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Abstract 
Variance components and genetic parameters of economically relevant traits in livestock, whether continuous or 
categorical, can be estimated by methods computationally available providing support for the selection and mating 
of animals in breeding programs. The objectives of this paper were to obtain and compare the variance components 
estimates for visual traits under continuous or categorical distribution in single-trait analysis and their correlations 
with continuous productive traits in two-trait analysis. Data of conformation (CONF), precocity of fat deposition 
(PREC) and muscling (MUSC) visual scores evaluated at 18 months of age as well as the weight at 18 months of 
age (YW) were collected from animals born from 2000 to 2012, in Nellore cattle herds raised in Southeastern and 
Central Western tropical regions of Brazil. Methods III of Henderson, Restricted Maximum Likelihood (REML), 
Bayesian Inference and generalized linear mixed model (GLMM) were tested. Variance components obtained 
from single-trait analysis were similar to those obtained from two-trait analysis. The estimates of heritability (h2) 
for the visual scores ranged from 0.1081 to 0.2190. Heritability estimates for traits evaluated by visual scores have 
moderate to high magnitude justifying the inclusion of visual scores as selection criteria in animal breeding and the 
selection of animals with higher scores for mating. High genetic correlations between yearling weight and 
morphological traits were verified. For visual scores of conformation, precocity and muscling, the most suitable 
model based on one-trait or two-trait analyses considered an animal model, a linear distribution of the data and the 
estimation method of the components of (co)variance based on Bayesian methodology. 
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1. Introduction 
Some traits with threshold distribution of data have been more studied and were already included in animal 
breeding programs for zebu cattle populations, including Nellore cattle. An example is the morphological system 
based on visual scores such as conformation (CONF), precocity (PREC) and muscling (MUSC) score, which are 
evaluated at 18 months old. Morphological visual scores have been adopted to estimate the carcass composition 
and the time when these animals are fit for slaughter (Faria et al., 2010) respecting the fat deposition process and 
anatomical specifics of Zebu cattle. Through this system a larger number of animals can be evaluated visually 
without a direct intervention, accelerating the evaluation process and minimizing the stress in the animals. The 
phenotypes for these morphological traits are grades ranging from one to six or from one to nine depending on the 
evaluation method adopted. 

There are two reasons for the adoption of visual scores as selection criteria: to supply the demand of the consumers 
by a type of product and to get an indirect response to selection for productivity (Lush, 1964). This indirect 
response to selection implies in a genetic correlation between morphological visual scores and productive traits. 
Genetic correlations of high magnitude between these visual scores and weights indicates that selection for 
conformation, precocity and muscling should also improve animal performance for traits as weaning or yearling 
weights (Koury Filho et al., 2009, 2010). 

Variance components and genetic parameters for categorical traits can be estimated under different approaches, 
which evolve with the development of new theories and computational techniques. The establishment of an 
analysis model that correctly describes the data is an important factor in obtaining the genetic parameters (Faria et 
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al., 2008). The methodologies vary according to the number of evaluated traits, the nature of the phenotypic data 
distribution, the genetic structure adopted and the estimation method of the variance components. For example, by 
the assumption of linear (Gordo et al., 2012; Forutan, Mahyari, & Sargolzaei, 2015) or threshold distribution of 
phenotypes (Faria et al., 2009; Boligon et al., 2012; Forutan, Mahyari, & Sargolzaei, 2015), by using sire or animal 
models (Forutan, Mahyari, & Sargolzaei, 2015); and by adopting restricted maximum likelihood (Bouquet et al., 
2010; Queiroz et al., 2011), Bayesian (Boligon et al., 2012; Santana Jr. et al., 2013) or generalized linear mixed 
model approaches (Forutan, Mahyari, & Sargolzaei, 2015) as estimation methods. These methodologies can be 
applied in a combined way. However, there is not a consensus of the best approach to perform the genetic analyses 
of morphological visual scores. Therefore, the aim in this study was to obtain and compare the variance 
components estimates for visual traits under continuous or categorical distribution in single-trait analysis and their 
interrelations with continuous productive traits in bi-trait analysis. 

2. Method 
The approval of the Ethics Committee on Animal Use was not necessary in this study because the data were 
obtained from an existing database.  

2.1 Animals and Data File 

The Nellore cattle data were provided by the Genetic Improvement Program of CFM Ltda. The animals were kept 
in high quality pastures (40% Brachiaria, Panicum maximum 50%, and 10% other forage) and received salt and 
mineral supplement up to 18 months old. The breeding season, 90 days for heifers and 60 days for cows, was 
concentrate from October to January, depending on the beginning of the rainy season. Calves remained with their 
dams in high quality pastures until about 7 months old, when they were weaned. 

