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Abstract 
Photo-thermo sensitive male sterile (PTMS) line is one of the important materials in utilizing heterosis in crops. 
Wheat line BNS (Bainong sterility) is an important nuclear-controlling PTMS line and suitable for growing and 
seed production in Huang Huai wheat zone in China. It has genetic stability with male sterility when sowing in 
autumn and male fertility when sowing in spring. Their thermosensitive periods were between stamen and pistil 
differentiation stage and anther connective stage and they could be regarded key periods for fertility conversion 
in BNS. To determine the molecular mechanisms of fertility conversion at thermosensitive period, we 
investigated characters of seed setting, anther and pollen grain of fertile and sterile BNS plants and compared 
young spike proteome patterns at their thermosensitive periods between the two BNS plants. The results showed 
that sterile plants had lower seed setting rate and pollen number, small pollen grain and lower pollen vitality than 
fertile plants. Out of protein spots reproducibly detected and analyzed on two dimensional electrophoresis gels, 
76 spots showed significant changes in at least one BNS plant and 36 spots were identified by MALDI-TOF MS. 
The results showed that proteins involved in multiple biochemical pathways were differentially expressed at 
thermosensitive period between the two plants, including energy metabolism, stress response, signal transduction 
and regulation, protein process, amino acid and fatty acid metabolism, nucleic acid metabolism etc. Some of 
these proteins are reported to be involved in the abortion of anther or pollen grains in MS plants, such as energy 
metabolism and anti oxidative stress, and some were found to be novel proteins involved in the fertility 
conversion, such as phytohormones regulation. These results indicated that proteins related with anther or pollen 
development had expressed differently between the two BNS plants before anther development and 
phytohormones and signal transduction might be involved in the regulation of fertility conversion at 
thermosensitive period. Our studies have provided new insight to reveal the molecular mechanisms of fertility 
conversion at thermosensitive period in PTMS wheat. 

Keywords: male sterility, plant hormones, proteomics, Triticum aestivum, theomosensitivy 

1. Introduction 
Male sterility (MS) has been wildly found for the production of hybrid seed in crop plants. Several CMS 
(cytoplasmic MS) systems have been reported in many crops and have been extensively utilized for hybrid seed 
production, such as in rich (Li & Yuan, 2000; Virmani, 2003) and rapeseed (Fan et al., 1986; Röbbelen, 1991). 
The utilization of heterosis in common wheat was made possible by the establishment of the nuclear-cytoplasm 
interactive male sterility in the three-line system and by the use of chemical hybridizing agents (CHA) (Zhao et 
al., 1999). However, wheat heterosis has not been utilized extensively in worldwide. The three-line system has a 
narrow origin and low degree of restoration, and the use of CHA is very limited for its cost and potential residue 
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problems. Photo-thermo sensitive male sterile (PGMS) lines are utilized as an alternative way of exploiting 
heterosis in wheat. The PGMS system is advantageous for its broad restoring ability, easy maintenance and 
multiplication and it is considered to be more efficient than CMS system in hybrid wheat production (Jordaan, 
1996; Virmani & Ilyas-Ahmed, 2001).  

BNS (Bainong sterility) line is a new type of ecological male sterile wheat line with PGMS character. BNS was 
obtained from BNY-S, a temperature sensitive nature mutant from wheat va. Bainong, and it was improved by 
continuous backcrossing with a wheat va. Lankao (Zhou et al., 2010). Both Bainong and Lankao were released 
for cultivation in HuangHuai wheat zone, which is the main wheat growing area and the wheat production in this 
area accounts for more than 60% of wheat production in China (Liu et al., 2011; Zhou et al., 2007). The fertility 
of BNS was easy to be restored by a few normal wheat varieties in this area (Li et al., 2009). BNS might be a 
potential, important PGMS line for wheat heterosis utilization in this area.  

BNS is a genic PTMS line and its fertility and sterility are stable in different growing years. BNS has the 
characteristics of high sterility when it was sowed in early or medium autumn and fertility when sowed in later 
autumn or spring (Li et al., 2009).  

