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Abstract 
Plants evolve to adapt to environmental stresses, including changes at the genetic and molecular levels. For 
bioengineers to utilize genetic manipulation to build tolerance into crops, a better understanding of the 
mechanism is needed. Published studies have demonstrated that 14-3-3 lambda (14-3-3λ) protein affect the 
phenylpropanoid (Pp) biosynthetic pathway and alters production of flavonoids and downstream compounds of 
importance for stress tolerance. The 14-3-3 family of proteins binds to many different client proteins and serves 
as signaling scaffolds. In this study 14-3-3λ knockout mutants were used to investigate changes in metabolite 
accumulation in the downstream Pp pathway. Amongst them are anthocyanins which are important antioxidants 
involved in a variety of plant functions including stress response. Investigating how drought stress influenced 
anthocyanin production identified nodes in the Pp pathway affected by 14-3-3λ. A metabolomics analysis 
employing high resolution mass spectrometry (HRMS) and metabolomics software was used to identify 
metabolites in 14-3-3 knockout which changed relative to wild-type A. thaliana (Columbia-0) during drought 
stress. The metabolites Cy-3-p-coumaurolysinapoylsophoroside-5-diglucoside, 3-caffeoylferuloylsophoroside- 
5-succinoylglucoside, 3-caffeoylferuloylsophoroside-5-malonyldiglucoside, 3-feruloylsophoroside-5-succinoyl 
glucoside, petunidin-3,5-O-diglucoside and malvidin-3-O-p-coumarylmonoglucoside show significant 
differences in their profiles ranging from 18- to > 500-fold between the Col-0 and 14-3-3λ knockout in wet and 
dry groups. The findings suggest that 14-3-3λ interacts along the CHS, and CHI nodes, which in turn regulate the 
downstream production of specific anthocyanins. The interaction of 14-3-3λ with CHS was confirmed using 
co-immunoprecipitation and co-localization studies. This study supports the hypothesis that manipulation of 
gene expression of 14-3-3λ can lead to development of drought tolerance in plants. 
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1. Introduction 
In A. thaliana there are several isoforms of 14-3-3 proteins (DeLille, Sehnke, & Ferl, 2001; Ferl, 1996). The 
14-3-3 proteins are a highly conserved family of proteins in eukaryotic organisms and have been studied 
thoroughly in various plant models including A. thaliana (DeLille et al., 2001; Lukaszewicz, Matysiak-Kata, 
Aksamit, Oszmianski, & Szopa, 2002; Muslin & Xing, 2000; Paul, Denison, Schultz, Zupanska, & Ferl, 2012). 
First purified from bovine brain(Moore, 1967), the 14-3-3 proteins were originally thought to be associated with 
neural tissue (Ichimura et al., 1988), but later found to be highly conserved among other eukaryotes including 
plants (Ferl, 1996; Li et al., 2015; Rosenquist, Sehnke, Ferl, Sommarin, & Larsson, 2000). The 14-3-3 proteins 
are capable of dimerizing and binding to the phosphorylated motif of multiple partners at the same time, bringing 
proteins together. This allows 14-3-3 to play critical roles in the signaling pathways through interactions with 
various binding partners (Aitken, 1996; Roberts, 2003). The binding sites which are in the C-terminal regions 
have little homology among the isoforms and this factor plays a role in their varied cellular localizations (Berg, 



jas.ccsenet.org Journal of Agricultural Science Vol. 9, No. 7; 2017 

23 

Holzmann, & Riess, 2003; Bihn, Paul, Wang, Erdos, & Ferl, 1997; Lapointe, Luckevich, Cloutier, & Séguin, 
2001; Martin, Rostas, Patel, & Aitken, 1994) and its functions (Bunney, van Walraven, & de Boer, 2001; Kumar, 
Muthamilarasan, Bonthala, Roy, & Prasad, 2015). It has been demonstrated that knockout of 14-3-3 in potato 
plant can result in a major decrease in antioxidant capacity highlighting 14-3-3 importance in the Pp pathway 
(Lukaszewicz et al., 2002). The 14-3-3 proteins have also been shown to affect a variety of cellular processes in 
plants in response to environmental stress factors such as dehydration, insect attack and UV (Jahn et al., 1997; Li 
et al., 2015; Roberts, Salinas, & Collinge, 2002).  