Four traits were analyzed in this study: visual scores of conformation (CONF), precocity (PREC) and muscling 
(MUSC) and yearling weight (YW, kg). Visual scores traits (CONF, PREC and MUSC) were evaluated at 18 
months of age by trained personnel, following the standard procedures established by the Agropecuária CFM, with 
grades ranging from 1 (unwanted/bad) to 6 (desirable/excellent). The CONF score is a classification of animal's 
capacity for meat production, considering the combination of quantity of meat in the carcass with the presence of 
muscle mass. The PREC score is related to the ability of animals to store fat and it is used to identify animals that 
will deposit covering fat earlier. PREC scores equal 6 indicate animals with more adequate fat reserves. The rating 
for MUSC considers the muscle mass of the animal, and higher scores are assigned to animals with more muscle 
mass.  

Only data from animals with known parents, with known age of the dam at birth, and animals born between the 
years 2000 and 2012 were considered. Animals conceived by embryo transfer were excluded. Outliers for age at 
first calving and YW were detected and eliminated. After discarding records with incomplete and inconsistent data, 
a description of the traits evaluated in this study is shown in Table 1. Observations recorded between 450 and 650 
days of age were considered yearling records.  

Contemporary groups (CG) were defined for each trait. For visual scores, two types of CGs were considered: 
weaning group CG (CG_W), formed by animals reared in the same herd and management group until weaning, 
and from the same birth year, birth season and sex; and yearling CG (CG_Y), built with animals reared in the same 
herd and management group between the weaning and 18 months of age (yearling), from the same birth year, birth 
season and sex. 

Contemporary groups with progenies of only two different bulls and with less than five animals were discarded. It 
was also discarded CGs with only one phenotypic class. A description of the CGs after their consolidation is listed 
in Table 1. The distribution of phenotypes for CONF, PREC and MUSC is shown in Figure 1. The database edition 
was performed by using SAS software (Statistical Analysis System, version 9.3). 
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ABLT model: two-trait analysis, (A) animal model, (B) Gibbs sampling (Bayesian Inference), (LT) 
Linear-Threshold data distribution, performed in THRGIBBS3F90. 

2.2.1 Genetic Structure: Sire Model vs. Animal Model  

The animal model considered for the categorical and continuous traits in the genetic analyses under the classic 
linear model methodology followed the generic mathematical Model (1): 

y = Xβ + Z1a + Z2c + e                                (1) 
Where, y is the vector of response variables; β is the vector of fixed effects (AGE and MAP); a is the vector of 
the random genetic additive direct effects; c is the vector of random effects of contemporary group at yearling 
(CG_Y); and e is the vector of random residual effects inherent to each observation; X, Z1 and Z2 represent the 
incidence matrices for fixed and random effects, associating respectively the elements of β, a and c to the 
response variable. 

The assumptions for the model were: E[y] = Xβ; E[a] = 0; E[c] = 0; E[e] = 0; and 
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Where, A is the matrix of genetic covariances among animals; I is the identity matrix; σa
2 is the genetic additive 

direct variance; σc
2 is the variance due to the effects of contemporary group at yearling; and σe

2 is the residual 
variance. The covariances between all the effects were assumed to be zero. In the sire model the animal direct 
effect was replaced by the direct effect of the sire.  

2.3 Estimation Methods 

Estimation methods evolve with the development of new theories and computational techniques. It was analyzed 
four different estimation methods in this study: Method III of Henderson, Method of Restricted Estimated 
Maximum Likelihood (REML), Method of Generalized Linear Mixed Models (GLMM) and Gibbs sampling 
(Bayesian inference).  

Method III of Henderson (Henderson, 1953) is the simplest and oldest of them. This method was widely used 
until the 80's and does not use the relationship matrix to solve the mixed effects. Also called method of fitting 
constants, it uses the reductions in the sums of squares of the complete model and of the sub-models to find the 
estimators for the variance components, setting up a system of equations from the differences between the 
reductions in the full model and sub-models, equating them to their respective expectation. According to 
Henderson (1953) method III can be used for any mixed model and produces unbiased estimates of the variance 
components. In this study, Method III of Henderson was performed by using SAS software (Statistical Analysis 
System, version 9.3). 

