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Abstract 
High concentrations of soil Al3+ in acid soil severely influence the growth of Medicago sativa (alfalfa). The 
objective of the current study was to analyze whether Arbuscular Mycorrhizal Fungi (AMF) inoculation could 
improve alfalfa growth in acid soils. A two-way completely randomized factorial design was employed for M. 
sativa and M. lupulina (black medick) with two inoculations (rhizobia and AMF) and three Al3+ levels, and 
replicated four times. The soil Al3+ levels were adjusted to 900 mg/kg, 1000 mg/kg and 1100 mg/kg. Spores of 
AMF were isolated directly from rhizosphere soils of black medick. The rhizobia were isolated from root 
nodules in fields separately from two plant species. At each Al3+ level, there were four inoculations, 
non-inoculation, AMF solely, rhizobia solely and dual-inoculation with AMF and rhizobia. Soil Al3+ 
concentration significantly limited above- and below-ground growth of both alfalfa and black medick, 
reducing plant height, branching number, shoot and root weight, and root length, surface area and volume. 
Compared to rhizobia, AMF showed a higher tolerance to soil Al3+. AMF inoculation increased the shoot and 
root weight of both plant species under most circumstances. Overall, AMF colonization had a trend in 
increasing the contents of phosphorus in both plant species at all Al3+ concentrations but not nitrogen and 
potassium. Dual inoculation significantly increased nodulation ability, enabling both plant species to form 
nodules at 900 and 1000 mg/kg Al3+. Though the soil Al3+ concentration influenced the efficiency of AMF 
inoculation, AMF inoculation improved nodulation, increased plant growth and nutrient uptake, suggesting 
that it was an alternative way in improving alfalfa growth in acid soils. 

Keywords: acid soil, aluminum, arbuscular mycorrhizal fungi (AMF), Medicago lupulina, Medicago sativa 

1. Introduction 

Medicago sativa L. (alfalfa), a perennial legume crop, is widely grown in temperate and subtropical regions all 
over the world for its high feeding value, good palatability, great adaptability, and high yield. With the increasing 
needs from dairy and beef production, alfalfa plantation area has enlarged from northern China to southern china, 
where about 21% of the arable land is acid soils, approximately reaching 2.03 million km2 (Shi, Li, Xu, & Qian, 
2016). However, it is generally believed that optimum alfalfa yields are associated with a soil pH in the range of 
6.5 to 7.5. Soil acidity has become one of the limiting factors in planting alfalfa in the South of China (Guo, Ni, 
Yuan, & Huang, 2009). With the reduced pH levels in acid soils, alfalfa yield declines rapidly (Undersander et al., 
1991), so do the nodulation, leaf retention, leaf to stem ratio, and crude protein content (Grewal & Williams, 
2003).  

Among the factors decreasing soil fertilities in acid soil, aluminum (Al) toxicity has been regarded as the main 
factor limiting crop yields (Foy, 1988). In neutral or alkaline soil solution, Al is present as harmless oxides and 
aluminosilicates (Martens, 2001). However, in soils with pH below 5.5, the solubility of aluminum increases 
greatly and is released into the soil solution in the form of toxic ions to plants [Al(OH)2+, Al(OH)2+, Al3+ and 
Al(H2O)6

3+] (Kochian, Piñeros, & Hoekenga, 2004; Rouphael, Cardarelli, & Colla, 2015). Increased 
concentrations of Al3+ caused damage to the root tip, leading to the inhibition of root growth, and ultimately 
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limiting the plants from adsorbing nutrients and water from soil solutions (Langer, Cea, Curaqueo, & Borie, 
2009). For example, high concentrations of Al3+ reduced the absorption of Ca2+, K+, PO4

3- and other essential 
nutrient elements by crops (Talor, 1988). Al3+ reduced the availability of inorganic phosphorus by inducing 
adsorption precipitation reaction in the rhizosphere, and then inhibited the phosphorus into plant roots and 
transportation aboveground (Cumming & Ning, 2003; Macklon, Lumsdon, & Sim, 1994). Al3+ also could be 
combined with the phosphate-based DNA, inhibiting DNA replication and biosynthesis, thereby affecting the 
cells mitosis, and consequently reducing plant performance (Clarkson, 1985). For legume crops, higher 
concentrations of Al3+ in acidic soil also inhibited the growth of rhizobia, reduced the affinity between rhizobia 
and root system, and limited the biological nitrogen fixation (Whelan & Alexander, 1986). 

