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Abstract 

The present study analyzed the genetic variability and structure of farmed tambaqui in the Brazilian state of Pará, 
and provided basic information that can be used for the development of programs of monitoring and 
management of genetic resources in the aquaculture operations of northern Brazil. A total of 216 individuals 
were sampled from tambaqui farms in Pará. Genotyping was based on a multiplex set of 10 tri- and 
tetra-nucleotide microsatellite markers. The data were used to calculate genetic diversity indices, expected and 
observed heterozygosity, the number of alleles per locus, allelic richness, and inbreeding coefficient. Genetic 
structure was verified using DEST and RST, the genetic signature, and Bayesian analysis. The results showed that 
the tambaqui farms surveyed have suffered a significant loss of genetic variability, and that they are genetically 
structured, forming two clusters, one encompassing the farms in western Pará, and the other including the farms 
from the northeast and southeast regions of the state. These finding provide fundamental insights for the 
development of effective strategies that will help guarantee productivity and the quality of the tambaqui farms of 
northern Brazil, and provide a database for the upgrading of the genetic variability of these populations. This 
study indicated the need for hatcheries in southeastern and northeastern Pará to amplify or renew their breeding 
stocks, in order to avoid the significant loss of genetic diversity in the tambaqui farms of these regions. 
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1. Introduction 

The tambaqui, Colossoma macropomum, is the second most farmed fish species in Brazil, contributing 28.1% of 
the country’s total production of fish in 2015. The 135,860 tons produced in this year represent a slight decline, 
of 2.7%, in comparison with 2014. The majority (78.6%) of this tonnage is produced in northern Brazil, 
primarily in the state of Rondônia, which accounts for 47.7% of the national output, and 60.7% of the tambaqui 
produced in the northern region of Brazil (IBGE, 2015).  

The analysis of the genetic variability of farmed populations, based on molecular markers, has been used 
successfully to increase the productivity of some fish species by providing systematic guidelines for programs of 
breeding management and genetic enhancement (Liu & Cordes, 2004). A reduction in the genetic variability of 
farmed tambaqui has been recorded in a number of studies, although none have used tri- and tetra-nucleotides, 
which have the advantage of producing fewer shadow or stutter bands during amplification in comparison with 
di-nucleotide microsatellite repeats (Munyard et al., 2009).  

Given the economic importance of tambaqui farming, and the ongoing loss of genetic variability in captive 
populations, which may result in reduced productivity, more research is clearly needed. The present study 
analyzed the levels of genetic variability and structuring in tambaqui farms in the Brazilian state of Pará, 
providing basic data that can be used for the development of systematic program for the monitoring of genetic 
resources and the enhancement of the populations held by aquaculture operations in northern Brazil. 
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2.5 Estimates of Genetic Diversity 

The observed (HO) and expected (HE) heterozygosity and possible deviations from Hardy-Weinberg equilibrium 
(HWE) were calculated in Arlequin 3.5.1.3. The p-values were determined following the Bonferroni correction 
(Rice, 1989). 

The number of alleles per locus (NA), allelic richness (AR), and the inbreeding coefficient (FIS) per locus were 
estimated in Fstat 2.9.3.2. The Polymorphic Information Content (PIC) was calculated in Cervus 3.0. 

The nonparametric Wilcoxon test with the Bonferroni correction (Rice, 1989) was used to verify the significance 
of the differences found between the results of the present study and the data available in the literature for wild 
populations of tambaqui. These analyses were run in the R environment (www.r-project.org).  

2.6 Genetic Structure 

The genetic differentiation between tambaqui farms was assessed using the RST statistic (Slatkin, 1995), run in 
Arlequin 3.5.1.3, and DEST (Jost, 2008), run in the DEMEtics 0.8.7 package of the R environment 
(www.r-project.org). A test of genetic attribution was run in GenAlex 6.5 to verify the classification of each 
individual in either its tambaqui farms of origin or some other tambaqui farm. For this analysis, the populations 
were grouped in three aquaculture regions, Northeast, West, and Southeast Pará. 

To infer the number of genetically homogenous populations (K) that are most likely to exist in the study area, a 
database was compiled in Structure 2.2. In this analysis, we used 106 simulations with K ranging from 1 to 10, 
and discarded a burn-in of 20,000 simulations. The most likely value of K was determined by the ΔK method 
described by Evanno et al. (2005), run in Structure Harvester 0.6.94. The CLUMPP 1.1.2 program was used to 
align the association coefficients for each cluster and to find the best value of K. The distruct 1.1.2 software was 
used to present the results. 