Method of Restricted Estimated Maximum Likelihood (REML) was proposed by Patterson and Thompson (1971) 
based on previous studies of Fischer (1925), and Hartley and Rao (1967). In REML, each observation is divided 
in two independent parts, the fixed and random effects, and the probability density function of the observations is 
given by the sum of the probability density functions of each part. The maximization of the probability density 
function portion related to random effects in relation to the variance components eliminates the bias resulting of 
the loss of degrees of freedom in the estimation of fixed effects. When REML equations include balanced data 
this method is identical to ANOVA estimators being non-biased and with minimum variance. However, when the 
REML estimator takes into account the degrees of freedom involved in the estimation of fixed effects, and when 
REML is applied to unbalanced data, REML estimators can be biased (Searle, 1987). The REML estimators for 
each variance component are a function of estimates of the other components, and can only be found by iterative 
numerical methods. In this study, variance components obtained by REML methodology were obtained from 
analyses based on sire model and animal model by using AIREMLF90 (Misztal et al., 2015) and ASREML v4.1 
(Gilmour et al., 2015) software. 

Method of Generalized Linear Mixed Models (GLMM, Nelder & Wedderburn, 1972) is an extension of linear 
models and constitute a number of techniques commonly studied separately. The models involve three 
components: a variable response, explanatory variables and a random sample of n observations. Systematic 
effects (fixed and random effects) are linearized by a function of the expected values (for example, Log, Probit 
and Logit functions), allowing fitted values varying in the response amplitude. In this study the variance 
components were obtained assuming a threshold distribution for the data and using ASREML program (Gilmour 
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et al., 2015) with the link functions Probit and Logit. The residual variance for the Logit function was set at 
3.289; and the residual variance in the Probit function was set at 1. 

One of the newest approach for estimation methods is the Gibbs sampling (Gianola & Foulley, 1983) based on 
the Bayesian inference. Some difficulties can be verified in obtaining Gibbs chain convergence in animal models 
because the algorithm used is characterized as an iterative process (Faria et al., 2008). Nevertheless, Bayesian 
inference is recommended to obtain genetic correlations between categorical (survival and visual scores) and 
continuous traits (weights) through multi-trait analysis (Everling et al., 2014). In this study, the Bayesian 
approach was performed using the GIBBS3F90 (Misztal et al., 2015) program (assuming linear distribution of 
data) and THRIGIBBS3F90 (Misztal et al., 2015) program (assuming threshold distribution of data). A total of 1 
000 000 iterations were performed, with sampling interval every 10 interactions and burn in of 10 000 iterations. 
Analyses of subsequent estimates were performed using the POSTGIBBS3F90 (Misztal et al., 2015) program. 

The analysis models and their effects (fixed and random) proposed for each trait are described in Table 2. 

 

Table 2. Summary of the models adjusted for the estimation of (co)variance components for the conformation 
(CONF), precocity (PREC) and muscling (MUSC) scores and body weight (YW) measured in Nellore cattle at 
18 months of age 

Trait ANI CG_W CG_Y AGE MAP 

CONF R R F F F 

PREC R R F F F 

MUSC R R F F F 

YW R R F F F 

Note. ANI = genetic additive direct effect; CG_W = management group at weaning; CG_Y = contemporary 
group at yearling; AGE = real age of the animal at yearling (linear and quadratic effects covariates); MAP = 
mother’s age at calving (linear and quadratic effects covariates). R = random effect; F = fixed effect. 

 

2.4 Heritability Coefficient Estimates 

The heritability estimates for CONF, PREC, MUSC and YW traits were obtained from the Equation (3): 
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Where, ha
2 is the narrow sense heritability,	σa

2 is the additive variance,	σCG_Y
2  is the variance due to the effects of 

contemporary group at yearling, and σe
2 is the residual variance.  

In the sire model analyses, the heritabilities for CONF, PREC, MUSC and YW traits from the Equation (4): 

(4) 

Where, ha
2 is the narrow sense heritability,	σs

2 is the sire variance,	σCG_Y
2  is the variance due to contemporary 

group at yearling effects, and σe
2 is the residual variance.  

2.5 Genetic Correlation Estimates 

Genetic correlations between visual scores (CONF, PREC or MUSC ) and YW traits estimated in animal model 
and two-trait analyses were performed for ARLL, ABLL and ABLT models to compare the Bayesian inference 
and REML estimation methods and the linear and threshold data distribution. Estimates of additive genetic 
correlations (ra) were obtained from the Equation (5):  

(5) 

Where, σa(VISUAL, YW)  is the covariance between additive direct effects of visual scores and YW traits, 
σa(VISUAL)

2  is the visual score additive variance and σa(YW)
2  is the YW additive variance.  