As a PTMS line, the temperature played a leading role in its fertility alteration. Our previous studies proved that 
the temperature sensitive period was between stamen and pistil differentiation stage and anther connective stage, 
and this period could be regarded as critical for its fertility conversion (Wang et al., 2011). Based on continuous 
growing years’ results, it could be concluded that the complete sterility could be obtained when air temperature 
goes below 11.4 oC at this fertility conversion period, and hybrid seed could be produced by crossing with 
restoration lines. BNS showed complete fertility when air temperature is more than 15.9 oC at the fertility 
conversion period, and fertile seed could be produced by self crossing (Wang et al., 2011). In addition, our 
research also showed that the male fertility in BNS was controlled by two major genes plus polygene, and a 
certain amount of cytoplasmic effects was preliminarily found. The two major genes have more effects on the 
fertility, and their additive effects are much more than their dominant effects (Zhang et al., 2013).  

Up to now, many researches on mechanisms of male sterility have focus on the developments of anther or pollen 
grain. In order to understand the molecular mechanism underlying the key period of fertility conversion in male 
sterility, we investigated the proteome pattern differences of young spikes at fertility conversion period between 
fertile plants and sterile plants of BNS. This research will be helpful for elucidation of proteins regulation in 
conversion of fertility and sterility, and for utilization of this PTMS line in wheat heterosis.  

2. Materials and Methods 
2.1 Experimental Materials and Cultivation 
PTMS winter wheat line BNS was used in this study. Materials were planted at the farm of Agronomy College 
of Shandong Agricultural University, in Taian City (36°11′N, 117°8′E and 135 m a.s.l), in Eastern China, during 
2011-2012 growing season. Sowings occurred at two different dates, autumn (October 5, 2011) and spring 
(March 10, 2012). Seeds were planted in 3 replicates with plot of 2.0 m × 7 m (14 m2) in this study. Two 
hundred seedlings were planted per square meter at equal spacing. All cultural practices, such as irrigation, 
fertilization, and the controls of weed, insect and disease were standard and uniform according to the local 
farmer cultivation practices.  

2.2 Investigation of Seed Setting, and Characters of Anther and Pollen Grains 

Seed setting rates: three spikes (one main and two side tillers per plant) on 10 randomly selected plants in each 
replication of the two sowing date plants were bagged with butter paper bags before flowering to observe seed 
setting in bagged spikes. Percent seed setting was calculated as two formulae given below: 

Seed set (%) = (Total number of kernels on spikelet base)/(Number of spikelets per spike × 2) × 100 (Chinese 
seed setting formula) (Song et al., 2005).  

Seed set (%) = (Total number of kernels per spike)/(Number of spikelets per spike × 2) × 100 (International seed 
setting formula) (Zhang et al., 2007).  

Characters of anther and pollen grains: 30 anthers of each replicate of the two sowing date plants were analyzed, 
of which always 10 were taken from the bottom third part, 10 from the middle third part and 10 from the top 
third part of the spike. Anthers just turning yellow, approximately one day before dehiscence, were removed 
from the floret with a pincet and measured under a binocular stereomicroscope (16×) with an ocular micrometer. 
The length and the width of the anther were determined. Pollen grain number pre anther was determined 
according to Hansen’ methods (Hansen & Andersen, 1998). Brifly, the anther was deposited in a vial with 0.5 ml 
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0.5% aceto carmine, all pollen grains were loosened from the anther by crushing and stirring the anther. The 
concentration of pollens could be determined using haemocytometer method and the real number of pollen 
grains per anther could be calculated. At the same time, the diameter of pollen grains were determined under 
microscopy with an ocular micrometer. The viability of pollen grains was examined under the microscope. 
Anthers were taken from each spikelet in 5 spikes and squashed with a glass rod on a glass-slide to disperse 
pollen grains and stained with iodine-potassium iodine solution (2% I-KI). Only those being round, normal sized 
and dark blue stained were considered fertile (Barnabás & Kovács, 1992).  

