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Abstract 
Crambe is an oleaginous plant mainly cultivated in Brazil due to its oil characteristics that provide stability to 
oxidation, qualifying it for the use in a variety of products. Understanding the spectral-temporal pattern of the 
crambe crop is important to identify and quantify already cultivated areas via remote sensing. This study 
spectrally characterised the plant, seeking to relate the spectral pattern to the phenological stages of the crop 
throughout its development. The spectral information was obtained by passive terrestrial sensors in two harvests, 
thus generating a spectral-temporal pattern and the crambe temporal profile through the vegetation indices NDVI 
and SAVI. During the phenological stages of the seedling and the beginning of the vegetative growth, the red 
spectral band showed higher values of reflectance; this occurred because the crop had not yet completely 
covered the soil. Stages at the end of the vegetative growth and the beginning of the flowering, there was a 
higher reflectance in the near infrared and a lower reflectance in the mid-infrared. For the granulation and 
maturation stages, the reflectance in the mean and near infrared reduced due to leaf senescence and loss of 
cellular water content. The NDVI and SAVI temporal profiles demonstrate linear growth up to the vegetative 
peak, which occurs between the end of the phenological stage of the vegetative growth and the beginning of the 
flowering and highest amount of green biomass. At the beginning of grain formation and filling, yellowing of 
leaves and senescence, granulation and maturation stages, the values reduced.  

Keywords: remote sensing, spectral behaviour, brassicaceae, Crambe abyssinica H., vegetation indices, 
agricultural monitoring 

1. Introduction 
Crambe is a cruciferous plant originating from Ethiopia, with a seed oil content of up to 38% (Knights, 2002). Its 
development is composed of different phenological stages: seedling, vegetative growth, flowering, granulation 
and maturation. It has a short cycle, between 78 days and 125 days, depending on the region of cultivation and 
sowing time (Viana, 2013; Oliveira et al., 2013).  

It stands out as an alternative in biodiesel production in Brazil due to its rusticity, early maturation, high oil 
content and adaptability to different climates (Souza et al., 2016). The Fundação MS implemented crambe in 
1995 in the country, which is currently a commercial variety cultivated for the production of oil used in industrial 
lubricants, corrosion inhibitors, plastic films, nylon, adhesives and electrical insulators (Pitol, Broch, & Roscoe, 
2010; Jasper, 2010).  

Research conducted in the state of Paraná during the winter harvest showed a grain production between 1.500 
and 2.100 kg/ha and an oil yield from 500 to 700 kg/ha (Silva et al., 2013; J. I. Santos, Silva, Rogerio, R. F. 
Santos, & Secco, 2013; Viana et al., 2015).  

Remote sensing techniques are important tools for monitoring the development and expansion of areas cultivated 
with agricultural crops, in addition to subsidising production estimates at the regional and national levels. Such 
techniques allow crop characterisation from reflectance data generated in the spectral ranges of the visible, near 
infrared – NIR and mid-infrared – MIR, besides conversion of the acquired data (Lohmann, Deppe, Simoes, & 
Mercuri, 2009).  
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Coutinho, Esquerdo, Oliveira, and Lanza (2012) state that in order to map and monitor areas of annual 
agriculture, spatial and temporal information of the national agricultural activity is required, synchronised with 
the phenological development of the crops. This characterises the spectral-temporal behaviour that supports the 
accurate assessment of the productive potential of the plants.  

However, mapping agricultural crops by remote orbital sensing is still a challenging undertaking. Under full soil 
coverage conditions, for most current orbital sensors, different crops may appear to be spectrally similar (Yao, 
Tang, Wang, & Zhang, 2015). To change this, new technologies have been tested in terms of their potential for 
spectral differentiation. With the use of hyperspectral sensors, images with hundreds of narrow and continuous 
spectral bands are acquired. Thus, hyperspectral images have substantially improved the ability to distinguish 
multiple characteristics of agricultural crops by better differentiation and estimation of biophysical attributes 
(Mulla, 2013). 