3. Results and Discussion 

The observed means verified in this study for CONF, PREC and MUSC (Table 1) were 3.40, 3.47 and 3.30, 
respectively - similar to those reported in previous studies. Considering Nellore cattle at yearling age, Lima et al. 
(2013), Santana, Jr. et al. (2013), Faria et al. (2010) and Koury Filho et al. (2009) found mean scores for PREC of 
3.87, 3.66, 3.86 and 3.85, respectively. For MUSC, the authors cited above found mean scores of 3.77, 3.57, 3.62 
and 3.80, respectively. 
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Variance components for CONF, MUSC, and PREC obtained by the adjustment of different models are shown in 
Table 3. There was a convergence of the models, including those adjusted with Bayesian Inference. The posterior 
distributions of the heritability estimated by using Bayesian Inference are presented in Figures 2, 3 and 4 for 
CONF, PREC and MUSC traits, respectively. In these figures it is possible to verify the convergence of the Gibbs 
chain with symmetric Bayesian posterior distributions, similar to a normal distribution according to Van Tassell, 
Van Vleck, and Gregory (1998). The good definition of contemporary groups and the number of observations 
available in each class of contemporary groups contribute to explain the good convergence of the Gibbs chain. 

The inclusion of the additive relationship matrix between animals in the SRL model did not reduced the variance 
associated to the sire effect and the heritabilities for PREC, CONF and MUSC. However, the inclusion of the 
additive relationship matrix can increase the reliability associated to these estimates. The heritability estimated by 
using SHL and SRL models was lower than the estimates obtained through the animal models. The structure of 
genetic variances and covariance established through the relationship matrix allows a better isolation of the genetic 
effect. Accordingly, the additive variance and consequently the heritability are greater, indicating that the selection 
based on own individual records can contribute in a better response to selection. 

 

Table 3. Variance component and heritability estimates for conformation score (CONF), precocity score (PREC) 
and muscling score (MUSC) evaluated at 18 months of age in a Nellore cattle population, estimated by different 
methodologies 

Model1 σs
2 σa

2 σCG_Y
2  σe

2 ha
2 

CONF 

SHL 0.0229 - 0.0039 0.7325 0.1206 

SRL 0.0206 - 0.0047 0.7377 0.1079 (0.0107) 

ARL - 0.1321 0.0047 0.6388 0.1703 (0.0097) 

ABL - 0.1324 0.0050 0.6381 0.1708 (0.0104) 

ABT - 0.0405 0.0027 0.3700 0.1081 (0.0340) 

AGTLo - 0.7356 0.0271 3.289 0.1816 (0.0058) 

AGTPr - 0.1934 0.0082 1.00 0.1609 (0.0060) 

PREC 

SHL 0.0346 - 0.0037 0.8037 0.1644 

SRL 0.0321 - 0.0047 0.8079 0.1520 (0.0126) 

ARL - 0.1672 0.0045 0.6827 0.1957 (0.0099) 

ABL - 0.1674 0.0048 0.6820 0.1960 (0.0104) 

ABT - 0.0531 0.0027 0.3714 0.1363 (0.0407) 

AGTLo - 0.8499 0.0241 3.289 0.2042 (0.0057) 

AGTPr - 0.2281 0.0077 1.00 0.1846 (0.0059) 

MUSC 

SHL 0.0375 - 0.0042 0.8217 0.1737 

SRL 0.0366 - 0.0051 0.8266 0.1687 (0.0133) 

ARL - 0.1724 0.0049 0.6987 0.1967 (0.0099) 

ABL - 0.1727 0.0057 0.6980 0.1971 (0.0103) 

ABT - 0.0661 0.0036 0.4105 0.1484 (0.0396) 

AGTLo - 0.9296 0.0261 3.289 0.2190 (0.0057) 

AGTPr - 0.2329 0.0082 1.00 0.1876 (0.0059) 

Note. σs
2 sire variance; σa

2 animal variance; σCG_Y
2  variance due to contemporary group at yearling effects; σe

2 
is the residual variance; ha

2: narrow sense heritability. 1 Models composition: (S) sire model, (A) animal model, 
(H) Method III of Henderson, (R) Restricted Estimated Maximum Likelihood, (B) Gibbs sampling (Bayesian 
Inference), (G) Generalized Linear Mixed Models, (L) Linear data distribution, (T) Threshold data distribution, 
(TLo) Threshold-Logit data distribution, (TPr) Threshold-Probit data distribution. 