2.3 Protein Sample Extraction for Proteomics 

Proteomics analysis for wheat line BNS during its thermosensitive period were conducted State Key Laboratory 
of Crop Biology, Shandong Agricultural University. For proteomic analysis, young spikes at the thermosensitive 
period (between the stage of differentiations of pistil and stamen and the stage of anther connective) were 
sampled according to the observation under stereomicroscope. Proteins were extracted using a two step 
trichloroacetic acid/acetone protein extraction protocol with minor modification (Cho et al., 2006). Briefly, a 
total of 0.3 g of young spikes were ground in liquid nitrogen with mortar and pestle (pre-cooled) into a fine 
powder. The powder was precipitated with ice-cold acetone containing 10% (w/v) trichloroacetic acid and 0.07% 
(v/v) 2-mercaptoethanol (acetone-TCA-2-ME) for 2 h at 20 oC, and then centrifuged at 40,000 g for 25 min at 4 
oC. The pellets were washed with ice-cold acetone containing 0.07% (v/v) 2-ME, for 6 h at 20 oC and 
centrifuged again at 4 oC. Then pellets were lyophilized to powder and were stored at 80 oC until further use. Six 
biological replicates were extracted independently for fertile and sterile plants respectively. 

2.4 Two-Dimensional Electrophoresis 

Isoelectric focusing (IEF) was carried out on immobilized pH gradient (IPG) 24 cm pH 3-10 L strips (Bio-Rad). 
The running condition was as follows: 500 V for 1 h, followed by 1000 V for 1 h, and finally 8000 V for 14 h. 
The focused strips were equilibrated for 15 min in 10 ml equilibration solution containing 7 M urea, 30% (w/v) 
glycerol, 2.5% (w/v) SDS, 1% (w/v) DTT, and 50 mM Tris-HCl buffer, pH 8.8. Separation of proteins in the 
second dimension was performed by SDS-PAGE in a vertical slab of acrylamide (12% total monomer, with 
2.6% cross linker) using a Dodeca Cell (Bio-Rad). For preparative gels 1.8 mg protein were loaded. The protein 
spots in analytical and preparative gels were visualized by colloidal CBB G-250.  

2.5 In-Gel Digestion and MALDI-TOF MS Analysis 

The excised protein spots were washed with ultrapure water twice at room temperature, and destained with 100 
ml of 100 mM NH4HCO3/acetonitrile (50:50, v/v) for 1 h. Gel fragments were dehydrated with 50 ml of 
acetonitrile for 10 min and dried at room temperature. 10 ml of 20 ng/ml trypsin (Promega) was added to each 
dried gel fragment and incubated for 45 min at 4 oC. 10 ml NH4HCO3 (50 mM) was added and fragments were 
incubated at 37 oC overnight (about 16 h). After digestion of proteins, peptides were desalted with C18 ZipTips 
(Millipore Corp., Bedford, MA, USA), then spotted on MALDI plates (Bruker Daltonics, Germany) in 50% 
acetonitrile and 0.1% trifluoroacetic acid (TFA). Finally, peptides were co-crystallized with saturated 
a-cyano-4-hydroxycinnamic acid (CHCA) prepared in 50% (v/v) acetonitrile containing 1% TFA. To obtain 
peptide mass fingerprint (PMF) of protein spots, peptide masses were measured using autoflex MALDI-TOF MS 
(Bruker Daltonics, Billerica, MA, USA). External calibration was performed with a peptide calibration standard 
(Bruker Daltonics, Part No.: 206 195). All obtained PMFs were analyzed with the protein search engine 
MASCOT (Matrix Science, U.K.) against NCBI’s database. Search parameters were set as follows: peptide 
tolerance (0.2 Da), NCBInr database, Green plants (taxonomy), carbamidomethylation of cysteine (fixed 
modification), and methionine oxidation (variable modification). Molecular function of proteins was annotated 
using the database at http://www.uniprot.org/uniprot (Wen et al., 2010).  

