158)-1-1green 9.56 2.00 1.60 0.16 0.29 0.37 

Line022_(Y-1×Local158)-1-2-1purple 5.78 1.56 1.28 0.13 0.16 0.22 

Line023_(Y-1×Local158)-1-2-1×Renner1-3-1 8.33 1.56 1.43 0.11 0.21 0.54 

Line024_(Y-1×Local158)-1-2-1×Renner1-3-2 6.00 1.33 1.18 0.07 0.11 0.24 

Line025_Oyamhairy 2.00 1.78 1.56 0.28 0.29 -0.02 

Line034_EarlyRussian 10.89 1.44 1.33 0.15 0.18 0.14 

Line035_NAL79.309.16.1 11.00 1.78 1.46 0.11 0.25 0.45 

Line036_4036-1-1-2-1 1.89 1.00 1.00 0.00 0.00 

Line037_4036-1-1-2-5 8.67 1.56 1.53 0.24 0.27 0.11 

Line038_4036-1-1-2-6 11.78 1.67 1.44 0.19 0.23 0.18 

Line039_4036-1-2-2-1 12.89 1.56 1.44 0.09 0.21 0.58 

Line040_4036-1-2-2-2 4.00 1.44 1.30 0.03 0.18 0.87 

Line041_4036-1-2-2-3 4.78 1.44 1.34 0.11 0.19 0.36 

Line042_4036-1-2-2-4 12.33 1.89 1.73 0.11 0.30 0.62 

Line043_4036-1-2-3 15.78 3.00 1.98 0.38 0.37 -0.03 

Line044_4036-1-2-4 7.78 1.44 1.25 0.10 0.14 0.26 

Line045_4036-1-10-2-1 5.00 1.78 1.35 0.24 0.20 -0.19 

Line046_1438-1-6-1 8.89 2.00 1.61 0.15 0.28 0.42 

Line047_1438-1-6-1-1 5.89 1.67 1.24 0.11 0.15 0.12 

Line048_1438-1-6-2 13.78 1.89 1.70 0.21 0.28 0.25 

Line049_1438-1-6-3 13.56 1.56 1.35 0.17 0.18 0.02 

Line050_1438-1-6-10-2 13.78 2.00 1.50 0.17 0.23 0.20 

Line051_1438-1-6-18-1 2.89 1.33 1.27 0.00 0.15 1.00 

Line052_1438-1-10-1-1 5.78 1.33 1.28 0.04 0.15 0.75 

Line053_1438-1-10-2-1 11.89 1.44 1.37 0.17 0.17 0.03 

Line054_1438-1-10-2-2 2.89 1.44 1.17 0.15 0.12 -0.20 

Line055_1438-1-10-3 9.00 2.11 1.86 0.19 0.36 0.51 

Line056_Renner1-1-1-6-2 7.67 2.22 1.52 0.21 0.25 0.14 

Line057_Renner1-3-1-4 4.00 1.56 1.41 0.19 0.20 0.05 

Line058_Renner1-3-1-10-2 12.33 2.44 1.75 0.20 0.33 0.28 

Line059_Renner1-3-1-14 8.89 2.00 1.62 0.14 0.27 0.34 

Line060_Renner1-3-1-15 12.67 1.89 1.62 0.16 0.30 0.40 

Line061_Renner1-3-1-16 10.78 1.89 1.57 0.24 0.28 0.19 

Line062_Renner1-3-1-17 2.00 1.44 1.44 0.00 0.22 1.00 

Line063_Renner1-3-1-19 7.89 1.56 1.38 0.14 0.17 0.24 

Line064_UCR3-1-2-1 8.00 1.89 1.63 0.13 0.30 0.51 

Line065_UCR3-1-2-2 13.00 1.78 1.65 0.24 0.24 -0.07 

Line066_UCR3-1-2-3 10.78 1.67 1.46 0.09 0.25 0.62 

Line067_UCR3-1-4 1.00 1.00 1.00 0.00 0.00 
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Line068_UCR3-1-5 5.89 2.22 1.52 0.28 0.29 0.01 