Field spectroradiometers perform in situ radiometric collections, thus providing not only detailed data on the 
spectral characteristics of targets, but also allowing the acquisition of physical values, such as radiance and 
reflectance, which spectrally characterise different objects without the interference of external factors (Martins & 
Galo, 2015). 

Vegetation indices (VIs) are spectral measurements from mathematical combinations of spectral ranges from red 
(620 to 700 nm) and near infrared (NIR) (700 to 1.300 nm), which provide more than 90% of the spectral 
information of vegetation (Viña, Gitelson, Nguy-Robertson, & Peng, 2011). According to Motomiya et al. (2014), 
VIs are generally related to biomass, chlorophyll content and the productive potential of plants. 

The normalised difference vegetation index (NDVI) and the soil-adjusted vegetation index (SAVI) are among the 
most used indices to monitor the biomass temporal evolution of agricultural crops (Ponzoni, Shimabukuro, & 
Kuplich, 2012). Research has shown that they are important tools in monitoring crop development (Risso et al., 
2012) and correlate with grain yields (Bredemeier, Variani, Almeida, & Rosa, 2013; Monteiro, Angulo Filho, 
Xavier, & Monteiro, 2013). A time series of NDVI values of agricultural crops throughout their vegetative cycle 
can provide useful information on growth and crop state (Li et al., 2014). 

In this context, this study aimed to characterise the spectral-temporal pattern of the crambe, obtained by a 
passive terrestrial sensor, and tried to relate the spectral pattern of the crambe crop with its phenological stages. 
Such an approach could provide a technical basis for the potential use of satellite images (SR orbital) in order to 
identify, delimit, map and monitor agricultural areas cultivated with crambe on a large scale.  

2. Material and Methods 
2.1 Characterisation of the Study Area and Crop Implantation 

The study was conducted during the 2014 and 2015 harvests in the experimental areas of the University Center 
FAG, Cascavel city of Paraná state, Brazil, latitude 24°56′1.21″ S and longitude 53°30′41.63″ W, at an altitude of 
700 m (Figure 1). 
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2.4 Characterisation of the Spectral-Temporal Signature 

The hyperspectral information of the 12 sample points was grouped by day of harvest in the software Excel, 
calculating the daily means; graphs of the spectral-temporal signature of each harvest were designed.  

2.5 Calculation of Vegetation Indices 

Daily averages of each sampling point were generated, totalling 12 mean samples per collection day. To calculate 
the Normalized Difference Vegetation Index (NDVI), spectral range information was selected from 620 to 1300 
nm, classified into two spectral bands: V – Red (620 to 700 nm) and NIR – Near infrared (700 to 1300 nm), and 
applied in the formula proposed by Rouse , Hass, Schell & Deering (1974), according to Equation 1. 

NDVI = (ρIVP – ρV)/(ρIVP + ρV)                             (1) 

Where,  

ρIVP: Range of near infrared; ρV: Range of red.  

Another index generated from the daily mean sample was the Soil-Adjusted Vegetation Index (SAVI), based on 
the formula proposed by Huete (1988), who introduced an adjustment factor (L) between -1 and +1, Equation 2. 

SAVI = (ρIVP – ρV)·(1 + L)/(ρIVP + ρV + L)                      (2) 

Where,  

ρIVP: Range of near infrared; ρV: Range of red; L: Adjustment factor for the canopy substrate of the plant, which 
takes into account differential canopy extinction for red and near infrared (Huete, 1988). 

Huete, Justice and Liu (1994) found that by applying L = 0.5, the soil brightness variations were minimised, 
eliminating the need for additional calibration for different soil and canopy types. 

2.6 Statistical Analysis 

The VIs were tabulated and graphs were generated with the temporal profiles of the daily means of NDVI and 
SAVI of the crambe in the 2014 and 2015 harvests. Both profiles were submitted to the normality test using the 
Shapiro-Wilk method and exploratory data analysis in the software Action Stat.  