3. Results  

A total de 104 alleles were identified in the 10 microsatellite loci of the 216 individuals analyzed. The lowest 
mean NA was recorded at Peixe Boi (4.5), and the highest (7.1) at Monte Alegre (see Appendix 1 for complete 
proofs). The NA values recorded in the present study were significantly lower (P < 0.005) than those recorded in 
previous studies of wild populations. As for the NA, the AR values were lower than those recorded for wild 
tambaqui populations, ranging from 3.701 at Peixe Boi to 5.129 at Monte Alegre. The AR values varied 
negligibly among the farm populations (see Appendix 1 for complete proofs). 

The mean HO of the tambaqui farms varied from 0.444 at Tracuateua to 0.672 at Santarém, while the mean HE 
ranged from 0.663 at Peixe Boi to 0.787 at Monte Alegre (see Appendix 1 for complete proofs). Positive mean 
FIS values indicate that all the tambaqui populations are endogamous, with values ranging from 0.032 at 
Santarém to 0.327 at Tracuateua (see Appendix 1 for complete proofs). 

The Micro-Checker analysis found no evidence of the presence of stutter bands or null alleles, and the PIC 
values for all the markers analyzed in the present study were above 0.5 (see Appendix 1 for complete proofs). 
Following the Bonferroni correction, significant deviations from HWE (P < 0.005) were recorded at many 
tambaqui farms, mostly due to a deficiency of heterozygotes (see Appendix 1 for complete proofs).  

The DEST for the whole data set was 0.214 (P < 0.001), considered to be a moderate level of differentiation by 
Jost (2008), with the smallest significant pairwise difference being recorded between Bragança and Capanema 
(0.034), and the largest (0.370) being found between Oriximiná and Tracuateua (see Appendix 2 for complete 
proofs). The RST values were broadly consistent with the DEST analysis, with the smallest significant pairwise 
difference being found betweenOriximiná and Santarém (0.05), and the largest (0.1740) between Oriximiná and 
Tracuateua (see Appendix 2 for complete proofs). 

The genetic signature indicated that 92% of the individuals are exclusive to their home farms in northeastern 
Pará, with the other 8% originating from other farms. In western Pará, 81% of the individuals are exclusive to 
their farm of origin, while the other 19% originated from other farms. In southeastern Pará, 71% are exclusive to 
their home farms and 29% were related to other sites. Overall, 83% of the individuals screened could be traced to 
their farm of origin, and 17% to other farms.  

The Bayesian analysis indicated the existence of two clusters (K = 2) in our data set, which was corroborated by 
the CLUPP alignment algorithm, with one cluster formed by the farms of northeastern and southeastern Pará, 
and the other by those from western Pará (Figure 2). 
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HE = 0.796. These differences were expected, given that most farms are based on a small founder 
population—sometimes even a single pair—with the fry being produced through the mating of closely-related 
individuals (Santos et al., 2016). Over the long term, this reduced variability may result in decreased resistance 
to disease (Taniguchi, 2003) and the loss of the capacity to adapt to changes in environmental conditions 
(Bijlsma & Loeschcke, 2012).  

In western Pará, however, the HE values were more similar to those of the wild populations (see above). High HE 

values were recorded by Aguiar et al. (2013) in tambaqui from farms in western Pará, which these authors 
related to the proximity of the farms to the Amazon River, which enables them to renew their breeding stock 
from wild populations relatively easily. By contrast, eastern Pará is far from the geographic range of stock from 
wild populations. The easy access to wild populations for the replenishment of breeding stocks in western Pará 
presumably contributed to the HE values recorded in the present study. 

The AR values recorded in the present study reflect a clear loss of genetic variability in all the farmed 
populations in comparison with the wild tambaqui populations analyzed by Fazzi-Gomes et al. (2017): mean AR 
= 8.6. As this parameter is not biased by sample size, it is a relatively reliable index of the loss of genetic 
variability (Spencer et al., 2000). 

The PIC values were considered to be of good quality, and highly informative (Botstein et al., 1980). The 
principal factor determining deviations from HWE was a deficiency of heterozygotes, a pattern also recorded by 
Aldea-Guevara et al. (2013) for the same markers. A deficiency of heterozygotes reflects high levels of 
endogamy in the founding stocks, given that the farms with the largest numbers of markers out of equilibrium 
(HWE), Tracuateua and Óbidos, also presented the highest FIS values. Similarly low levels of genetic variability 
were recorded in other markers by Santos et al. (2012, 2016), Gomes et al. (2012), and Calcagnotto and 
Toledo-Filho (2000) in tambaqui farms in a number of different Brazilian regions. 