Line069_UCR3-1-6 7.89 1.33 1.22 0.07 0.13 0.48 

Line070_UCR3-1-7 9.78 1.89 1.47 0.16 0.25 0.37 

Line071_UCR3-1-8 10.00 1.78 1.57 0.24 0.28 0.06 

Line072_AjimoAl6×7029-1-9 11.89 1.89 1.60 0.21 0.27 0.23 

Line073_ICEASE00001 10.78 1.89 1.77 0.14 0.35 0.61 

Line074_ICEASE00002 9.67 2.11 1.52 0.12 0.20 0.18 

Line075_ICEASE00003 4.00 1.22 1.16 0.03 0.09 0.73 

Line076_ICEASE00004 2.00 1.33 1.33 0.00 0.17 1.00 

Line077_ICEASE00005 5.89 1.89 1.60 0.13 0.31 0.44 

Line078_ICEASE00006 1.00 1.00 1.00 0.00 0.00 

Line079_ICEASE00007 2.78 1.00 1.00 0.00 0.00 

Line080_ICEASE00008 3.89 1.44 1.36 0.03 0.19 0.71 

Line081_ICEASE00015 9.67 1.78 1.65 0.10 0.28 0.66 

Line082_ICEASE00018 13.67 2.11 1.77 0.14 0.35 0.51 

Line083_ICEASE00019 4.78 1.78 1.45 0.14 0.25 0.27 

Line084_ICEASE00020 13.00 1.89 1.63 0.16 0.30 0.42 

Line085_ICEASE00022 6.89 2.67 1.67 0.49 0.35 -0.37 

Line086_ICEASE00096 3.78 1.44 1.44 0.00 0.22 1.00 

Line087_OTIS 9.00 1.89 1.70 0.11 0.32 0.65 

Line098_LocalSesim2 10.00 1.67 1.55 0.08 0.30 0.72 

Line114_LocalSesim2 7.78 1.67 1.48 0.18 0.24 0.34 

Line118_LocalSesim2 1.00 1.00 1.00 0.00 0.00 

Line191_LocalSesim2 3.67 1.44 1.29 0.00 0.17 1.00 

Note. Sample size (N), number of alleles (NA), number of effective alleles (NE), observed heterozygosity (HE), 
expected heterozygosity (HE), and the fixation index (F) calculated as mean values using GenAlEx. 

 

Appendix 4. Values of the qualitative agromorphological traits are listed 
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001 3 1 2 1 3 1 4 2 2 2 3 2 1 1 6 

002 3 1 1 2 3 1 2 2 2 2 3 6 1 1 5 

003 3 2 2 2 2 1 2 2 3 2 3 3 1 3 7 

004 2 2 2 2 3 1 4 2 2 2 2 1 1 2 7 

005 3 1 1 2 2 1 4 2 2 2 3 3 1 3 6 

006 3 2 3 2 2 1 4 3 2 2 3 3 1 3 8 

007 3 1 1 2 2 1 2 3 1 2 3 5 1 1 4 

008 3 2 1 2 3 1 2 3 1 1 2 6 1 1 5 

009 3 2 1 2 3 1 2 3 1 1 3 5 1 1 5 

010 3 2 1 2 3 1 2 3 1 2 4 5 1 1 5 

011 3 2 2 2 3 1 4 3 2 2 2 5 1 1 6 

012 3 1 2 2 3 1 1 2 1 1 3 5 1 1 6 

013 3 2 1 2 3 1 1 2 3 2 2 5 1 1 5 

014 3 1 2 2 2 1 2 2 2 2 3 5 1 1 5 

015 3 2 1 2 2 1 4 3 2 2 2 5 1 1 4 

016 3 2 1 2 2 1 4 3 2 2 3 2 1 2 5 

017 3 2 1 2 2 1 1 2 2 2 3 2 1 1 4 
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018 3 1 2 2 2 1 4 2 2 2 3 1 1 2 6 