3. Results and Discussion 
Crambe showed a growth cycle of around 120 days in the two harvests. In 2014 and 2015, cumulative 
precipitation was 832 and 827 mm, respectively. According to Pitol et al. (2010), precipitation excess during 
crop development favours the appearance of fungal diseases that affect grain yield.  

3.1 Characterisation of Spectral-Temporal Patterns 

3.1.1 2014 Harvest 

Figure 3 represents the spectral signature at different crambe developmental stages. The curve that includes the 
spectral data mean of the phenological stages of PL and beginning of VG – 21 DAS (Days After Seeding) shows 
the highest reflectance of the red spectral range (620 to 700 nm) when compared to curves 41, 56 and 88 DAS. 
This fact was related to the large soil area still exposed during data collection; in these phenological stages, the 
soil was only partially covered by the crambe canopy. The soil of the experimental area was rich in iron oxide, 
causing the red tonality, which may have contributed to this behaviour (Sousa Jr., Demattê, & Genú, 2008; Genú 
& Demattê, 2012).  

The phenological stage curves of VG and FL, 41 and 56 DAS, show a gradual increase in the absorption of blue 
(400 to 500 nm) and red (620 to 700 nm) wavelengths. According to Ponzoni et al. (2012), the chlorophyll in the 
green leaves absorbs these spectral regions, converting heat and stored energy through photosynthesis. These 
curves, compared to the beginning of the cycle (21 DAS), show an increase in the reflectance of the green range 
due to leaf pigmentation.  

The highest reflectances in the NIR range (near infrared; 700 to 1300 nm) are represented in the phenological 
stage curves of FL and FL/GR, 56 and 88 DAS, with the reflection peak in the stage that includes the beginning 
of flowering. Jensen (2009) emphasises that the energy incident on the structure of a green and healthy leaf 
generates scattering in the spongy mesophyll and increase in reflectance. Figure 3 shows examples of this 
occurrence in crambe leaves at 56 DAS. 

The MT stages of the plant, 104 DAS curve, are characterised by the reflectance increase in the MIR range (1300 
to 3200 nm). Leave senescence and water loss in the cell structure contribute to this behaviour, according to the 
field situation in 104 DAS, presented in the image of this day (Figure 3).  
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3.2 Vegetation Indices 

3.2.1 NDVI 

(1) NDVI Statistical Analysis 

The NDVI means of 2014 and 2015, submitted to the Shapiro-Wilk test, presented a p-value of 0.6385 and 
0.2500, respectively. Values greater than the 0.05 significance level represent normality in the data distribution.  

Table 2 shows the exploratory data analysis of NDVI of crambe, 2014 harvest. All characterised by low 
dispersion, the lowest standard deviation (SD) of 0.014 was collected at the beginning of the cycle, PL and early 
VG stages – 24 DAS and higher during VG in 41 DAS (0.0402). According to Pimentel-Gomes (2002), the 
NDVI coefficients of variation (2014) are classified as low dispersion and high precision in the experiment.  

 

Table 2. Exploratory analysis of the NDVI vegetation indices of crambe, 2014 

Statistics 
DAS* 

24 41 56 88 104 

Minimum  0.3455 0.6779 0.8184 0.7065 0.4927 

Mean 0.3651 0.7393 0.8505 0.7247 0.5416 

Median 0.3636 0.7389 0.8549 0.7179 0.5440 

Maximum 0.394 0.8016 0.8736 0.7514 0.5735 

SD** 0.014 0.0402 0.0164 0.0148 0.0247 

CV*** (%) 3.82 5.44 1.92 2.04 4.56 

Note. *DAS = Days after sowing, **SD = Standard deviation, ***CV = Coefficient of variation. 

 

Table 3 shows the NDVI exploratory data analysis of the crambe, 2015 harvest. Low dispersion and high 
precision are data characteristics, except the values generated during the VG – 34 DAS. The lowest standard 
deviation and the lowest coefficient of variation were obtained in FL/early GR in 80 DAS, 0.005 and 0.58%, 
respectively. The highest SD (0.0556) and a CV of 12.51%, classified by Pimentel Gomes (2002) as mean 
dispersion, were found in 34 DAS in the VG stage.  

