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Abstract 
Due to the rapid climatic change drought becomes abiotic constraint globally. A factorial laboratory experiment 
was designed with CRD to evaluate the effects of kernel priming on wheat cultivars under induced drought stress. 
Seven common wheat cultivars in Kurdistan (Adana, Maxipak, Sham4, Sham6, Aras, Azadi and Rizgari) were 
tested under different negative osmotic solutions (0, -0.5, -1 and -1.5 Mpa), using Polyethylene glycol 
(PEG-6000). Among different cultivars Azadi exhibited better survival at high levels of drought stress for 
germination and its related traits. It also revealed high performance for shoot growth under the water stress, 
which was affirmed by the principal component analysis and cluster analysis. The superiority of this cultivar 
might be refer to exposing of this genotype to natural selection for a long duration under semiarid conditions of 
the local environment. Rizgari also had better performance mostly for the seedling characteristics, being a 
suitable cultivar for the late induced drought. The other cultivars had an intermediate response to the induced 
drought stress. This method could assist the plant breeder for rapid detection of drought tolerant genotypes in a 
large population with the reduced cost and labor compared to field trials. 

Keywords: wheat cultivars, drought stress, polyethylene glycol, germination, cluster analysis  

1. Introduction 
Drought stress is considered to be one of the major abiotic constraints worldwide that limits the growth and 
productivity of crop plants (Jain, Mittal, & Gadre, 2013). Plants are varied in their capacity to adjust their 
metabolism and growth. They can tolerate the particular abiotic stress by establishing a metabolic homeostasis 
being in less stress for this condition. While the sensitive plants are unable to launch metabolic homeostasis that 
results in the growth and yield reduction, ending by the plant death (Jogaiah, Govind, & Tran, 2013). Under 
rain-fed conditions, water shortage is a severe limiting factor for germination and seedling establishment. These 
stages are extremely important to determine the growing period and the yield of crops (Khakwani et al., 2011). 
Among different plant species, wheat is one of the major crops worldwide, it accounts for about 20% of the 
human food supply. Wheat consumption has increased by 5% a year in the developing countries for nearly the 
last 70 years (Marmar, Baenziger, Dweikat, & El Hussein, 2013). The global production of wheat is significantly 
affected by the climate change and water scarcity in the grown environment (Al-Ghamdi, 2009; Bano, Ullah, & 
Nosheen, 2012). Water shortage at germination and seedling stage is among the factors to influence the yield of 
wheat crop (Noorka & Khaliq, 2007). The study programs of inducing drought tolerance in wheat should address 
the problem in a multi-disciplinary approach (Marmar et al., 2013). Selection of physiological traits associated 
with the drought tolerance is essentially enhanced to increase the efficiency of selection (Ciucă, Bănică, David, 
& Săulescu, 2010). Early screening as a physiological dissection of drought tolerance is one of the approaches to 
assist plant breeder in rapid detection of suitable genotype to be involved in the next breeding program.  

To raise the productivity of wheat crop, it is crucial to identify the genotype that tolerate higher level of drought. 
This can be obtained by exploring maximum genetic potential from available wheat germplasm (Chachar et al., 
2014). Screening for drought tolerance based on the field trials is costly and time-consuming, in addition to the 
typical condition required to express their effective genes responsible for the studied characteristics. Therefore, 
preliminary screening methods are commanded for the field criteria (Kim, Yun, H. K. Park, & M. S. Park, 2001). 
Identifying the drought tolerant wheat genotypes at germination and seedling growth stage under low osmotic 
potential is practiced as a reliable physiological indicator by the researchers (Chachar et al., 2016). Hence, the 



jas.ccsenet.org Journal of Agricultural Science Vol. 9, No. 2; 2017 

89 

investigation of water stress based on the germination of different varieties is a forward step to identify the most 
tolerant genotype (s) under drought stress. Selection for drought tolerance at germination and the early seedling 
stage is frequently accomplished using simulated drought induced by chemicals like polyethylene glycol 
(PEG6000). It imposes water stress under in vitro conditions that maintains a uniform water potential throughout 
an experimental period, whereby a large set of genotypes can be screen accurately (Manoj & Uday, 2007).  