From previously published studies, it was suggested that 14-3-3 proteins affect production of anthocyanins 
which are a family of molecules involved in a variety of functions including defense (Dixon & Steele, 1999; He 
et al., 2010; Holton & Cornish, 1995). As one example anthocyanin loss of function lines of A. thaliana grown 
under high light conditions, showed no significant growth difference compared to controls, suggesting that 
anthocyanins major role in the Pp pathway may be focused on other functions such as defense and stress 
response (Misyura, Colasanti, & Rothstein, 2012). Numerous studies have been conducted on the anthocyanin 
biosynthesis in A. thaliana, but the role of 14-3-3 proteins on anthocyanin production remains unresolved and 
specific nodes of interaction in the anthocyanin pathway by 14-3-3 proteins has not been fully elucidated.  

The focus of this research was to study effect of 14-3-3λ knockout on anthocyanin production through the Pp 
pathway in Arabidopsis thaliana, under drought stress (dry) conditions. Published research has identified the 
14-3-3λ mutant as having greater sensitivity to dry conditions (Peethambaran, Chi Li, Dzugan, Xiang, & 
Balsamo, 2012), and also revealed that 14-3-3λ affects production of synapoyl maleate and lignin biosynthesis 
under dry conditions (Lindberg et al., 2014). These findings indicate that 14-3-3 proteins are interacting along 
with flavonoid synthesis in the Pp pathway. This study proves that specific nodes are affected by 14-3-3λ 
proteins in production of anthocyanins. A reverse genetics approach was applied to screen anthocyanin 
metabolites under dry and well hydrated (wet) conditions using A. thaliana 14-3-3λ homozygous TDNA 
knockout mutant and WT. The 14-3-3λ homozygous TDNA knockout mutant (SALK_075219) had significantly 
different amounts of total flavonoid, phenolics and antioxidants compared to Columbia-0 (WT) under dry 
conditions. This provided the rationale for investigating differentially regulated anthocyanins in 14-3-3λ 
knockout mutant. Comparing dry and wet conditions to 14-3-3λ knockouts and WT A. thaliana we observed 
significant increases in the metabolites listed in Table 1, for WT, with smaller changes in the 14-3-3λ knockout 
between the conditions. These data support the hypothesis that 14-3-3λ protein has a significant effect on the 
Cyanidin and Delphinidin nodes of the Kegg anthocyanin biosynthetic pathway. Moving further upstream of 
anthocyanins, in the Pp pathway these are metabolites produced by the action of Chalcone Synthase (CHS) and 
Chalcone Isomerase (CHI) nodes. The CHS gene has been shown to have an elevated transcription rate under 
environmental and pathogenic stress conditions resulting in accumulation of various flavonoids and 
anthocyanins (Feinbaum & Ausubel, 1988; Li & Strid, 2005). CHI mutants have been shown to have lower 
levels of flavonoids and high sensitivity to UV-B damage. When the CHS and CHI knockouts were drought 
stressed, lower expression of 14-3-3 was observed, suggesting that CHS and CHI interact with 14-3-3 during dry 
conditions. 