019 3 2 3 2 2 1 4 1 1 1 2 2 1 1 6 

020 3 1 3 2 2 1 1 2 2 1 3 5 1 3 8 

021 3 2 1 2 3 1 2 2 1 1 2 1 1 1 5 

022 3 1 1 2 2 1 2 2 2 1 3 6 1 1 4 

023 3 2 2 2 2 1 2 2 2 2 3 2 1 1 5 

024 3 2 2 2 2 1 4 3 2 3 3 1 1 2 6 

025 2 2 1 2 2 1 4 2 1 1 2 2 1 3 6 

029 3 2 1 2 2 1 1 3 2 3 4 2 1 1 4 

030 3 2 1 2 2 1 4 2 2 2 4 5 1 1 4 

034 3 2 2 2 2 1 4 2 1 2 3 3 1 2 6 

035 3 1 2 2 1 1 1 2 1 2 2 5 1 1 4 

036 2 1 3 2 1 1 1 2 2 1 3 2 1 3 7 

037 3 1 2 2 1 1 1 2 1 1 4 2 1 1 4 

038 2 1 1 2 2 1 1 1 1 1 3 5 1 2 5 

039 3 2 3 2 2 1 1 2 1 2 3 3 1 2 7 

040 2 1 3 2 2 1 2 2 1 3 3 3 1 2 7 

041 2 2 3 2 2 1 4 1 1 1 3 1 1 2 7 

042 2 1 2 2 1 1 2 2 2 2 3 3 1 3 6 

043 2 2 1 2 2 1 4 1 1 1 3 3 1 1 4 

044 3 1 2 2 1 1 2 1 1 1 2 3 1 2 5 

045 3 2 2 2 2 1 2 3 1 1 3 5 1 3 7 

046 2 2 1 3 3 1 4 2 1 1 2 5 1 2 6 

047 3 1 1 3 1 1 1 1 1 2 4 2 1 3 5 

048 2 2 2 3 1 1 2 2 1 1 3 5 1 3 6 

049 3 1 1 3 1 1 4 1 2 1 3 5 1 2 4 

050 2 1 3 3 1 1 2 1 2 1 3 5 1 2 6 

051 3 1 2 3 2 1 2 1 2 1 2 2 1 1 5 

052 3 1 2 3 1 1 1 1 2 2 3 2 1 1 4 

053 3 1 1 1 2 1 4 1 2 1 3 3 1 1 4 

054 2 2 1 2 1 1 4 1 2 2 1 2 1 1 3 

055 3 1 2 2 3 1 1 1 1 1 3 3 1 2 7 

056 3 2 3 2 2 1 4 2 1 2 3 2 1 1 6 

057 2 1 1 2 2 1 2 1 1 1 3 2 1 2 5 

058 3 1 1 2 2 1 4 1 1 1 2 3 1 3 6 

059 2 1 1 2 3 1 1 1 1 1 3 2 1 3 7 

060 3 2 1 2 3 1 4 1 1 2 3 2 1 3 7 

061 3 2 1 2 2 1 1 1 1 2 4 3 1 3 6 

062 3 1 1 2 2 1 1 2 2 2 3 3 1 1 4 

063 3 1 1 2 2 1 2 1 2 2 3 5 1 1 4 

064 3 2 2 2 2 1 4 1 1 1 3 5 1 3 7 

065 3 2 1 2 2 1 1 1 1 1 1 2 1 2 5 

066 3 1 2 2 2 1 4 2 2 2 1 5 1 3 7 

067 2 1 2 2 1 1 1 1 1 1 3 5 1 2 5 

068 2 1 2 2 1 1 2 1 1 2 3 3 1 3 6 

069 3 2 3 2 2 1 4 1 1 1 4 5 1 2 7 

070 2 1 1 2 1 1 1 1 1 1 3 5 1 2 4 

071 2 1 1 2 1 1 1 1 1 1 1 5 1 3 5 

072 3 1 2 2 1 1 4 1 1 1 1 3 1 1 4 

073 3 1 2 2 2 1 2 1 1 1 2 5 1 1 5 

074 3 1 2 2 1 1 1 1 1 1 3 3 1 2 5 

075 3 1 1 2 1 1 1 1 1 1 2 1 1 1 3 
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076 3 2 2 2 2 1 2 1 1 1 4 1 1 1 5 

077 3 3 2 2 1 1 1 1 1 2 2 3 1 1 4 

078 3 2 1 2 1 1 1 1 1 1 3 1 1 1 3 

079 3 2 2 2 2 1 1 1 1 1 2 1 1 1 5 

080 3 2 1 2 2 1 4 1 1 1 4 3 1 1 4 

081 3 2 1 2 1 1 4 1 1 1 3 5 1 2 4 

082 3 1 1 3 1 1 4 1 1 1 3 2 1 1 3 

083 3 1 2 3 2 1 1 1 1 1 3 2 1 1 5 

084 3 1 2 3 2 1 1 1 1 1 3 2 1 1 5 

085 3 1 1 3 1 1 1 1 1 1 3 2 1 1 3 

086 2 1 2 3 2 1 1 2 3 2 2 3 1 1 5 

087 2 1 2 3 1 1 1 1 1 1 2 6 1 1 4 

098 3 2 2 1 2 1 4 1 1 1 3 6 1 1 5 

114 3 2 1 2 2 1 4 1 1 2 2 6 1 1 4 

118 3 1 2 2 1 1 1 2 2 2 3 3 1 2 5 

191 3 1 2 3 1 1 1 3 2 3 3 5 1 1 4 

 