The advantage of using Poly Ethylene Glycol (PEG) compared to others osmotic solutions is that due to the high 
molecular weight (6000-8000) PEG cannot enter the plant cells, instead, the water is withdrawn from the cell and 
cell wall without affecting or hurting the cell structure (Van den Berg & Zeng, 2006). While other osmotic 
solutions of low molecular weight could be toxic to plant as they are easily be taken by the plant (Hamza, 2012). 
Polyethylene glycol molecules are known to be inert, no-ionic, virtually impermeable to cell membranes and can 
induce uniform water stress without causing direct physiological damage (Kulkarni & Deshpande, 2005). PEG 
as a drought stress causing factor can reduce water potential, resulting in the growth reduction of germinated 
seeds and seedling (Zhu, Kang, Tan, & Xu, 2006). 

The objective of this study was to evaluate the wheat cultivars for drought resistance at germination and early 
growth stage, utilizing PEG-6000 as an osmoticum to induce different levels of stress conditions to allow rapid 
screening for the most tolerant wheat genotypes to water stress.  

2. Methods 
2.1 Plant Materials 
The experimental material was consisted of seven wheat cultivars (Table 1). They represented the commercial 
cultivars of common wheat in Kurdistan region. They were obtained from Bakrajo research station of Sulaimani 
and Erbil research station.  

 

Table 1. Names and the sources of seven wheat cultivars used in the study  

No. Name Pedigree/origin  Source 

G1 Adana Turkey 

Bakrajo research Station, 
Sulaimani 

G2 Maxipak (Frontana × Kenya 58 – New thatch/Norin 10 Brevor) × Gabo 55. 
Pakistan. Local for Iraq 

G3 Sham4 ICARDA 

G4 Sham6 PLC “S” – Ruff “S” × Gta “S” – RTTE 
Cm-12904-1M-3M-1Y-1Y-OSK-OAP. ICARDA 

G5 Aras (Sonora 64 × Lerma Rojoo 64) × Sentaclena. Mexico. Local For 
Kurdistan region 

G6 Azadi Local For Kurdistan region 
Erbil Research Station 

G7 Rizgari Local For Kurdistan region 

 

2.2 Osmotic Stress Experiment 

A laboratory experiment was conducted to estimate the drought stress of seven wheat cultivars. The experiment 
was laid out in completely randomized design (CRD) with two factors: genotypes and water stresses. Four 
osmotic solutions (including distilled water) were applied during the germination period on the common wheat 
cultivars with three replicates, using Poly Ethylene Glycol (PEG) of molecular weight 6000. The levels of 
negative osmotic solutions were prepared for the potentials of 0, -0.5, -1 and -1.5 Mpa (0, -5, -10 and -15 bar) by 
dissolving separately calculated amounts of PEG 6000 in distilled water (0, 17.0, 21.9, 25.3g PEG 6000/100 ml), 
respectively, at 30 oC.  

Kernels were surface sterilized with ethanol 70% for 15 min. Residual ethanol was removed by thorough 
washing with sterilized distilled water. Twenty grains from each variety with three replicates were placed in Petri 
dish (90 mm diameter) for all treatments. Two layers of Whatman filter paper were used and moistened with 10 
ml of distilled water and the Petri dishes were placed in a dark incubator for 24 hours for an “imbibition period” 
at 25 °C. Five ml of designated treatment solution was applied every three days into each petri dish after 
thorough washing and draining the previous left solution. The Petri dishes were kept under laboratory condition 
in an incubator (M 7040 R Electro.mag) at 25±2 °C for 12 days.  
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The germinated seeds were counted daily for the experiment duration, started from the second day after sowing. 
Seeds were considered germinated when they exhibited radicle extension more than 2 mm. The following 
characteristics were measured: 

 Germination percentage (%): Counted after 4, 8 and 12 days with some modifications according to 
International Seed Testing Association (ISTA, 1993).  

Germination % = (The number of germinated seeds until the i day/total number of seeds) × 100     (1) 

 Mean Daily Germination (MDG): It is an index of daily germination speed determined by the following 
equation (Ellis & Roberts, 1981):  

Mean Daily Germination (MDG) = FGP/d                        (2) 

Where, FGP: final germination percentage (Viability), d: day(s) spent from the first to final germination. 

 Coefficient of velocity of germination (CVG): This index is the velocity and acceleration of seed 
germination, gives an indication of the germination rapidity. It increased when the number of germinated seeds 
increases and the time required for germination decreases. It was calculated by the following equation (Kader & 
Jutzi, 2004):  

CVG (%.d-1) = 100 × ΣNi/Σ (NiTi))                        (3) 

Where, N is the percentage of germinated seed in day i, and Ti is the sequence of day from sowing seed. 