 

Table 3. Exploratory analysis of the NDVI vegetation indices of crambe, 2015 

Statistics 
DAS* 

21 34 48 66 80 96 114 

Minimum  0.2655 0.3281 0.6523 0.8616 0.8471 0.6792 0.5078 

Mean 0.2868 0.4449 0.7638 0.8690 0.8530 0.7934 0.5872 

Median 0.2859 0.4371 0.7748 0.8662 0.8526 0.8039 0.5933 

Maximum 0.3126 0.5499 0.8118 0.8798 0.8608 0.8186 0.6806 

SD** 0.015 0.0556 0.0435 0.0065 0.0050 0.0378 0.0460 

CV*** (%) 5.22 12.51 5.70 0.75 0.58 4.76 7.84 

Note. *DAS = Days after sowing, **SD = Standard deviation, ***CV = Coefficient of variation. 

 

(2) NDVI Temporal Profile  

Figure 5 shows the time profile of NDVI of crambe in the 2014 and 2015 harvests. The indices obtained at the 
beginning of the cycle, 24 DAS (2014) and 21 DAS (2015), were the lowest in the whole crop cycle, 0.36 and 
0.29, respectively. In both harvests, the plants were in the transition between the PL stages and early VG, 
unfurling the first true leaves. Plants with small size and on exposed soil contribute to electromagnetic energy 
absorption in the NIR range, justifying the lowest NDVI values (Poelking, Lauermann, & Dalmolin, 2007).  
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precision. Data collected in the VG, FL and GR, represented respectively by 41, 56 and 88 DAS, showed mean 
dispersion, according to the classification proposed by Pimentel-Gomes (2002).  

 

Table 4. Exploratory analysis of the SAVI vegetation indices of crambe, 2014 

Statistics 
DAS* 

24 41 56 88 104 

Minimum  0.1898 0.4147 0.5327 0.2846 0.3741 

Mean 0.2056 0.5460 0.6624 0.4016 0.4187 

Median 0.2001 0.5172 0.6456 0.3666 0.4193 

Maximum 0.2355 0.7364 0.8518 0.5955 0.4712 

SD** 0.0148 0.1091 0.1072 0.0912 0.0282 

CV*** (%) 7.17 19.99 16.18 22.73 6.74 

Note. *DAS = Days after sowing, **SD = Standard deviation, ***CV = Coefficient of variation. 

 

Table 5 corresponds to the SAVI exploratory analysis – 2015 harvest. Data obtained in 48, 80 and 114 DAS 
showed low dispersion of data. The other collection days classified by mean data dispersion (CV: 10 to 20%). 

 

Table 5. Exploratory analysis of the SAVI vegetation indices of crambe, 2015 

Statistics 
DAS* 

21 34 48 66 80 96 114 

Minimum  0.1383 0.1887 0.4323 0.4573 0.5680 0.3839 0.3392 

Mean 0.1715 0.2602 0.4775 0.6305 0.6148 0.5562 0.3795 

Median 0.1688 0.2592 0.4688 0.6398 0.6086 0.5706 0.3793 

Maximum 0.2158 0.3095 0.5553 0.8014 0.6715 0.6192 0.4487 

SD** 0.0225 0.0350 0.0388 0.0789 0.0294 0.0608 0.0303 

CV*** (%) 13.11 13.45 8.13 12.52 4.77 10.93 7.97 

Note. *DAS = Days after sowing, **SD = Standard deviation, ***CV = Coefficient of variation. 

 

(2) SAVI Temporal Profile 

Figure 6 shows the SAVI time profile of crambe in the 2014 and 2015 harvests. The indices showed a behaviour 
similar to that of the NDVI time profile. Our results are in agreement with the findings obtained in a study 
comparing SAVI, NDVI and LAI values of vegetation coverage in Mato Grosso do Sul, Brasil (Braz, Águas, & 
Garcia, 2015). 
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development of the crop). We also thank the CNPq (National Council of Scientific and Technological 
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