A number of different factors may combine to provoke the loss of genetic diversity found in the tambaqui farms 
analyzed in the present study. One fundamental factor is the inadequate genetic management of the breeding 
stock by the local hatcheries, which may have no information on the genetic distance between individuals, 
resulting in the mating of closely-related fish, and the loss of genetic variability in the descendants. In contrast 
with other species of economic interest, programs of genetic enhancement are rare in farmed fish, and in fact, the 
production of interspecific hybrids has been used as a strategy to guarantee a rapid response to captive 
conditions. 

4.1 Genetic Structure 

In general, both the RST and the DEST (Appendix 2) indicated moderate levels of genetic differentiation between 
the study tambaqui farms. A similar pattern was recorded by Santos et al (2016), with RST values ranging from 
0.184 to 0.265 in tambaqui farms in different Brazilian regions. By contrast, Fazzi-Gomes et al. (2017) recorded 
FST and RST of zero for wild populations. In our study, the values reflect the differentiation of the distinct 
breeding stocks used to form the study farms.  

The genetic structure indicated by the Bayesian analysis indicated that the loss of genetic variability in the 
tambaqui farms studied here is related to the formation of two clusters (K = 2) (Figure 2), supported by the 
approach of Evanno et al. (2005). One cluster was formed by the farms from northeastern and southeastern Pará, 
as confirmed by the genetic signature, in particular considering that the farm in southeastern Pará had a high 
percentage (29%) of individuals that originated from other farms. The second cluster is formed by the farms 
from western Pará. This structuring pattern is the result of the domestication of the tambaqui, given that no such 
structuring is found in the natural populations of the species (see Fazzi-Gomes et al., 2017). 

5. Conclusions 

A significant loss of genetic variability was found in the tambaqui farms of northeastern and southeastern Pará, 
in comparison with wild tambaqui populations. The tambaqui farms from western Pará presented much lower 
levels of loss of genetic variability in comparison with the wild tambaqui populations. The tambaqui farms of 
these three regions are structured in two main groups. 

The findings of the present study represent a major advance for the fish farming operations in the Amazon region 
and the rest of Brazil. The reliable determination of the genetic diversity and structure of the stocks of the 
tambaqui farms of the state of Pará, based on accurate molecular markers, such as microsatellites, provides a 
fundamentally important database for the development of effective programs of genetic management and 
enhancement. These programs should contribute to the productivity of the farms and the quality of the produce, 
as well as a reduction in the fishery pressure on the natural stocks of this important Brazilian fish species.  
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The findings of this study indicate the need for the amplification or renovation of the breeding stocks of the 
hatchery in northeastern and southeastern Pará, in order to limit the loss of genetic diversity in the tambaqui 
farms of these regions.  
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Appendix 

 

Appendix 1. Genetic diversity indices for the farmed tambaqui analysed in the present study (N = 216) based on 
10 microsatellite DNA markers. Number of alleles per locus (NA), allelic richness (AR), observed (HO) and 
expected (HE) heterozygosity, inbreeding coefficient (FIS) per locus and polymorphic information content (PIC) 

Locus 
 

BRA CAP PB TRA CDA STM ITA MA OB ORI 

(n = 25) (n = 18) (n = 18) (n = 18) (n = 28) (n = 16) (n = 18) ( n = 21) (n = 28) (n = 27)

Cmacrµ01 NA 5 2 4 3 2 5 4 4 5 4 

AR 3.048 1.986 2.665 2.221 1.731 3.732 3.173 3.285 3.980 3.501 

HO 0.720 0.388 0.777 0.222 0.185 0.867 0.412 0.632 0.750 0.560 

HE 0.586 0.386 0.528 0.294 0.171 0.671 0.447 0.667 0.682 0.662 

PHW 0.1250 1 0.0669 0.3894 1 0.2960 0.2503 0.2891 0.7823 0.3519 

FIS -0.234 -0.008 -0.492 0.249 -0.083 -0.305 0.082 0.055 -0.101 0.157 

PIC 0.495 0.305 0.429 0.258 0.154 0.594 0.407 0.585   0.627 0.593 

Cmacrµ03 NA 9 7 5 5 8 5 7 8 6 6 

AR 5.189 5.294 3.967 3.868 4.216 3.756 4.728 5.064 3.837 4.510 

HO 0.640 0.833 0.722 0.111 0.625 0.437 0.647 0.722 0.642 0.654 

HE 0.778 0.801 0.686 0.695 0.692 0.645 0.756 0.759 0.670 0.737 

PHW 0.0080 0.0791 0.1887 0 0.0389 0.1513 0.1669 0.6052 0.0388 0.1831 

FIS 0.181 -0.041 -0.055 0.919 0.099 0.329 0.14 0.049 0.041 0.116 

PIC 0.73 0.748 0.621 0.618 0.628 0.570 0.695 0.701 0.608 0.680 

Cmacro04 NA 7 6 6 5 4 6 5 6 7 7 

AR 4.815 5.503 4.549 4.721 3.692 4.526 4.657 4.514 4.664 5.120 
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HO 0.600 0.888 0.722 0.055 0.609 0.687 0.562 0.600 0.536 0.640 