2. Materials and Methods 
2.1 Plant Growth Conditions, Drought Stressing and Sampling 

Wild-type (Columbia-0), 14-3-3 T-DNA mutant Lambda (SALK_075219), CHS T-DNA mutant (SALK_077592) 
and CHI T-DNA mutant (SALK_ 034145) were purchased from Arabidopsis Biological Resource Center (ABRC, 
Ohio State University). Seeds were grown in a Sunshine Mix soil (Sun Gro Horticulture, Quincy, MI) and 
hydrated with Scotts peters professional water soluble fertilizer 20-20-20 (Scotts, Marysville, OH) as previously 
described (Lindberg et al., 2014). Genotypting of these knockout lines were conducted using polymerase chain 
reaction and western blot for the 14-3-3 T-DNA mutant Lambda (SALK_075219). Drought treatment was carried 
out on 5 week old plants, half of the plants were watered normally and the other half was not watered, soil 
moisture was monitored daily and leaf mass harvested from all plants when the drought treated soil moisture 
level reached ~30%, at which point wilting of the leaves was observed. Harvested leaves were immediately 
frozen in liquid nitrogen and freeze dried (LabConco Corporation, Kansas City, MO). The dried leaf samples 
were stored at -80 ºC until extraction. 

2.2 Metabolite Extraction and Isolation 

Metabolites were extracted using a modification of the method described by (Lindberg et al., 2014). Briefly, 
frozen tissue was ground with a mortar and pestle, then suspended in extraction solvent (Methanol:Acetone; 1:1 
v/v), followed by addition of 1 µg of apeginin (10 µg mL-1) as an internal standard. The supernatant was 
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transferred to a BD Falcon tube (ThermoFisher Scientific, Waltham, MA). The pellet was extracted two more 
times with extraction solvent and dried using a Savant SpeedVac centrifugal evaporator (Savant Instruments Inc., 
Farmingdale, NY). Chlorophyll was precipitated by addition of acetone then water at a 70:40 v/v ratio and 
centrifugation at 13,000 × g. The supernatant was dried using the Savant SpeedVac, samples were reconstituted 
in a 10:90 ratio of methanol/0.1% formic acid in water and analyzed by LC-MS.  

2.3 LC-MS Conditions 

Samples were analyzed by Liquid Chromatography/Mass Spectrometry using an Accela UHPLC interfaced to an 
Exactive Plus ion trap mass spectrometer with a HESI source (ThermoFisher Scientific, San Jose, CA). 
Chromatographic separations were achieved employing a 2.1 × 150 mm, 5 m, Imtakt Flavonoid RP18 column 
(Portland, OR) with gradient elution at 0.6 mL/min. The column temperature was maintained at 65 C. Mobile 
phase A was water with 0.1% formic acid and mobile phase B was 98:2 acetonitrile:water with 0.1% formic acid. 
Mobile phase A was held at 100% for 0.5 min and then a three step linear gradient was formed from 0% to 20% 
mobile phase B over 5.5 min, to 60% mobile phase B in 2 min and then to 95% phase B in 4 min. The final 
composition was held for 1 min before returning to the initial conditions. Positive and negative electrospray 
ionization (ESI) data were acquired (separate injections) from m/z 200 to m/z 1200 with a mass accuracy within 
5 ppm at 35 000 resolutions. A single 10 L injection was used for each ionization mode. Instrumental settings 
follow: maximum injection time 10 msec, capillary temperature 320 C; tube lens voltage 175 V; ESI spray 
voltage 4.3 kV for positive ion mode, 3.6 kV for negative ion mode; sheath gas 2 arbitrary units (arbs).  

2.4 Total Flavonoid, Phenolic, Antioxidant and Free Radical Scavenging Analysis 

Analysis was performed using modifications of the methods described by Kiranmai et al., and Mahboubi et al., 
(Kiranmai et al., 2011; Mahboubi, Kazempour, & Boland Nazar, 2013), the response from each assay was 
calculated using 4PL curve fitting and expressed as µg mL-1. 