Appendix 5. Mean values of the quantitative agromorphological traits are listed: days to flowering (DTF), days 
to maturity (DTM), plant height (PH), plant height until first capsule (HFC), plant height until first branch (HFB), 
number of branches (NB), length of capsule zone (LCZ), number of capsules on main stem (NCMS), number of 
capsules on branches (NCB), and total number of capsules (TNC). *) Entry 25: only one measurement has been 
done per trait, thus, this entry was excluded from all further statistical analyses. Values above the single positive 
standard deviation are marked in green, and values below the single negative standard deviation are marked in red. 
Entries with at least five traits above the single positive standard deviation are marked in green. Entries with at 
least five traits below the single negative standard deviation are marked in red 

Entry DTF DTM PH [cm] HFC [cm] HFB [cm] NB LCZ [cm] NCMS NCB TNC 

001 46.67 89 114.67 70 51 3 43.67 13.33 13 26.33 

002 47.67 90.33 115.67 78.33 60.33 2.33 33.33 12 11.67 23.67 

003 47 90 104.67 70 56.67 2 35 14.33 6 20.33 

004 46.33 89 121 72.67 56.33 2.33 48.33 18.33 18 36.33 

005 44.33 87 111.33 71.67 56.67 2.67 38.67 18 14.67 32.67 

006 44.33 86 114.67 71.33 51.33 3 42.33 16.67 18 34.67 

007 44.33 86 100.33 70 58.33 2.33 33 10 7.33 17.33 

008 45 87.33 129.67 81.67 60.33 3.33 46.33 15.67 17.33 33 

009 47.33 90 121 75 56 3.33 45.67 15.67 15 30.67 

010 46.67 89.67 129 74 49 3.67 54 20 31.33 51.33 

011 49 92 111 71 52 2.67 41.67 13 14.67 27.67 

012 48.33 90.67 99.67 63.33 38.48 2.87 37.33 10 15.12 20.67 

013 44.67 87 107.33 67.33 49.67 3 40.33 12.67 12.33 25 

014 41.33 83 122 71.33 53 2.67 48.33 16.67 17 33.67 

015 45.33 87.67 116 74 51.33 3.33 40.67 13 17.33 30.33 

016 44 86.67 111 70.67 58.67 2.33 43 15.67 12.67 28.33 

017 44.33 86 150 86 50 3 51.33 19.33 22.33 41.67 

018 47.67 90.33 110.67 69.67 56.67 2.33 39.67 13 9 22 

019 47 90 115.67 71.33 59.33 2.67 44.33 18.33 16 34.33 

020 42.67 84.33 111.67 63.67 49.33 2.67 48.67 17 15.33 32.67 

021 47.67 91.33 108.67 68 46.67 3.67 39.33 12 16.33 28.33 

022 47.33 90.67 117 76.33 57 3.67 40.67 12.67 14.67 27.33 

023 45.67 88.67 125 63.67 42.33 2 53 13 8.67 21.67 

024 46.67 89.33 108.67 63.33 44.33 2.33 45 14 14 28 

025* 84 130 130.78 90.52 88.76 2.98 46.23 9.72 3.03 12.6 

029 45.33 88.33 94.67 64 43.67 4 32.67 10.33 19.33 29.67 
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030 48 90.67 109.67 71.67 52.67 3 37.67 8.33 16.33 24.67 