In order to alleviate the aluminum toxicity and to improve crop yield in acid soils, alkaline ameliorators, such as 
lime, have been applied to neutralize acidity and increase nutrient availabilities (Crusciol et al., 2016). Lime 
application will increase soil pH and concentrations of Ca2+ and Mg2+, decrease concentrations of Al3+ and Mn2+ 
ions, and thus improve the soil phosphorus nutrition and crop yield (Cai, Xiao, & Li, 2010). Lime application 
improved the soil microbial carbon, nitrogen, respiration rate and metabolic quotient (qCO2) (M. Stenberg, B. 
Stenberg, & Rydberg, 2000), increased the number and diversity of rhizobia (Denton, Coventry, Bellotti, & 
Howieson, 2000) and the activity of antioxidant enzymes (POD, SOD and CAT) in plants (Xiao, Yang, Xiao, & 
Xie, 2003). However, surface lime application mainly affected the soil layer to depths of only 5cm, and 
inappropriate lime application rates or timing might cause imbalances of soil Ca2+, K+ and Mg2+, resulting in low 
yields (Walker, 2002). Further, the efficiency of lime application was also associated with other factors such as 
rainfall distribution, soil texture, structure, hydraulic conductivity, fauna, and crop rotation and management 
(Edmeades & Ridley, 2003).  

Besides lime application, selecting Al tolerant crop genotypes is the most fundamental method in relieving the 
negative effects of acid soil on plants (Choudhary, Singh, & Iquebal, 2011). Tolerance to Al was observed in 
some plant species and varied among genotypes (Castilhos et al., 2011; Choudhary et al., 2011; Jan, 1991). On 
molecular level, genes controlling Al3+ resistance had also been cloned from wheat (Triticum aestivum L.), 
barley (Hordeum vulgare L.), rye (Secale cereale L.), sorghum (Sorghum bicolour (L.) Moench) and rice (Oryza 
sativa L.) (Ryan & Delhaize, 2010). However, the long and complex process of breeding Al resistant variety 
makes this still impractical today (Nawrot et al., 2001; Seguel et al., 2013). For alfalfa, no Al tolerant cultivars 
has been reported though many studies were conducted in screening Al tolerance in alfalfa cultivars (Langer et 
al., 2009; Khu, Reyno, Brummer, & Monteros, 2012; Pan, Zhu, & Cheng, 2008).  

Legume crops form two types of symbiosis, nodule (with rhizobium) and mycorrhizae (with arbuscular 
mycorrhizal fungus, AMF). Though the rhizobia have been shown to be sensitive to Al3+, AMF are widely 
distributed in acid soils and show relative tolerance to Al3+ (Clark, 1997; Guo et al., 2012; Fritz et al., 2010). The 
formation of mycorrhizae could regulate the relationship between soil aluminum, phosphorus and plant, 
protecting roots from the Al toxicity (Vandamme et al., 2013). AMF could improve the growth of plant in acid 
soils, enhance the acid resistance (Heijne, Dam, Heil, & Bobbink, 1996), and strengthen the resistance of plants 
to Al3+ (Thompson & Medve, 1984). In a pot experiment, AMF inoculation increased nodule numbers, total 
nodule weight, and yields of alfalfa in an acid soil with pH of 5.45 (Guo, Ni, & Huang, 2010). However, 
mycorrhizal fungi differ in their responses to soil pH (Cavallazzi, Filho, Stürmer, Rygiewicz, & Mendonça, 
2007), and in their colonization with plant species (Orłowska, Ryszka, Jurkiewicz, & Turnau, 2005). Therefore, 
selecting effective AMF strains might be an alternative choice in improving alfalfa production in acid soils.  

M. lupulina (black medick), belonging to the same genus with alfalfa, is widely distributed in temperate and 
subtropical regions and possesses the tenacious survival and reproduction ability (Yan, Chu, Wang, Li, & Tao, 
2009). Yurkova, Jacobi, Gapeeva, Stepanova, and Shishova (2015) reported that the black medick 
cultivar-population could be characterized as an ecologically obligate mycotrophic plant under conditions of low 
level of available phosphorus in the soil. A long-term cover cropping with black medic showed that Triticum 
aestivum following black medic had a higher early percent root length colonized by AMF, suggesting that cover 
cropping with black medic was an effective method of increasing early AMF colonization (Turmel, 2007). These 
results suggested that AMF from black medick might be effective in low fertility soils, benefiting its wide 
distribution. Therefore, in the current study, we collected AMF spores from rhizosphere soils growing black 
medick and identified AMF strains using molecular method (Guo et al., 2012). The AMF spores were inoculated 
solely or dual inoculated with rhizobia in soils with three Al3+ levels growing black medick or alfalfa. We 
measured plant aboveground and underground biomass, branching number, root length, area and volume, plant 
nutrients, soil nutrients, AMF colonization, and nodulation, aiming to confirm whether these AMF could 
improve alfalfa growth and quality in acid soils.  
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2 Materials and Methods 
2.1 Soils 