 

In animal models, the lowest (co) variance components and genetic parameters for CONF, PREC and MUSC 
(Table 3) were obtained by adjusting the ABT model, and the highest estimates were obtained with the adjustment 
of the AGTLo model. Therefore, it is observed that the ABT and AGTLo models appear to be more influenced by 
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The heritability estimated for CONF (Table 3) ranged from 0.1079 to 0.1816, for PREC between 0.1363 and 
0.2042, and for MUSC from 0.1484 to 0.2190. Thus all the estimates were of moderate magnitude they were 
similar to those reported in previous studies. Koury Filho et al. (2010) reported heritability estimates for CONF, 
PREC and MUSC evaluated in yearling beef cattle of 0.24, 0.32 and 0.27, respectively. Estimates of heritability of 
0.26 for PREC and MUSC traits analyzed under a multi-trait linear threshold Bayesian approach were reported by 
Santana Jr et al. (2013). Pedrosa et al. (2010) and Araújo et al. (2010) estimated heritabilities for CONF of 0.23 and 
0.16, respectively, 0.19 and 0.17 to PREC, and 0.22 and 0.16 for MUSC. Differences in magnitude of the 
heritability coefficients of visual scores may be associated with differences in the measurement systems and 
models used in the analyses of these traits (Cardoso, Cardellino, & Campos, 2004). 

Evaluating conformation and muscularity in Nellore beef cattle, Farias et al. (2008) found that there is no 
difference between the linear model and the threshold model in the estimation of heritability and genetic 
correlations for multinomial categorical morphological traits. In this study, there were differences between the 
above models for CONF, PREC and MUSC, with higher heritability estimates obtained through linear models in 
comparison with the threshold models (Table 3, models ABL vs ABT). Ducrocq et al. (1988) stated that the 
threshold methods may have greater ability to detect the genetic variability than the linear methods. In this study, 
the highest variance components and heritability estimates were obtained with the linear model, but associated 
with a higher residual error. A possible explanation for higher estimates in linear model is the number of levels 
considered for the morphological visual scores, varying from 1 to 6 and, therefore, tending to a normal distribution. 
However, independently of the model and methodology used, the estimates of heritability obtained are indicative 
of the possibility to achieve positive genetic changes in carcass and meat quality in this population by adopting 
visual scores as selection criteria. 

Similar estimates of heritability were obtained for CONF, PREC and MUSC by using REML and Bayesian 
estimation methods under animal model and linear distribution of data were (Table 3, models ARL vs. ABL). 
Previous studies that used animal models for analyses with categorical data (Luo, Boettcher, & Schaeffer, 2001; 
Phocas & Laloe, 2003) reported difficulty to achieve Gibbs chain convergence chain , which was not observable in 
this study as verified in Figures 2, 3 and 4. 

As cited above, higher additive variance and heritability estimates were verified for CONF, PREC and MUSC 
(Table 3) in the AGTLo model and similar estimates was verified for the AGTPr model. The higher additive 
variances can be related to the fixed residual variance in GLMM procedure.  

The average weight of calves at yearling found in this study (Table 1) was lower than that reported by Koury Filho 
et al. (2009), Yokoo et al. (2010), Lima et al. (2013) and Araújo et al. (2014), which reported average weights 
adjusted for 550 days of 330.91, 347.14, 354.71 and 322.12kg, respectively. 

The variance components estimates obtained in the two-trait analyses for CONF, PREC and MUSC (Table 4) were 
higher than those obtained in the one-trait analyses. The heritability estimates for yearling weight were similar for 
all models evaluated, ranging from 0.3459 to 0.3497, indicating similarity among the different estimation methods 
for this trait and allowing comparisons among the methods for each of the visual scores traits. According to Meyer 
(1991) this increase in the estimates of heritability, especially in the additive genetic variance component, may 
reflect the reduction of the existing bias in analyses that consider only the performance of a trait individually. 

Garnero et al. (2010) estimated heritability for yearling weight of 0.26 and Araújo et al. (2014) of 0.38 based on the 
REML methodology. In contrast, Santos et al. (2012) and Oliveira Jr et al. (2014) found heritability estimates of 
0.41 and 0.40 for yearling weight, respectively, which are values higher than those observed in this study. 