2.4.1 Total Phenolic 

Total phenolic contents in the sample extracts was determined using the Folin-Ciocalteu’s reagent (Folin & 
Denis, 1912) and the method described by Mahboubi et al. We use 25 µL aliquot of each sample extract and 
diluted calibrator solution (Gallic acid 15.6 to 1000 µg mL-1 in methanol) was mixed with 0.125 mL of 
Folin-Ciocalteu’s reagent (10%). After approximately 5 minute, 0.1 mL of 7.5% (w/v) sodium carbonate solution 
was added and mixed. That was followed by incubation for 1 hour and measure absorbance at 765 nm.  

2.4.2 Total Flavonoid 

For total flavonoid contents we use a 25 µL aliquot of each sample extract and diluted calibrator solution 
(Quercetin 15.6 to 1000 µg mL-1 in methanol) and mix with 75 µL of ethanol (95%), 0.5 µL of aluminum 
chloride (10%), 0.5 µL potassium acetate (1 M) and 140 µL deionized water. That was followed by incubation at 
RT for 30 minutes and measure absorbance at 415 nm.  

2.4.3 Total Antioxidant 

For total antioxidant activity was determined using the method described by Kiranmai et al., we use 100 µL of 
each sample and diluted calibrator solution (Ascorbic acid 78 to 5000 µg mL-1 in methanol) and mix separately 
with 1.0 mL of a mixture of (0.6 M Sulfuric Acid/28 mM Sodium phosphate/4 mM Ammonium Molybdate). 
That was followed by incubation at 95 °C for 90 minutes, measure absorbance of the reaction mixture at 695 nm.  

2.5 Protein Extraction, Quantification and Western Blot 

Protein extraction was carried out on freshly collected 0.1 gram plant leaf weight, frozen in Liquid Nitrogen and 
maintained frozen while samples were pulverized to a fine powder and mixed Laemmli buffer and boil at 95 °C 
for 10 min. Centrifugate at 1000 × g for 5 minutes at 4 °C.  

2.5.1 Protein Quantitation 

Protein was quantitated with a Thermo Scientific Pierce 660 nm Protein Assay kit (cat #22662), in a ready-to-use 
format (Thermo Fisher Scientific, Waltham, MA). A 10 µL aliquot of the kit pre-made Albumin standard 
solutions ranging from 0.125 to 2000 µg mL-1 and 10µL aliquots of the unknown protein samples extracts were 
added to wells in a clear flat bottom 96 well plate. An aliquot of 150 µL of the kit developing reagent mixture 
was placed in the well of the microtiter plate containing samples and the plate incubate for 1 min at room 
temperature, then read at 660 nm on a Spectramax 386 plus plate reader (Molecular Devices, Sunnyvale, CA). 
Protein concentration was calculated using a linear curve fit in Softmax Pro ver 5.0 (Molecular Devices, 
Sunnyvale, CA) and unknown sample concentration read of the calibration curve. 
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2.5.2 Western Blot 

For the gel electrophoresis the Bio Rad Mini Protean TGX precast gel was used 4-15% (Bio Rad, Raleigh, NC). 
20µg of protein was mixed with 1µL of Bromophenol blue and volume completed to 15 µL of with Laemmli 
buffer containing β-mercaptoethanol. Running buffer was 1X Tris-HCL-Glycine at 120 V for 60 min. Blot with 
1X transfer buffer Tris HCL-Glycine with 10% methanol at 70 V for 60 min. Blocked with 5% non-fat milk in 
1x TBST 1 hr at RT. Incubated with the Santa Cruz anti-14-3-3 rabbit polyclonal antibody as a primary antibody 
(Santa Cruz Biotechnology Inc, Dallas, TX), 1:1000 dilution in 1x TBST with 5% non-fat milk overnight at 4 °C. 
Incubate blot in cell signaling HRP-anti-rabbit antibody (Cell Signaling Technology, Danvers, MA) as the 
secondary antibody at 1:10 000 dilution in 1x TBST with 5% non-fat milk 1 hr at RT. Mix Thermo Scientific 
chemi substrate solutions in a 1:1 v/v ratio and apply to blot, incubate for 1 min and Image blot. 