The soil was a sandy yellow soil (Orthic Acrisols) with a pH of 5.34, collected from crop lands in Jigong 
Mountain, Beibei (29°49′N, 106°25′E), Chongqing, China. The crop lands were cropped with maize and sweet 
potato for at least 10 years, and no plant from Megicago genus was planted. The soils were collected from 0-20 
cm layer, air dried, stones and plant debris removed, sieved through 2 mm mesh, and wet sterilized at 121 oC for 
25 min. The soil organic carbon, total nitrogen (N), phosphorus (P) and potassium (K) were 22.83, 0.79, 0.56 and 
18.33 g/kg, respectively. The concentrations of available N, P and K were 100.12, 20.16 and 112.5 mg/kg, 
respectively. The CEC of the soil was 8.54 cmol(+)/kg, with the concentration of Al3+ reaching 1100 mg/kg. 

2.2 Plant Materials 

The alfalfa cultivar, Medicago sativa cv Sanditi, was bred in France by the Royal Barenbrug Group (The 
Netherlands), imported to China by Barenbrug China (Beijing), and has been widely grown in subtropical areas 
of China with a dormancy of 5.2 (Shen et al., 2013). The seeds of black medick (Medicago lupulina) were 
directly collected from uncultivated fields located in Beibei, Chongqing. The seeds were washed clean of 
commercial coating (for Sanditi) and placed on wet paper in Petri dishes under dark conditions for 12 h prior to 
sowing.  

2.3 Symbiotic Microbes 

The tested rhizobia were separated from root nodules of M. lupulina in field and M. sativa which has been 
cultivated for four years. They were purified and propagated using YMA medium (yeast morphology agar). The 
inoculants were propagated using YMA medium without agar.  

The tested AMF spores were directly collected from the rhizosphere soils of wild black medick, using the wet 
sieving and decanting methods described by Zhao et al. (2001). In total ca. 50 kg soils from ca. 200 plants were 
wet sieved and ca. 300 g spores and sporocarps were obtained. Since the spores isolated from soils were a 
mixture, the DNA of the soils was extracted and used for AMF identification followed by the method of Guo et 
al. (2012). In total 5 strains were identified, mainly Glomus species (Table 1). The isolated spores and sporocarps 
were mixed with autoclaved sand (2:1), reaching a spore density of 150/g inoculants. The mixture was directly 
used as inoculants. 

2.4 Experiment Design 

A two-way completely randomized factorial design was employed for each plant species with two inoculations 
(rhizobia and AMF) and three Al3+ levels, and replicated four times. The soil Al3+ levels were adjusted to 900 
mg/kg (Al1), 1000 mg/kg (Al2) and 1100 mg/kg (Al3), by adding lime (Ca(OH)2) equivalent to 1.5 g/kg, 0.75 
g/kg and 0 g/kg, respectively. About 1.5 kg dry soils were put into one pot (18 cm diameter, 14 cm height) and 
saturated with water for 15 days before sowing.  

For AMF treatment, about 5 g inoculants were applied at a depth of 8 cm of the pot before sowing. Non-AMF 
treatments received same amount of autoclaved sand. The rhizobia inoculant was applied 3 times, one at the day 
of transplanting, and the other two at next two weeks. At each application time, each pot received ca. 5 × 104 
bacteria based on an assessment of the numbers of Rhizobia present in a bacterial culture by carrying out serial 
dilution. The application was done with watering. Non-rhizobia treatments received the same amount of 
autoclaved medium. Each plant species contained non-inoculated group, AMF group, Rhizobia group, and 
AMF+Rhizobia group, grown in soils with three different Al3+ levels.  

Ten seedlings were transplanted in each pot and thinned to six plants per pot one week later. The pots were 
watered twice a week, keeping the relative soil moisture content between 50%-75%. The pots were placed in a 
glasshouse accepting sunlight, with temperatures ranging from 20 ºC to 25 ºC during daytime and 15 ºC to 20 ºC 
during night. The pot positions were adjusted once every week.  
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Table 1. AMF strains isolated from soils of Medicago lupulina 

Clone No. Accession No. 
The strains which have the 
highest identity from NCBI 

Accession No. Similarity Query coverage %

1 KY235383 Glomus mosseae GU966531.1 99% 99% 

2 KY235384 Uncultured Glomus FR871390.1 99% 96% 

3 KY235385 Glomus sp FM876806.1 99% 100% 

4 KY235386 Uncultured Glomus JQ218217.1 96% 100% 

5 KY235387 Glomus sp FM876804.1 97% 100% 

 

2.5 Measurements 

2.5.1 Plant Growth Measurement 

After two and a half months of growth, the plants were harvested and separated into shoots and roots, and the 
height and branching number were measured. The shoots were dried at 105 °C for 20 min and then at 75 °C for 
48 h, and then weighed. The roots were carefully washed with distilled water in sieve, nodule number, root 
length, surface area and volume were recorded using a root scanner (WinRHIZO). Part of roots (ca. 0.2 g) was 
used for measuring AMF colonization, with the remaining roots dried at 75 °C for 48 h and weighed.  