2.6 Statistical Analysis 

SPSS Version 13.0 (Lead Technologies, Chicago, IL, USA) was used to statistically analyze the results of 
characters of seed setting, anther and pollen grains, the intensity of protein spots by Student’s t-test. Percentage 
of seed setting was subject to arcsine transformation prior to statistical analysis. Significance was determined at 
the p < 0.05 level.  

3. Results 
3.1 Characters of Seed Setting, Anther and Pollen from Two Sowing Date Plants 

The investigation results of seed setting, characters of anther and pollen from sterile and fertile plants of BNS 
were shown in Table 1. The seed setting rates of BNS line sowed at autumn and spring were 1.25% and 84.62% 
(as international calculation method), or 2.96% and 118.67% (as Chinese calculation method), respectively (P < 
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they were identified with high confidence by MALDI-TOF MS. The genomic sequence data analysis of all the 
differentially expressed proteins identified only 38 proteins from wheat (Table 2). Among these identified 
proteins, 22 proteins were up-regulated in fertile plants, while 14 were up-regulated in sterile plants. Homologs 
of some of these proteins were identified in other plant species, and the identification of wheat proteins was low 
due to the incomplete status of the wheat genome database. According to the functional features described in 
annotation and literature data, the identified proteins were categorized into several types, including carbohydrate 
and energy metabolism, stress responses, signaling and regulation, antioxidant and defense pathways, protein 
synthesis or DNA replication process, amino acid and fatty acid metabolism, nucleic acid metabolism and other 
unclassified proteins. Detailed information can be found in Table 2. 

 

Table 2. Up regulated proteins displayed and identified on gels after 2-DE followed by matrix-assisted laser 
desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis in sterile and fertile plants of 
BNS 

Spot Protein description 
Experimenta 
Mr (kDa)/pIb 

Theoretical 
Mr (kDa)/pI

NCBI 
accession no. 

Protein 
function 

Mascot
score 

No. of 
matche 
peptides 

Protein 
source 

Sequence
coverage
(%) 

Up regulated in sterile plants 

14 Cupin protein 45.7/6.02 56.9/6.05 ACG25229.1 Signal transduction 132.7 8 Zea mays 25 

7 ATP synthase subunit d, 
mitochondrial-like 

16.5/4.82 20.4/5.33 XP_003563178 Energy metabolism 89.5 14 Brachypodium 
distachyon 

32 

10 Cytosolic Ascorbate  
peroxidase 

29.6/5.92 27.2/5.28 ACG41151.1 Cell detoxification  21  41 

12 Cytosolic Ascorbate  
Peroxidase 

23.7/6.42 27.2/5.28 ACG41151.1 Cell detoxification 98.7 17 Zea mays 27 

8 s-adenosylmethionine  
synthetase 1 

62.7/5.86 43.1/5.50 XP_002312296.1 Gene expression 104.25 9 Populus  
trichocarpa 