Genetic correlations between YW and CONF, PREC and MUSC (Table 4) were positive and of high magnitude, 
indicating that sire selection for visual scores will also result in genetic gain for YW. The highest genetic 
correlations were, in descending order, observed between YW and CONF, YW and PREC and YW and MUSC. 
Koury Filho et al. (2010) reported correlations between YW and CONF, PREC and MUSC ranging from 0.58 to 
0.83. Lima et al. (2013) reported correlations between YW and PREC and between YW and MUSC of 0.83 and 
0.91, respectively, confirming the estimates of genetic correlations observed in this study. Biologically, high 
genetic correlations suggest a gene with pleiotropic effect controlling the traits expression. Pereira et al. (2016) 
verified a pleiotropic effect of the pleomorphic adenoma gene 1 (PLAG1), in a network involved in the modulation 
of the function and expression of IGF1 (insulin like growth factor 1), IGF2 (insulin like growth factor 2), GH1 
(growth hormone 1), IGF1R (insulin like growth factor 1 receptor) and GHR (growth hormone receptor), which 
are well known major actors of the growth pathway.  
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Table 4. Variance components and heritability estimates for conformation (CONF), precocity (PREC) and 
muscling (MUSC) score and yearling weight (YW) evaluated at 18 months in a Nellore cattle population, 
estimated by using different methodologies in two-trait analyses  

Model1 Trait ߪ௔ଶ ߪ஼ீ_௒ଶ ௘ଶ haߪ 
2 LogL ra 

ARLL CONF 0.1503 0.0058 0.6254 0.1923 (0.0092) -251 892 0.9362 (0.0087) 

YW 226.94 18.815 403.49 0.3495 (0.0115) 

ABLL CONF 0.1510 0.0063 0.6250 0.1930 (0.0101) -243 799 0.9357 (0.0090) 

YW 227.20 20.597 403.40 0.3489 (0.0121) 

ABLT CONF 0.0059 0.0002 0.0281 0.1750 (0.0265) -189 279 0.8801 (0.0167) 

YW 227.60 18.994 404.10 0.3497 (0.0126) 

ARLL PREC 0.1740 0.0059 0.6775 0.2029 (0.0097) -255 915 0.7484 (0.0164) 

YW 224.57 18.425 404.95 0.3466 (0.0114) 

ABLL PREC 0.1745 0.0064 0.6772 0.2033 (0.0103) -245 768 0.7479 (0.0172) 

YW 224.80 20.190 404.90 0.3459 (0.0120) 

ABLT PREC 0.0073 0.0005 0.0316 0.1919 (0.0317) -199 027 0.7017 (0.0233) 

YW 226.00 19.613 405.20 0.3473 (0.0125) 

ARLL MUSC 0.1784 0.0065 0.6940 0.2030 (0.0096) -256 983 0.7166 (0.0175) 

YW 224.68 18.306 404.85 0.3468 (0.0114) 

ABLL MUSC 0.1789 0.0071 0.6937 0.2033 (0.0102) -246 424 0.7163 (0.0182) 

YW 224.90 20.046 404.80 0.3461 (0.0120) 

ABLT MUSC 0.0165 0.0012 0.0501 0.2476 (0.0301) -202 588 0.6272 (0.0232) 

YW 225.80 19.740 404.40 0.3473 (0.0124) 

Note. σs
2: sire variance; σa

2: animal variance; σCG_Y
2 : variance due to contemporary group at yearling effects; σe

2: 
is the residual variance; ha

2: narrow sense heritability; LogL: Likelihood function logaritm; ra: genetic correlation. 
1 Models composition: (A) animal model, (R) Restricted Estimated Maximum Likelihood, (B) Gibbs sampling 
(Bayesian Inference), (LL) Linear-Linear data distribution, (LT) Linear-Threshold data distribution. 

 

Considering the likelihood function logarithm in two-trait analyses (Table 4) the lowest values were verified for 
the ABLT model suggesting better adjustment according Bayesian inference and visual scores considered as 
categorical data distribution. However, the lowest LogL for ABLT is associated to lowest heritabilities and genetic 
correlation estimates in this model. Weighting between higher heritabilities and genetic correlation and lower 
likelihood function logarithm the ABLL can be consider a reasonable approach to modeling the genetic analyses 
for these morphological traits. 

4. Conclusion 
Heritability estimates for traits evaluated by visual scores have medium to high magnitude justifying the selection 
of animals with higher scores for mating. High genetic correlations between yearling weight and morphological 
traits were verified. For visual scores of conformation, precocity and muscling, the most suitable model based on 
one-trait or two-trait analyses considered an animal model, a linear distribution of the data and the estimation 
method of the components of (co)variance based on Bayesian methodology.  
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