2.5.2 Plant Nutrient Analysis 

Dried shoots were ground, sieved through 0.5 mm mesh, and digested in HNO3/H2O2 solution. The digested 
solution was used to analyze total nitrogen (TN), total phosphorus (TP) and total potassium (TK). TN was 
measured by the Kjeldhal method, TP was determined by vanadomolybdophosphoric yellow color method, TK 
was measured by flame atomic absorption spectrometric method (Bao, 2005).  

2.5.3 Soil pH and Concentrations of Aluminum, Available Nitrogen, Phosphorus and Potassium 

Soil pH value was determined in a soil: water (1:5) solution using a pH meter. Aluminum concentration was 
determined by eriochrome cyanine R spectrophotometric method (Qiu, 1989). Alkali dispelled nitrogen (AN) 
was determined by titration method. Extraction of available P were carried out using HCl-NH4F, and analyzed 
using the ammonium molybdate method (Olsen & Sommers, 1982). Available K were extracted by NH4OAc and 
analyzed by flame atomic absorption spectrometric method.  

2.5.4 AMF Colonization 

Approximately 0.5 g of roots were cleared in 2% KOH (w/v) at 90 C for 60 min and rinsed three times in water. 
The root samples were acidified in 2% HCl (v/v) for 30 min and then stained in 0.05% (w/v) trypan blue in 
lactoglycerol for 30 min at 90 C. Root segments of each plant species were selected randomly and assessed for 
the presence or absence of AMF structures (arbuscules, vesicles and thick hyphae) using a stereomicroscope. 
AMF colonization were distinguished from non-mycorrhizal fungi as described by Callaway, Mahall, Wicks, 
Pankey, and Zabinski (2003). Colonization was expressed as frequency of mycorrhiza in the root system (F%) 
and intensity of the mycorrhizal colonization in the root system (M%) according to the method of Trouvelot, 
Kough, and Gianinazzi-Pearson (1986). In total three slides with 45 root segments in each root sample were 
observed under the microscope and rated according to the range of classes based on Mycorrhizal Manual 
(http://www2.dijon.inra.fr/mychintec/Protocole/protoframe.html). The values were put into the computer 
program ‘Mycocalc’ to calculate F, M and A. 
2.6 Data Analyses 

The data were the average from four replicates. Two-way ANOVA analysis was applied to analyze the effects of 
Al3+ concentrations and inoculation and their interactions on plant and soil parameters (SPSS 17.0, USA). Due to 
the significant interactions between Al3+ and inoculation, the effects of inoculation on soil and plant parameters 
were further analyzed using one-way ANOVA analysis at each Al3+ level, separately. The significance was based 
on the least significant difference test at P < 0.05. Pearson’s correlation analysis was conducted to examine the 
relationship between soil parameters and plant parameters. 

3 Results 
The two-way ANOVA analysis indicated that soil Al3+ levels significantly influenced all parameters from both 
plants and soils, whereas inoculations significantly influenced shoot weight, root/shoot ratio, phosphorus 
concentration in plant, root length, surface area and volume from both plant species, and all soil parameters 
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except soil pH for M. lupulina (Table 2). There existed significant interactions between Al3+ levels and 
inoculations, varying between the two plant species.  

 

Table 2. Analysis of variance of main effects (Al3+ concentration and inoculation) and their interactions for plant 
growth parameter and soil nutrients 

 Medicago sativa Medicago lupulina 

 Al Inoculation (I) Al × I Al Inoculation (I) Al × I 

Height 129.06*** 3.44** 0.22ns 199.10*** 2.09ns 1.09ns 

Branching number 57.98*** 4.10** 1.83ns 608.45*** 1.40ns 6.10*** 

Shoot weight 150.20*** 6.11*** 0.49ns 1438.49*** 10.79*** 9.58*** 

Root weight 106.35*** 9.93*** 2.51** 86.74*** 1.80ns 0.53ns 

Root/Shoot ratio 21.30*** 2.28* 3.41** 67.22*** 5.52*** 3.72*** 

Nitrogen content in plant 75.74*** 6.21*** 5.02*** 192.13*** 1.62ns 4.16*** 

Phosphorus content in plant 7.01*** 13.10*** 5.62*** 7.14*** 10.32*** 2.51** 

Potassium content in plant 12.76*** 1.12ns 0.92ns 33.69*** 2.21ns 4.25*** 

Root length 600.13*** 9.78*** 6.37*** 1326.30*** 14.46*** 10.30*** 

Root surface area 789.25*** 4.74*** 31.01*** 1383.70*** 19.90*** 13.13*** 

Root volume 364.61*** 9.31*** 23.85*** 543.08*** 12.76*** 13.90*** 

Soil available nitrogen concentration 73.33*** 3.43** 2.37* 13.87*** 6.73*** 1.58ns 