35 

18 Hypothetical protein 27.6/6.05 28.9/7.72 NP_001142197.1 Unclear functional  98.5 12 Zea mays 41 

2 Oxidase (IM1) mRNA 24.5/3.89 26.7/4.88 AF274001 Metabolism 103.5 15 Triticum  
aestivum 

28 

20 Triticin precursor 70.2/7.45 57.0/9.37 S62630 Storage protein  19 Triticum  
aestivum 

15 

22 Superoxide dismutase  
precusor 

28.4/7.36 22.7/8.52 FJ890987 Cell detoxification 98.7 9 Triticum  
aestivum 

22 

11 NBS-LRR type RGA 24.8/5.69 19.5/5.74 AAZ99787 Disease resistant 78.9 11 Triticum  
aestivum 

19 

4 Rice homologue of Tat  
binding protein 

63.7/5.12 49.6/5.91 BAA04615 Transcription factor 83.6 13 Oryza sativa 27 

5 Nitrate reductase apoenzyme 70.2/5.36 101.5/6.11 CAA33817 Electron transport 
chain 

121.5 22 Oryza sativa 32 

17 KNOX class homeodomain 
protein 

35.8/6.67 33.3/5.21 AAU10751 Unclear function 99.8 14 Oryza sativa 41 

15 A ABA-responsive, ABR1 48.2/6.34 38.0/6.29 CA524559 Signal transduction 89.6 13 Capsicum  
annuum 

21 

21 wrab17, LEA/RAB-related  
COR protein 

37.2/7.42 20.6/4.70 AAF68628.1 Signal transduction 98.4 7 Triticum 
aestivum 

26 

Up regulated in fertile plants 

 14-3-3  28.9/4.73 P48347 Signal transduction 88 8 Arabidopsis  
thaliana 

23 

F9 Annexin D4 39.7/6.42 36.2/6.88 NP_181409.1 Signal transduction 61 7 Arabidopsis  
thaliana 

15 

F4 Mitochondrial ATP  
synthase precu 

30.2/5.56 57.8/5.16 AY614716_1 Energy metabolism 131.4 10 Triticum  
aestivum 

34 

F18 Mitochondrial ATP  
synthase precursor 

34.2/6.23 57.8/5.16 AY614716_1 Energy metabolism 80.19 12 Triticum  
aestivum 

28 

F19 V-type proton ATPase  
subunit B1 

58.9/6.72 54.1/4.98 P11574 Energy metabolism 78.9 13 Arabidopsis  
thaliana 

47 

F17 Starch synthase isoform IV 46.2/7.52 103.1/5.87 AAK97773.1 Biosynthetic enzymes, 
metabolism enzymes 

84.3 17 Triticum  
aestivum 

24 

F10 Putative peptidyl-prolyl  
cis-trans isomerase  
family protein 

28.4/6.89 23.6/9.58 AFW69420.1 Protein progress,  
protein folding 

 18 Zea mays 17 
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4. Discussion 
We analyzed the differences of fertility characters between of autumn sowing and spring sowing plants of PTMS 
winter line BNS. The results indicated that BNS was highly sterile when planted in early autumn in Taian and its 
seed setting rate recovered to more than 80%, and self-pollinated to normal levels when sowing in spring. This 
indicated that it could be used as both maintainer and sterile lines in a two-line hybrid system. The present study 
showed that the sterility of BNS line sowed in autumn might be due to the reduction of pollen number per anther 
or the decrease of pollen viability. This is consistent with previous studies in other species. In peach, a mutant 
with male sterility had smaller anthers and lesser number of pollen grains than fertile parental variety (Sreevalli 
et al., 2003). In eggplant, both the number of pollen per anther and pollen viability in the BC5 plants with male 
sterility were lower than those in their fertile nucleus donor (Shiro & Yoshida, 2002). However, the reduction of 
pollen number per anther and the decrease of pollen viability are influenced by different mechanisms. The pollen 
number might be related with the development of meiosis of microspore mother cell, or the daparture of pollen 
grains from tapetum and the realeasement from anther, and the pollen viability might be related with normal 
development of pollen grains after meiosis of microspore mother cell. Lee et al. (2008) reported that no pollen 
grain is typically visible during anthesis in a male sterile radish, but a small number of pollen grains could be 
observed stuck together in the dehiscing anthers in another male sterile radish. Gothandam et al. (2007) showed 
that pollen viability and grain production decreased significantly when treated at a low temperature in a rice MS 
line, and the male sterility is due to functional loss of the tapetum which is the most sensitive to low-temperature 
stress.  