034 46.33 89.33 115 56 37.67 2.33 63.33 18.67 11.67 30.33 

035 48.33 91.67 119.33 75.33 61.33 3.33 36 9.67 12.33 22 

036 39.67 81.33 92.67 56 37 2.33 36.67 9.33 8 17.33 

037 41.67 83.33 108.67 62 43 3.33 46.33 14.33 16 30.33 

038 41.67 83.67 106 60.67 45 2.33 47.67 13 10 23 

039 40.33 82 92.33 54 42.33 2.33 39 12.67 9.67 22.33 

040 41.67 83.33 84 43 36.4 2.12 40.67 10.33 3.89 12.33 

041 48 90.67 110.33 77.67 54 4 33 11 12 23 

042 38.67 80.33 92 44.33 28.67 2 48 14.67 8 22.67 

043 40.67 82.33 96.67 53 43.9 2.12 44.33 11 11.89 18.33 

044 50 92.67 125.67 76.67 64.33 3.33 48.67 12 13.67 25.67 

045 42.33 83.67 97.67 57 45.4 2.62 37 10.33 7.39 14.67 

046 46 88.33 101 66.33 55.33 2 35.33 22.33 13 35.33 

047 39.33 80.33 86 51.33 37.33 2.33 35.33 15 12.67 27.67 

048 41.67 83.67 87.33 48.67 40 2 40.67 11 4.67 15.67 

049 41 82.33 94 53 43 2 43.67 12.67 9.67 22.33 

050 36.67 77.67 80.67 45.67 37.33 2 36 12.67 5.67 18.33 

051 47.67 90.67 96.33 62.67 44.67 3 40 10.33 11.67 22 

052 43.33 85.67 99.33 62.67 52 1.67 37 10.67 4.33 15 

053 42.33 83.67 83.33 51 42 2 39.33 14 4.33 18.33 

054 44.67 87.33 110 70.33 52.67 3.33 39.67 12.67 11 23.67 

055 39.67 81.33 110.67 55.33 31.67 3 56.33 13.67 17.67 31.33 

056 43.67 85.33 112.33 60.67 39.33 2.33 50.67 15.33 14.33 29.67 

057 39 80.33 92.67 47 36 2 47.67 14 8.33 22.33 

058 40 81 104.33 67 53.33 2 36.67 11.67 8.33 20.33 

059 42.67 84 102.67 63.67 53.62 2.51 40.67 12 7.98 17.33 

060 46.67 89.67 106.33 55.67 39.67 2.67 52.33 15.33 10.67 26 

061 45 87.67 81.67 45 27.33 3.33 43.33 12.67 12.67 25.33 

062 40.67 82.33 108.33 63.33 45.33 2.67 45.33 13.67 18.67 32.33 

063 48 91 96.67 57.67 35.67 3.33 40 11.33 13 24.33 

064 39.33 81 93.67 41.33 28 2.33 50.33 17.33 6.33 23.67 

065 37 78 101.33 42.33 25.33 2 59.33 21.67 13.67 35.33 

066 41 82.67 87.33 43 27 3 45.67 15.33 7 19 

067 36.33 77.33 81.33 44 29.67 2.33 38.33 13 5.67 18.67 

068 38.67 79.67 80.67 43 29.12 1.51 37.67 9.67 5.98 13.67 

069 40 81.33 95.33 54.67 39.67 2.33 38.67 11.67 6.33 18 

070 37 78 89.33 52.33 41.33 1.67 37.67 10 4.67 14.67 

071 42 83.67 86.33 39.33 19.90 2.62 48.67 15.33 4.39 17.67 

072 43.33 85 99.33 55.67 42.33 2.33 46 15.67 11.33 27 

073 49 91 101 70.33 48 3.33 32.67 10.67 10.67 21.33 

074 47 90 100.67 68.33 51.33 3 33.67 12.67 9.67 22.33 

075 45.67 88 98.33 70.67 50.33 2.67 27.33 5 2.67 7.67 

076 45.33 87.67 93.67 70.67 44.33 3.67 27 5.33 3.67 9 

077 48 90.67 124.33 73.67 55.67 4 42.33 10 12.33 22.33 

078 43.67 86 105 64.33 45 2.33 42.67 7 3.67 10.67 

079 41 82 115 77 60 2.67 37 7.67 6.33 14 

080 39.67 81.33 111 59 44 2.67 52.67 9.67 3.67 13.33 

081 43 85 113.67 65.67 42 3.67 49.33 13 22.33 35.33 

082 44 86.33 101.33 61 38.33 2.67 39.67 10.33 9 19.33 

083 45.33 88 111.67 67.67 48.67 2.33 44 10.67 8 18.67 

084 45 87 113 73.33 59 2.33 41.33 9 5 14 
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085 44 86.33 93.67 57.67 34.33 3.33 37 7.67 4 10 

086 49.67 92.67 83.78 59.52 54.76 0.98 26.23 3.72 0 3.6 

087 49.67 92 116.67 74.67 58.33 3.33 40 11 10 21 

098 45 87 125 73 48.67 3 51 14.67 20.67 35.33 

114 47.33 89.67 117 79.67 58.33 2.33 37 9.67 9 18.67 

118 46 89 104.67 72.67 54.67 2.67 32.33 9.67 8 17.67 

191 49.33 92.33 108.67 70 42.67 3.67 39 11 19 30 

Mean 44.10 86.27 105.09 63.30 46.28 2.68 41.90 12.73 11.19 23.61 

Standard deviation 3.43 4.02 13.23 10.92 9.81 0.61 6.98 3.48 5.43 8.09 

 

Appendix 6. Analysis of molecular variance (AMOVA) based on nine nuclear SSR markers applied on 83 
sesame entries which were grouped into eight countries of origin 

Source of variation d.f. Sum of squares Mean sum of squares Percentage of variation

Among countries of origin (n = 8) 7 168.13 24.02 7% 

Among individuals 658 1994.58 3.03 56% 

Within individuals 666 492.43 0.74 36% 

Total 1331 2655.14 100% 

Note. d.f. = degrees of freedom. 
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