Soil available phosphorus concentration 623.77*** 6.39*** 1.76ns 1453.17*** 3.16** 1.51ns 

Soil available potassium concentration 230.47*** 19.12*** 3.95*** 285.72*** 5.48*** 5.65*** 

Soil pH 309.3*** 2.74* 2.46** 428.49*** 1.21ns 0.95ns 

Soil available aluminum concentration 373.00*** 8.68*** 14.18*** 708.68*** 4.01** 1.67ns 

Note. “***”represent significant at P < 0.001; “**”represent significant at P < 0.01; “*”represent significant at P 
< 0.05.  

 

3.1 Plant Height and Branching Number 

Overall, the plant height and branching number from both plant species decreased with increased soil Al3+ 
concentrations (Figure 1). Compared to plant height at Al1, alfalfa height reduced by 25.70% at Al2 and 68.60% 
at Al3 (Figure 1A), while black medick height reduced by 27.06% at Al2 and 74.62% at Al3 (Figure 1C). The 
average branching number of alfalfa reduced from 14.44 per pot at Al1 to 11.56 at Al2 and to 6.56 at Al3 (Figure 
1B), whereas that in black medick reduced from 24.81 at Al1 to 20.5 at Al2 and to 7.0 at Al3 (Figure 1D).  

AMF inoculation (solely or dual) exhibited a trend in increasing plant height and branching number of alfalfa at 
all three Al3+ levels, but no significant difference could be observed except for a significant increase in branching 
number at Al2. For black medick, only dual inoculation at Al3 significantly increased both height and branching 
number, with no significant changes of plant height at Al1 and Al2, and a decrease of branching number at Al1 
and Al2 for dual inoculation. 
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contents (Table 4). Among the contents of plant nitrogen, phosphorus and potassium, only the nitrogen content 
was positively correlated with concentrations of soil Al3+, nitrogen, phosphorus and potassium. Concentrations of 
soil Al3+, nitrogen, phosphorus and potassium were all negatively correlated with shoot and root weight, root 
length, area and volume, plant height and branching number, whereas soil pH showed positive relationship with 
these parameters.  

 

Table 3. Effects of Al3+ concentration and inoculation on nodule number, frequency of mycorrhiza (F%), 
intensity of the mycorrhizal colonization (M%) and arbuscular abundance (A%) in Medicago sativa (alfalfa) and 
M.lupulina (black medick) grown in acid soils 

Aluminum Inoculation 

Nodule number  F% M%  A% 

Alfalfa 
Black 
medick 

 
Alfalfa 

Black  
medick 

 
Alfalfa 

Black  
medick 

 
Alfalfa 

Black  
medick 

Al1 Rh 0.00±0.00b 0.00±0.00b  - -  - -  - - 

Rh+AMF 12.00±2.45a 2.25±0.63a  82.07±2.44a 74.07±4.09a  16.45±0.95a 2.51±0.88a  6.66±1.40a 0.40±0.26a

AMF - -  63.54±2.78b 65.18±3.18a  12.00±1.63b 2.19±0.36a  2.07±0.33b 0.55±0.22a

Al2 Rh 2.50±0.20b 0.00±0.00b  - -  - -  - - 

Rh+AMF 4.50±0.29a 2.25±0.25a  67.62±1.53b 75.56±3.57a  2.14±0.41b 14.73±1.31a  0.45±0.24b 1.21±0.03a

AMF - -  87.34±0.27a 82.96±3.18a  6.02±0.78a 4.67±1.02b  2.14±0.37a 0.17±0.02b

Al3 Rh 0.00±0.00 0.00±0.00  - -  - -  - - 

Rh+AMF 0.00±0.00 0.00±0.00  92.22±0.45a 87.29±2.95a  2.53±0.53b 13.16±1.8b  0.49±0.15b 5.19±0.90a

AMF - -  86.67±2.72a 93.26±0.87a  16.57±3.48a 20.63±0.63a  7.31±1.51a 5.69±1.17a

Analysis of variance (F) 

Al  17.80*** 11.05***  37.35*** 21.64***  18.47*** 86.76***  7.15*** 41.35*** 

Inoculation (I)  32.00*** 44.18***  0.81ns 0.34ns  10.83*** 1.17ns  3.37* 0.06ns 

Al × I  20.25*** 11.05***  47.97*** 4.13**  15.35*** 31.63***  21.38*** 0.85ns 

Note. Different small letters represented significance at P < 0.05 (LSD). Rh, rhizobia inoculation solely; AMF, 
AMF inoculation solely; Rh+AMF, co-inoculation with rhizobia and AMF. 