The present research showed that, the external appearances had no obvious change at their theomosensitive 
periods between sterile and fertile plants of BNS, but the expression of a variety of proteins were different 
significantly between them as shown by proteomics (Table 2, Figure 2). Vijayalakshmi and Bangarusamy (2007) 
have reported that high temperature induced male sterility in a thermosensitive genie male sterile rice line; and 
comparied with fertile plants, the male sterile plants were associated with accumulation of total phenolics and 
proline and reductions of soluble proteins at the critical stage of thermosensitivity. Our research indicated that 
there might be multiple biochemical mechanisms involved in the fertility conversion at thermosensitive period. 
Among these proteins, proteins related with energy metabolism, antioxidant stress and hormone regulation could 
be particularly prominent.  

Proteins related with energy metabolism and regulation included 4 proteins. ATP synthase subunit d 
(mitochondrial-like) (spot 7) was up-regulated in sterile plants, and mitochondrial ATP synthase precursor (spot 
F18), V-type proton ATPase subunit B1 (spot F19) and ubiquinol-cytochrome c reductase complex protein (spot 
F13) were up regulated in fertile plants.  

ATP synthase is an important enzyme that provides energy for the cell to use through the synthesis of adenosine 
triphosphate (ATP). ATPases are a class of enzymes that catalyze the decomposition of ATP into ADP and a free 
phosphate ion. This dephosphorylation reaction releases energy and this process is widely used in all known 
forms of life. Mitochondrion, the site of both the tricarboxylic acid cycle and oxidative phosphorylation pathway, 
plays a crucial role in energy and carbon metabolism in eukaryotic cells (Hatefi, 1985). Up to now, 12 
mitochondrion DNA regions associated with CMS have been identified, and most of them are involved in the 
genes encoding F0F1-ATPase subunits (Hanson, 2004). In higher plants, the demand for ATP is highly increased 
during pollen development (Sabar et al., 2003), and decreased mitochondrial ATP synthesis may be a causal 
factor in disruption of pollen or microspore development (Yang et al., 2009). These previous researchers have 
reported that reduction of the proteins associated with energy production and lesser ATP equivalents detected in 
CMS anther and that indicated that the low level of energy production played an important role in inducing CMS. 
Oue research indicated that the differences of sterile and fertile plants on energy production has taken place as 
early as thermosensitive period in BNS, and there is no visible anther in the young spike at this period. The 
ubiquinol cytochrome c reductase is a key subunit of the cytochrome bc1 complex (complex III) of the 
mitochondrial respiratory chain (Vedel et al., 1999). The complex shows characteristics associated with a 
Q-cycle mechanism of redox-driven proton translocation, including two pathways for reduction of b 
cytochromes by quinols and oxidant-induced reduction of b cytochromes in the presence of antimycin (Berry et 
al., 1991). But to our knowledge no proof shows that it is related with MS in plants. 

Superoxide dismutase precusor (SOD) (spot 22) and cytosolic ascorbate Peroxidase (spots 10, 12) were found up 
regulated in sterile plants. Superoxide dismutases are enzymes that catalyze the dismutation of superoxide (O2-) 
into oxygen and hydrogen peroxide. This is an important antioxidant defense in nearly all cells exposed to 
oxygen. Superoxide dismutases up regulated in sterile lines might be related with the elimination of activated 
oxygens in male sterile plants. In rice, compared with the maintainer line, fertile line Yuetai B, a significant 
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decrease of SOD activity was detected in the CMS line, Yuetai A, which resulted in an increase in the reactive 
oxygen species (ROS) content (Wang et al., 2013). Ascorbate peroxidases (APX) are enzymes that detoxify 
peroxides such as hydrogen peroxide using ascorbate as a substrate. Programmed cell death during microgenesis 
in a Honglian CMS line of rice is correlated with oxidative stress in mitochondria. This pollen disruption was 
correlated with excess production of reactive oxygen species and down-regulation of the activity of superoxide 
dismutase (SOD) and ascorbate peroxidase (APX) in mitochondria (Li et al., 2004).  

Proteins related with hormone synthesis and regulation including 5 proteins. Cupin protein (spot 14), wrab17 (a 
LEA/RAB-related COR protein) (spot 21) and ABR1 (a ABA-responsive protein) (spot 15) were up-regulated in 
sterile plants, indole-3-glycerol phosphate lyase and Annexin D4 were up-regulated in fertile plants. 