2.6 Real time PCR to Determine Expression of 14-3-3λ in CHS and CHI Mutants 

The RNA was isolated using Trizol methods (Chomczynski & Sacchi, 1987), 0.1 gm of tissue was flash frozen in 
liquid nitrogen and grounded into fine powder, 0.5 mL of Trizol added. After thawing, the mixture was 
transferred to an Eppendorf tube and centrifuged at 13,000 RCF for 5 minutes, add 0.2 ml of chloroform and 
vortex briefly and incubate at room temperature for 10 minutes before centrifuging at 13,000 RCF. The top layer 
was moved into a new tube and 0.25 ml of RNA precipitation solution (0.8 M Sodium citrate/1.2 M NaCl) and 
0.25 ml of isopropanol added, centrifugate at 13,000 RCF. The RNA pellet washed twice with 75% ethanol 
before air drying. RNA pellets dissolved in RNAse free water. The RNA was converted to cDNA using a 
RETRO Script kit (Ambion, Foster city, CA). The primers were designed specific to Arabidopsis 14-3-3λ cDNA 
(AT5G10450) and a PCR was conducted for 25 cycles. Primers targeting a specific region of 14-3-3λ were 
amplified using the forward primer ‘TGCTGGAGCGAGTGAGTCTA’ and reverse primer ‘AGCCTGTTT 
GGCCATGTTAC’. An actin primer for gene ACT2 (AT3G18780) ‘TCCAGTGTTGTTGGTAG GCCA’ and 
TCTCAGCACCAATCGTGATGAC’ was run at the same time to control for loading differences.  

2.7 Protein Immuno Precipitation and Co-Immuno Precipitation with Magnetic Beads 

Immuno precipitation (IP) of 14-3-3 and co-IP of binding partners was carried out with a Thermo IP/co-IP 
magnetic bead kit, catalog #88805 (Waltham, MA) as described in the kit method. Briefly an antibody specific to 
14-3-3λ was conjugated to the magnetic beads then crosslinked to permanently bind the antibody to the beads. 
The beads were exposed to 0.5 mL of protein extracts from wild type and KO plants for 1 hour at room 
temperature (RT) with gentle shaking to keep beads suspended. The captured protein along with binding partners 
was eluted with 100 µL the low pH elution solution and 5 minutes of incubation at RT with gentle shaking. The 
eluate solution was transferred to a clean tube and neutralized with 10 µL of neutralizing buffer as described in 
the kit manual. A 50 µL aliquot of the eluate was diluted with 100 µL 0.5M bicarbonate buffer digested with 50 
µL of 1 mg mL-1 trypsin and 37 °C overnight, then analyzed by LC-MS. 

2.8 Co-Localization of 14-3-3λ with CHS Using Confocal Microscopy 

Microscopic imaging was performed on a spinning disk (Yokagawa CSU-X1; Andor Technology) confocal 
microscope using a 60x 1.4 NA oil immersion objective lens on a TiE microscope equipped with Perfect Focus 
System (Nikon) equipped with an electronic shutter (Sutter Instrument) for transmitted illumination, a linear 
encoded X and Y, motorized stage (ASI Technologies), and a multi-bandpass dichromatic mirror (Semrock) and 
bandpass filters (Chroma Technology Corp.) in an electronic filter wheel for selection of BFP, GFP, or RFP 
emission. 405-, 488-, and 561-nm laser illumination was provided by a high-powered (20 mW 405-nm; 50 mW 
488- and 561-nm) monolithic laser combiner module (MLC 400B; Agilent Technologies) that were shuttered 
with electronic shutters and directed to a fiber-coupled output port with an Acousto optic tunable filter and to the 
confocal scan-head via a single mode polarization-maintaining fiber coupled delivery system (Agilent 
Technologies). The exposure times for the images were 500 milliseconds for 405 and 488 nm and 600 ms for 561 
nm. The primary antibody for 14-3-3λ was anti-mouse kindly gifted by Dr. Robert Ferl, University of Florida. A 
final dilution of 1:20 was followed according to the protocol of Pasternak et al. (2015). The secondary antibody 
for 14-3-3λ was tagged with Cy5 and a final dilution of 1:500 was used. The primary antibody used to probe 
chalcone synthase was from Agrisera (AS 12 2615). The secondary antibody for chalcone synthase was tagged 
with Cy3. Primary and secondary dilutions were 1:20 and 1:500 respectively (Pasternak et al., 2015).  