 

Table 4. Correlation analysis among plant and soil parameters (n = 96) 

 Shoot Root R/S H Br Rl Ra Rv N P K AN AP AK pH 

Shoot 1.000               

Root 0.389** 1.000              

R/S -0.241* 0.757** 1.000             

H 0.873** 0.614** 0.066 1.000            

Br 0.928** 0.208* -0.400** 0.781** 1.000           

Rl 0.905** 0.568** 0.025 0.896** 0.815** 1.000          

Ra 0.773** 0.739** 0.285** 0.859** 0.649** 0.917** 1.000         

Rv 0.510** 0.763** 0.477** 0.682** 0.366** 0.684** 0.905** 1.000        

N -0.838** -0.414** 0.143 -0.784** -0.804** -0.777** -0.691** -0.501** 1.000       

P -0.249* 0.316** 0.490** -0.031 -0.289** -0.104 0.034 0.143 0.287** 1.000      

K -0.244* 0.398** 0.616** 0.014 -0.331** -0.065 0.106 0.244* 0.214* 0.735** 1.000     

AN -0.615** -0.450** -0.056 -0.654** -0.625** -0.578** -0.595** -0.522** 0.658** -0.036 -0.014 1.000    

AP -0.876** -0.586** -0.075 -0.909** -0.781** -0.931** -0.886** -0.721** 0.761** 0.033 -0.055 0.686** 1.000   

AK -0.728** -0.646** -0.179 -0.817** -0.657** -0.764** -0.822** -0.773** 0.666** 0.034 0.071 0.719** 0.820** 1.000  

pH 0.832** 0.580** 0.073 0.852** 0.726** 0.859** 0.864** 0.719** -0.660** -0.147 -0.095 -0.577** -0.868** -0.818** 1.000 

Al -0.881** -0.491** 0.013 -0.870** -0.802** -0.895** -0.825** -0.634** 0.727** 0.063 -0.005 0.648** 0.945** 0.745** -0.858**

Note. ** represent significant at P < 0.01; * represent significant at P < 0.05.  

R/S, Root/shoot ratio; H, height; Br, branching number; Rl, root length; Ra, root surface area; Rv, root volume; 
N, nitrogen content; P; phosphorus content; K, potassium content; AN, soil available nitrogen; AP, soil available 
phosphorus; AK, soil available potassium; Al, soil Al3+.  
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4. Discussion and Conclusion 
Though both Al3+ concentrations and inoculation influenced plant growth parameters and concentrations of soil 
nutrients, Al3+ concentration had predominant effects over these parameters, showing significantly higher F value 
in two-way ANOVA analysis compared to that from inoculation. The effects of inoculation varied greatly among 
different Al3+ levels and showed significant interactions with Al3+ concentrations, suggesting that the efficiency 
of AMF inoculation in increasing legume yield in acid soils relying on initial soil Al3+ concentrations. 

It is generally accepted that higher concentrations of soil Al3+ will result in abnormal growth of crops (Piñeros, 
Shaff, Manslank, Alves, & Kochian, 2005; Valle, Carrasco, Pinochet, & Calderini, 2009). In our study, plant 
height, branching number, shoot and root weight, and root growth all reduced with increased soil Al3+ 
concentrations. And a great decrease was observed when soil Al3+ concentration increased from 1000 mg/kg to 
1100 mg/kg, causing ca. 80% decrease in shoot weight and ca. 90% root weight for both alfalfa and black 
medick. This confirmed that both plant species were sensitive to high soil Al3+ concentrations, attributing to the 
limitations of high Al3+ concentration to root development, and thus the aboveground growth. In solutions with 0, 
2 and 4 mM AlCl3, the root length inhibition rates reached ca. 80% at 4 mM Al3+ for alfalfa (Pan et al., 2008). In 
soils with 0.7 cmol/kg Al3+, root weight reduced by 35% to 73% (differed among cultivars) compared to those in 
soils with 0.02 cmol/kg Al3+ (Khu et al., 2012). Root weight of alfalfa exposed to 100 μM AlCl3 reduced by 
56.1% than those in 0 μM AlCl3 (Wang, Ren, Huang, Wang, Zhou, & An, 2016). In solutions with 2 mM 
AlCl3 and 4 mM AlCl3, 12 from 13 alfalfa cultivars showed significant inhibition of biomass accumulation 
when compared to that in 0 mM AlCl3 (Pan et al., 2008).  