The cupin proteinbelongs to cupin superfamily, which comprises both enzymatic and non-enzymatic members, 
although it notably contains the non-enzymatic seed storage proteins (Dunwell et al., 2001). In seed, the cupin 
protein mainly competes with ABA in the activated a-subunit of GTP-binding proteins in the regulation of its 
germination (Santner & Estelle, 2009; Lapik & Kaufman, 2003). Once ABA interacts with GTP-binding protein 
receptors, other proteins related to the signal cascade are needed for signal transduction to take place. Wrab17 is 
a dehydrin-like protein which was shown to be highly homologous (84% amino acid identity) to ES2A, a barley 
GA3 (gibberellic acid)-responsive protein (Pandey et al., 2009). ABA-RESPONSIVE1 (ABR1), which is highly 
induced by infection with avirulent Xanthomonas campestris and it is also highly induced by treatment with 
ABA. The pepper ABR1, which localizes to the nucleus, negatively regulates ABA signaling in an SA-dependent 
manner to resist pathogen attack (Tsuda et al., 2000). Spot F2 had the highest homology to indole-3-glycerol 
phosphate lyase (IGL2). IGL2 is involved in auxin-mediated signal transduction. The interaction of auxin with 
its cellular receptors for IGL2 triggers a cascade of events resulting in response including the modification of cell 
wall components such as lipids, and in altering the orientation of cell wall polysaccharides (Choi & Hwang, 
2011). Annexin D4 (spot F9) plays important roles in osmotic stress and ABA signaling in a Ca2+-dependent 
manner (Macdonald, 1997).  

The previous research has proved that almost all the hormones are related with male fertility in plants. Flower 
tissue-specific auxin reduction is the primary cause of high temperature injury, which leads to the abortion of 
pollen development in barley and Arabidopsis (Lee et al., 2004). The tapetum-specific expression of a mutated 
ethylene receptor gene is a potential strategy for inducing male sterility in transgenic tobacco plants (Sakata, 
2010). In B. napus ABA content in flower buds was higher in fertile plants than that in male sterile plants, and 
the expression of KIN1, a ABA reactive protein, also reduced in sterile flower (Zhu et al., 2010). 
Gibberellin-induced gene expression associated with cytoplasmic male sterility in sunflower (Duca et al., 2008).  

Our present results indicated that complex plant hormone regulations might exist during the thermosensitive 
period. Plant hormones might have important roles in the fertility conversion. However, as for what specific 
hormones mainly involved and what action modes of hormone in fertility conversion are needed to be further 
studied.  

In addition, there are many other proteins expressed differently between the two lines at thermosensitive period 
in BNS (Figure 2; Table 2). The proteins up-regulated in sterile line included that s-adenosylmethionine 
synthetase 1, Oxidase (IM1), triticin precursor, NBS-LRR type RGA, rice homologue of Tat binding protein, 
nitrate reductase apoenzyme, KNOX class homeodomain protein and hypothetical protein. The proteins up 
regulated in fertile plants included starch synthase isoform IV, putative peptidyl-prolyl cis-trans isomerase family 
protein, DNA ligase, histone H3, TPA (acidic ribosomal protein P2a-3), chaperonin isoform 1, ADP-ribosylation 
factor, retrotransposon protein, chitinase 3, pyruvate decarboxylase, isopentenyl pyrophosphate isomerase, 
cysteine proteinase, chilling inducible protein, RicMT. These proteins might have some roles in the fertility 
conversion, and they are also worthy of further research. 

In conclusion, sterile plants of BNS had lower seed setting rate, lower pollen number, small pollen grain and 
lower pollen vitality than fertile plants. Proteins involved in multiple pathways were differentially expressed in 
response to fertility differences at thermosensitive period. Proteins related with pollen abortion had expressed 
differently at thermosentive period and plant hormones might be involved in the regulation of fertility conversion 
at this period. 
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