2.9 Statistical Analysis 

For total Flavonoid, Phenolic, Antioxidant and Free radical scavenging capacity, the differences between 
drought-treated versus untreated plants were analyzed with a paired t-test, in Microsoft Excel. Metabolite 
profiling analyses were carried out with MetaboAnalyst. Data was first transformed by log normalization and 
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Table 1. Summary of LC/MS metabolite profiling for normal hydration and drought treated wild-type 
(Columbia-0) Arabidopsis thaliana, and 14-3-3λ mutant. Compounds showing significant changes amongst the 
group are shown. Positive ionization mode LC/MS data (top frame, panel 1 and 2). Negative ionization LC/MS 
data (bottom frame, panel 3 and 4) 

Panel 1  Wild Type Wet vs Dry Knockout Wet vs Dry 

Metabolite Name IonMZ 
Col_Wet/Col_Dry Lam_Wet/Lam_Dry 

Fold Change P Value Fold Change P Value 

3-p-coumaroylsinapoylsophoroside-5-diglucoside 644.1847 1.5 1.22E-01 -5.0 4.79E-03 

3-caffeoylferuloylsophoroside-5-succinoylglucoside 604.1428 18.6 3.21E-03 0.0 3.41E-01 

3-caffeoylferuloylsophoroside-5-malonyldiglucoside 678.1614 18.1 4.59E-03 -1.7 5.08E-01 

Panel 2  Wet Wild Type vs Knockout Dry Wild Type vs Knockout

Metabolite Name IonMZ 
Col_Wet/Lam_Wet Col_Dry/Lam_Dry 

Fold Change P Value Fold Change P Value 

3-p-coumaroylsinapoylsophoroside-5-diglucoside 644.1847 > 500 3.72E-04 65.9 6.34E-07 

3-caffeoylferuloylsophoroside-5-succinoylglucoside 604.1428 > 500 2.04E-03 128.9 2.41E-01 

3-caffeoylferuloylsophoroside-5-malonyldiglucoside 678.1614 70.8 3.50E-03 2.3 1.50E-01 

Panel 3  Wild Type Wet vs Dry Knockout Wet vs Dry 

Metabolite Name IonMZ 
Col_Wet/Col_Dry Lam_Wet/Lam_Dry 

Fold Change P Value Fold Change P Value 

Peonidin-3-O-monoglucoside 461.1089 13.9 1.10E-03 -1.7 2.64E-02 

Cyanidin-3,5-O-diglucoside 609.1465 1.4 2.12E-01 -2 2.28E-02 

Peonidin-3,5-O- diglucoside 623.1617 0.8 4.64E-01 -2.5 2.33E-03 

Delphinidin P-Coumaoroyldiglucoside 678.1614 1.1 3.01E-01 -1.67 1.37E-02 

Panel 4  Wet Wild Type vs Knockout Dry Wild Type vs Knockout

Metabolite Name IonMZ 
Col_Wet/Lam_Wet Col_Dry/Lam_Dry 

Fold Change P Value Fold Change P Value 

Peonidin-3-O-monoglucoside 461.1089 0.6 3.55E-02 -43.5 7.75E-05 

Cyanidin-3,5-O-diglucoside 609.1465 13.3 7.11E-05 4.4 1.08E-02 

Peonidin-3,5-O- diglucoside 623.1617 2.6 5.94E-04 1.2 5.42E-01 

Delphinidin P-Coumaoroyldiglucoside 678.1614 2.2 5.12E-05 1.2 1.96E-01 

 