Though plant growth was reduced in high Al3+ soils, the contents of nitrogen, phosphorus and potassium in 
alfalfa and medick showed an increase trend with increased Al3+ concentrations in the current study. For 
example, the nitrogen content increased 36.56% and 43.27% in alfalfa and black medick, respectively, when soil 
Al3+ concentration increased from 900 mg/kg to 1100 mg/kg. Such increase, on one hand, implied that aluminum 
in soil stimulated nutrients uptake by alfalfa and black medick. Osaki, Watanabe and Tadano (1997) reported that 
the nitrogen, phosphorus and potassium in Al-tolerant plant species such as Melastoma malabathricum, 
Melaleuca cajuputi, Acacia mangium, Hydrangea macrophyila, Vaccinium macrocarpon, Polygonum 
sachalinense, and Oryza sativa, were stimulated by application of Al, whereas inhibited in Al-tolerant plant 
species such as Hordeum vulgare. Concentrations of nitrogen and potassium in leaves of montane forest tree 
seedlings increased significantly with increasing Al3+ concentrations (Rehmus, Bigalke, Valarezo, Castillo, & 
Wilcke, 2015). Since legumes, such as alfalfa and black medick, are not regarded as Al tolerant species, other 
factors might be involved in regulating nutrients uptake from Al3+ rich soils. In this study, overall, an increase of 
soil available nitrogen, phosphorus and potassium were also observed with increased Al3+ concentrations. And 
the plant nitrogen content was positively correlated with the concentrations of soil Al3+, available nitrogen, 
phosphorus and potassium.  

On the other hand, the Al3+ concentrations in this study were adjusted by adding lime. Lime application reduced 
soil Al3+ concentration and increased soil pH value whereas reduced the concentrations of soil available nitrogen. 
This was inconsistent with the results from most studies where lime was applied to improve soil nutrient 
availabilities (Barman, Shukla, Datta, & Rattan, 2014; Brown, Koenig, Huggins, Harsh, & Rossi, 2008; Sova, 
1996). One possible reason for this inconsistency of the increase of plant nutrients and the decrease of plant 
growth with increased Al3+ concentrations might be related to the plant morphology or nutrient dilution effects 
(Jarrell & Beverly, 1981). The plant growth was severely limited at 1100 mg/kg Al3+, where more leaves rather 
than stems were relatively formed for small plants, resulting in relatively higher amounts of nitrogen content (He 
et al., 2015).  

Though the efficiency of inoculation in improving plant growth was not as great as adjusting Al3+ 
concentrations did in acid soils, AMF inoculation did increase the shoot weight and root weight of both plant 
species under most circumstances, suggesting that it was also an alternative way in improving alfalfa growth 
in acid soils. This was consistent with the results from other similar studies (Guo, Ni, & Huang, 2010; Yano 
& Takaki, 2005). However, unlike the single strain or mix of certain AMF inoculant used in these studies, the 
AMF spores used in the current study were isolated directly from soils growing black medick. In total five 
AMF strains, mainly Glomus species, were observed, suggesting that the AMF strains might have displayed 
synergistic or competitive behavior to increase colonization. The effectiveness of mycorrhizal colonization 
varied between the fungal isolates introduced (Orłowska, Ryszka, Jurkiewicz, & Turnau, 2005). At a 
grassland mine restoration site, the use of local soil as an inoculum had greater effects on native and 
non-native plants than the commercial AMF inoculum used (Emam, 2016). However, it is difficult to 
determine the relative contribution of each AMF group to the colonization without the use of real-time PCR 
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methods (Alkan, Gadkar, Yarden, & Kapulnik, 2006; Jin, Germida, & Walley, 2013). Anyway, the AMF spores 
isolated from black medick had high compatibility with alfalfa, showing high colonization and could be applied 
on alfalfa.  