HE 0.748 0.849 0.719 0.804 0.703 0.754 0.804 0.742 0.773 0.817 

PHW 0.0620 0.1009 0.0156 0 0.5314 0.2983 0.0429 0.4767 0.0008 0.0027 

FIS 0.202 -0.048 -0.005 0.933 0.137 0.091 0.308 0.196 0.311 0.22 

PIC 0.702 0.8011 0.6611 0.7481 0.6319 0.6898 0.7430 0.6814 0.7218 0.7714 

Cmacrµ05 NA 6 4 3 5 6 7 7 8 6 7 

AR 4.412 3.697 2.984 4.650 4.899 5.090 5.163 5.918 4.618 5.104 

HO 0.542 0.666 0.666 0.277 0.9256 0.812 0.588 0.761 0.778 0.846 

HE 0.753 0.727 0.671 0.798 0.807 0.790 0.784 0.851 0.762 0.797 

PHW 0.0100 0.8176 1 0 0.4623 0.3674 0.0669 0.3332 0.1373 0.5507 

FIS 0.286 0.085 0.007 0.659 -0.15 -0.029 0.256 0.107 -0.022 -0.062 

PIC 0.695 0.6505 0.5786 0.7400 0.7598 0.7314 0.7274 0.8092   0.7092 0.7525 

Cmacrµ07 NA 11 8 8 9 13 10 9 12 12 10 

AR 6.423 6.187 6.038 5.576 8.013 7.009 6.291 6.819 6.678 6.641 

HO 0.960 0.888 0.777 0.778 0.789 1.000 0.706 0.850 0.629 0.869 

HE 0.860 0.860 0.836 0.797 0.920 0.895 0.869 0.863 0.879 0.867 

PHW 0.0010 0.3738 0.0035 0.1277 0.2151 0.1873 0.1690 0.5806 0.0014 0.4341 

FIS -0.118 -0.034 0.072 0.025 0.146 -0.121 0.193 0.015 0.288 -0.003 

PIC 0.825 0.8166 0.7921 0.7485 0.8873 0.8527 0.8250 0.8255 0.8476 0.8314 

Cmacrµ08 NA 5 4 4 4 8 6 6 6 6 6 

AR 4.044 3.793 3.050 3.518 5.754 4.042 5.359 4.534 4.920 3.954 

HO 0.375 0.500 0.500 0.889 0.760 0.562 0.353 0.562 0.400 0.320 

HE 0.747 0.686 0.613 0.694 0.815 0.695 0.830 0.767 0.813 0.651 

PHW 0 0.1945 0.2582 0.0086 0.0818 0.0756 0 0.4948 0 0.0001 

FIS 0.504 0.277 0.188 -0.292 0.068 0.196 0.583 0.272 0.513 0.514 

PIC 0.684 0.6204 0.5121 0.6123 0.7759 0.6226 0.7791   0.7001 0.7655 0.5953 

Cmacrµ09 NA 4 4 4 5 5 2 5 5 4 5 

AR 3.695 3.387 3.737 3.366 3.764 2.000 4.247 4.155 3.841 4.154 

HO 0.783 0.600 0.833 0.687 0.800 0.667 0.706 0.727 0.667 0.571 

HE 0.675 0.531 0.694 0.613 0.619 0.485 0.768 0.706 0.741 0.717 

PHW 0.4980 1 0.8250 0.16747 0.3993 1 0.0776 0.9434 0.8724 0.2979 

FIS -0.163 -0.135 -0.209 -0.126 -0.301 -0.429 0.084 -0.032 0.103 0.207 

PIC 0.611 0.475 0.623 0.522 0.566   0.346 0.702 0.620 0.669 0.655 

Cmacrµ10 NA 4 5 4 5 4 6 5 8 5 5 

AR 3.751 4.244 3.869 4.251 3.289 4.136 3.987 5.777 4.063 3.646 

HO 0.857 0.818 0.588 0.417 0.682 0.625 0.600 0.722 0.577 0.458 

HE 0.693 0.671 0.749 0.764 0.644 0.697 0.722 0.841 0.700 0.554 

PHW 0.6370 0.3618 0.0028 0.0109 0.7049 0.3523 0.0546 0.8643 0.2321 0.0348 

FIS -0.244 -0.233 0.22 0.466 -0.061 0.107 0.174 0.145 0.179 0.176 

PIC 0.627 0.601 0.676 0.685 0.557 0.621 0.643 0.794 0.640 0.508 

Cmacrµ12 NA 5 5 2 6 9 6 7 7 8 8 

AR 3.092 3.550 1.999 4.172 5.811 5.391 5.553 5.958 6.071 5.757 