When specific metabolites were observed to have high fold change differences between the groups, and were 
compared against the Kegg anthocyanin pathway nodes, we find that the likely nodes of interaction for 
production of these metabolites would be in the cyanidin and delphinidin nodes (Table 2). 
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Table 2. Anthocyanin metabolites and associated genes, location on Kegg Anthocyanin Biosynthesis pathway 

Metabolite Locus 
Kegg Pathway 
A. thaliana Gene(s)

Function 
Anthocyanin 
Node 

Location 

3-p-coumaroylsinapoylso 
phoroside-5-diglucoside 

BAA74428,  
AT4G14090 

AT4 anthocyanin-containing compound 
biosynthetice procsee, 
phenylpropanoid metabolic process

Cyanidin Chloroplasts

3-caffeoylferuloylsopho 
roside-5-succinoylglucoside 

BAA74428,  
AT4G14090 

AT4 anthocyanin-containing compound 
biosynthetice procsee,  
phenylpropanoid metabolic process

Cyanidin Chloroplasts

3-caffeoylferuloylsopho 
roside-5-malonyldiglucoside 

BAA74428,  
AT4G14090, 
AT3G29590 

AT4, AT3 anthocyanin-containing compound 
biosynthetice procsee, 
phenylpropanoid metabolic process

Cyanidin Cytoplasm 

Peonidin-3-O-monoglucoside AT4G14090 AT4 anthocyanin-containing compound 
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Anthocyanin metabolites such as 3-p-coumaurolysinapoylsophoroside-5-diglucoside and 3-caffeoylferuloy 
lsophoroside-5-succinoylglucoside when compared in wild-type and 14-3-3λ knockout plants, were 500-fold 
different between Col and 14-3-3λ wet and 69-fold change between Col and 14-3-3λ dry (Table 1, panel 2). The 
fold changes between wet wild-type and the 14-3-3λ knockout suggests that 14-3-3 is important in production of 
specific anthocyanins such as 3-p-coumaurolysinapoylsophoroside-5-diglucoside, 3-caffeoylferuloylsopho 
roside-5-succinoylglucoside, 3-caffeoylferuloylsophoroside-5-malonyldiglucoside, 3-feruloylsophoroside-5- 
succinoylglucoside, Petunidin-3,5-O-diglucoside and Malvidin-3-O-p-coumarylmonoglucoside (Table 1, panel 1 
to 4). The genes that regulate the metabolites shown in Table 1 are in the synthetic pathway from 
4-coumaryl-coA to naringenin chalcone which is then converted to naringenin. These two steps in Pp pathway 
are regulated by chalcone synthase (CHS) and chalcone isomerase (CHI). Figure 4 represents a heat map 
distribution of the top 25 anthocyanin metabolites showing that the groups are clustered, demonstrating up or 
down regulation of the metabolites with consistency amongst the groups and providing confidence in the data 
which are listed in Table 2.  
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4. Conclusion 
These results demonstrate that 14-3-3λ plays a role in the Pp pathway in production of anthocyanins and shows 
that knockout of CHS and CHI diminishes expression of 14-3-3λ during drought conditions. These data also 
suggest that PAL-1, PAL-2, CHS and CHI are interacting with 14-3-3. These observations demonstrate that 
knocking out 14-3-3λ results in decreased 14-3-3 expression under drought conditions, consequently resulting in 
differential accumulation of anthocyanin metabolites in the knocked out line compared to wild-type. 
Over-expressing 14-3-3λ leads to increased tolerance to drought in these transgenic plants. The plants showed 
increased accumulation of anthocyanins in the over-expressing transgenic plants providing additional evidence 
that 14-3-3 is interacting with the chalcone synthase gene and is involved in anthocyanin production. Hence, 
14-3-3λ does play an important role in drought tolerance in A. thaliana. 
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