The effects of inoculation on root characteristics differed greatly among soil Al3+ concentrations and between 
plant species. For black medick, AMF inoculation improved root growth, benefiting their adaptations to acid 
soils. For alfalfa, AMF inoculation overall increased root growth at Al2 and Al3 but decreased at Al1. This was 
consistent with the changes of AMF colonization. A significant lower AMF colonization was also observed at 
Al1 compared to Al2 and Al3 for alfalfa, suggesting that higher colonization might benefit alfalfa when growing 
in acid soils. Paudel, Baer and Battaglia (2014) reported that a higher degree of AMF colonization, relative to 
native co-occurring species, might partly explain the successful invasion of Triadica sebifera into coastal plant 
communities of the southeastern USA. However, a significant lower shoot and root weight at Al3 compared to 
Al1 and Al2 implied that AMF colonization might be not related to dry matter yield, mainly related to the 
difference of dominant AMF strains at different soil Al3+ concentrations. Clark (1997) found that maximum 
enhancement of plant growth in acid soil varied with AMF isolate and soil pH, indicating adaptation of AM 
isolates to edaphic conditions. Long-term lime application changed soil nutrient availability and increased AMF 
colonization, but decreased AMF phylotype diversity, implying that soil chemical properties may determine the 
distribution of AMF in acid soils (Guo et al., 2012). The higher AMF colonization at Al3 compared to Al1 might 
also be related to the soil available phosphorus concentrations. Soil available phosphorus concentrations 
increased with increased Al3+ concentrations, thus influencing the AMF colonization. Zhang, Wang, Ma, Zhang 
and Fu (2016) also reported that greater colonization of roots by AMF was possibly achieved with inoculating 
AMF isolate in soils with high P availability.  

The main function of AMF colonization has been shown to be their effects on nutrient uptake from infertile soils 
(Smith & Read, 1997). In the current study, the AMF inoculation had more influence on phosphorus content 
rather than nitrogen and potassium contents. Overall, AMF colonization and dual colonization with rhizobia had 
a trend in increasing the contents of phosphorus in both plant species at all Al3+ concentrations. This was very 
important for these legumes growing in acid soils where soil phosphorus was generally a limiting factors 
(Tchienkoua & Zech, 2010), mainly attributing to the enlargement of the phosphorus adsorbing surface of the 
plant by the AMF hyphae (Li, Marschner, & George, 1991). Another important role of AMF inoculation in acid 
soils might be in conferring Al resistance to their host plants through Al-P interactions (Seguel, Cumming, 
Klugh-Stewart, Cornejo, & Borie, 2013), increasing plant tolerance to high levels of Al, and thereby improving 
nutrient acquisition (Lux & Cumming, 2001). In the current study, higher AMF colonization was observed at all 
Al3+ levels, showing high Al tolerance for these isolated AMF spores. Furthermore, AMF inoculation also 
influenced the concentrations of soil Al3+, available nitrogen, phosphorus and potassium. However, no 
consistency could be observed between two plant species and among Al3+ concentrations except that AMF solely 
and dual inoculation increased soil Al3+ for two plant species at Al2. This implied that AMF colonization 
improved the plant growth in acid soils mainly through enlarging nutrient adsorbing area but not by altering the 
availability of soil nutrients.  

Formations of nodules are very important for legumes, particularly in low fertility soils. In the current study, 
no nodule was observed in two plant species at all Al3+ concentrations except for alfalfa at Al2, when 
rhizobia was inoculated solely. This implied that factors other than soil Al3+ and pH might also limit the 
nodulation, particularly minerals such as Mo and Co (Rosolem & Caires, 2000; Leite, Araújo, Costa, & 
Ribeiro, 2009), the availabilities of which might also be limited in acid soils or influenced by lime 
application (Mandai, Pal, & Mandai, 1998). However, dual inoculation significantly increased nodulation 
ability and both plant species formed nodule at Al1 and Al2, suggesting that the formation of mycorrhizae by 
AMF improved nodulation for legumes growing in acid soils. This might also be attributed to the 
improvement of mineral adsorptions by AMF hyphae in acid soils. Meanwhile, dual inoculation increased 
AMF colonization (the intensity of the mycorrhizal colonization, M%) in alfalfa at Al1, reduced in alfalfa but 
increased in black medick at Al2, and reduced for both plant species at Al3. This implied that rhizobia and 
AMF might have competition when colonizing plant roots together. In a root-split experiment with alfalfa, 
Callaway et al. (2003) reported that nodulation systemically influenced AMF root colonization. The 
variations in AMF colonization when co-inoculated with rhizobia under different Al3+ concentrations might 
also be attributed to the difference of dominant AMF strains colonized at different soil Al3+ concentrations as 
discussed above. 
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5. Conclusion 
Soil Al3+ concentrations significantly limited plant above- and below-ground growth for both alfalfa and 
black medick. Though the efficiency of AMF inoculation in increasing plant growth was less than that of 
adjusting Al3+ concentrations, AMF inoculation increased the shoot and root weight of both plant species 
under most circumstances and improved nodulation ability, suggesting that it was also an alternative way in 
improving alfalfa growth in acid soils. However, soil Al3+ concentrations influenced the efficiency of AMF in 
promoting alfalfa growth in acid soils. The AMF inoculant used in current study was a mixture from several 
strains. Further study is needed to clarify the functions of each AMF strain in improving alfalfa growth in 
high Al3+ acid soils.  
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