HO 0.240 0.333 0.000 0.222 0.500 0.461 0.294 0.450 0.464 0.680 

HE 0.601 0.654 0.476 0.701 0.792 0.837 0.829 0.860 0.860 0.808 

PHW 0 0.0026 0.0001 0 0.0001 0.0314 0 0.0007 0 0.0348 

FIS 0.606 0.498 1 0.689 0.374 0.459 0.652 0.483 0.465 0.161 

PIC 0.505 0.575 0.354 0.628 0.759 0.776 0.778 0.818 0.825 0.770 

Cmacrµ13 NA 5 3 5 4 8 5 6 7 5 6 

AR 3.508 2.333 4.156 3.152 4.921 3.592 3.883 5.263 3.451 4.719 

HO 0.680 0.500 0.667 0.777 0.556 0.600 0.470 0.667 0.571 0.640 
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HE 0.555 0.522 0.655 0.624 0.750 0.616 0.634 0.813 0.644 0.760 

PHW 0.3876 1 0.8020 0.0260 0.0099 0.2125 0.2027 0.0509 0.5318 0.0642 

FIS -0.231 0.044 -0.017 -0.256 0.263 0.027 0.264 0.184 0.115 0.161 

PIC 0.505 0.404 0.602 0.531 0.701 0.540 0.569 0.764 0.564 0.709 

Average (se1) NA 6.1 4.8 4.5 5.1 6.7 5.8 6.1 7.1 6.4 6.4 

AR 4.198 3.997 3.701 3.950 4.609 4.327 4.704 5.129 4.612 4.711 

HO 0.640 0.641 0.625 0.444 0.643 0.672 0.534 0.669 0.601 0.624 

HE 0.700 0.669 0.663 0.678 0.691 0.709 0.744 0.787 0.752 0.737 

FIS 0.079 0.040 0.071 0.327 0.049 0.032 0.274 0.147 0.189 0.165 

Note. BRA = Bragança, CAP = Capanema, PB = Peixe Boi, TRA = Tracuateua, CDA = Conceição do Araguaia, 
STM = Santarém, ITB = Itaituba, MTA = Monte Alegre, OB = Óbidos, ORX = Oriximiná. *Marker not in 
Hardy-Weinberg equilibrium (P < 0.005). 

 

Appendix 2. DEST (below the diagonal) and RST (above the diagonal) values for the farmed tambaqui analyzed in 
the present study, based on 10 microsatellite loci 

Fish Farm 
BRA CAP PB TRA STM ITB MTA OB ORX CDA 
(n=25) (n=18) (n=18) (n=18) (n=16) (n=18) (n=21) (n=28) (n=26) (n=28) 

BRA - -0.014 -0.02 0.079 0.036 0.115 0.096 0.01 0.114 0.033 

CAP 0.034 - -0.023 0.077 0.033 0.094 0.071 -0.003 0.086 0.027 

PB 0.029 0.115 - 0.09 0.053 0.101 0.099 0.006 0.122 0.007 

TRA 0.180 0.205 0.219 - 0.062 0.067 0.171 0.109 0.174 0.109 

STM 0.253 0.235 0.310 0.288 - 0.053 0.064 0.02 0.05 0.058 

ITB 0.164 0.217 0.243 0.217 0.152 - -0.008 0.09 0.093 0.005 

MTA 0.189 0.240 0.271 0.331 0.177 0.078 - 0.058 0.1 0.094 

OB 0.172 0.247 0.218 0.303 0.141 0.049 0.149 - 0.054 0.045 

ORX 0.271 0.311 0.319 0.370 0.254 0.049 0.047 0.187 - 0.121 

CDA 0.118 0.145 0.214 0.230 0.217 0.165 0.234 0.233 0.311 - 

Note. BRA = Bragança, CAP = Capanema, PB = Peixe Boi, TRA = Tracuateua, CDA = Conceição do Araguaia, 
STM = Santarém, ITB = Itaituba, MTA = Monte Alegre, OB = Óbidos, ORX = Oriximiná. * Bold type indicates 
significant values after the Bonferroni correction (adjusted p-value < 0.005).  
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