 Germination rate index (GRI): Reflects the percentage of germination on each day for the germination 
period. Higher GRI values indicate higher and faster germination. It was calculated by the following equation  
(Kader, 2005):  

GRI (%.d-1) = Σ (Ni/i)                               (4) 

Where, N is the percentage of germinated seed in day i. 

 Mean germination time (MGT): Lower MGT is the faster of germinated seeds. It was calculated by the 
following equation  (Kader, 2005): 

MGT (d) = Σ (NiTi)/(ΣNi)                            (5) 

Where, N is the percentage of germinated seed in day i, and Ti is the sequence of days from sowing.  

 Root length, shoot length and root length/shoot length ratio: The length (mm) and weight (mg plant-1) of 
seedling root and shoot were measured and recorded at the 12th day after sowing (true leaf initiation stage). Root 
to shoot length ratio were estimated by dividing root length to shoot length.  

2.3 statistical Analysis 

Data was subjected to analysis of variance (ANOVA), using XLSTAT 2015.4.01.20780 software and the 
comparisons of trait’ means for both factors and their interactions were made using Duncan’s multiple range test 
at 5% level of probability. To interpret the relationships among studied criteria a biplot derived from principal 
component analysis (PCA) was conducted based on the rank correlation matrix of the two-way data from both 
selection criteria (germination and seedling traits) and genotypes. The analysis compared and grouped the wheat 
cultivars based on the studied characteristics. Cluster analysis based on squared Euclidean distance was also 
performed to classify the genotypes using the same software. 

3. Results and Discussion 
The yield of wheat as like as many other crops has been reduced significantly with the effect of drought. 
Detecting the genotypes those can thrive on limited water resource is critical to promote the wheat production 
under rain-fed condition (Ahmad, Shabbir, Minhas, & Shah, 2013). Better use of water through the development 
of crop varieties with less water requirement and more drought tolerant is promising to satisfy the food demand 
for steadily increasing of the world population (El-Shafey, Hassaneen, Gabr, & El-Sheihy, 2009; Xinqing, Kun, 
Shi-Kui, Xiao-Xia, & Mu-Yi, 2006). Selection of tolerated wheat genotypes to water scarcity will help the 
breeding program in early tagging of drought tolerant genotype under stressed regions. Survival ability was 
investigated for seven common wheat cultivars in Kurdistan for the first time to tolerate chemical dehydration by 
PEG during the germination and early growth stage. The analysis results indicated significant variance of 
cultivars and PEG concentrations for most of the traits studied. However, their interactions declared a significant 
variance in shoot length trait only (Table 2). Significant effect and differential response of wheat varieties at 
seedling stage to PEG treatment were reported by some other researchers (Bayoumi, Eid, & Metwali, 2008; 
Dhanda, Sethi, & Behl, 2004).  
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Table 2. Analysis of variance for the studied traits of seven wheat cultivars during in vitro drought stress, induced 
by four concentrations (0 to -15 bars) of polyethylene glycol 6000 

Sources of variance d.f.a 

Mean square 

Germination 

(%) 

MDGb 

(d) 

CVGc 

(%.d-1)

GRId 

(%.d-1) 

MGTe

(d) 

RL  

(cm) 

SHL  

(cm) 

RW 

(mg·plant-1)

SHW 

(mg·plant-1) 
RL/SHLf RW/SHWg

Cultivars 6 3874.44** 24.10** 4.97** 710.63** 3.70** 189.12** 106.04** 181.29** 113.157 1.15** 0.613* 

PEG conc. 3 5065.33** 17.05** 0.66 206.01** 0.36 37.37** 282.72** 74.37 86.541 0.66** 0.822* 

Cultivars × PEG conc. 18 462.15** 1.00 0.28 22.77 0.22 9.43 7.20** 27.73 73.167 0.11 0.176 

Residual 56 177.95 0.80 0.31 19.17 0.23 7.70 3.08 29.30 56.695 0.08 0.101 

Minimum 10.00 0.417 8.333 0.833 8.000 4.200 2.140 0.400 4.600 0.341 0.027 

Maximum 100.00 8.333 12.500 40.417 12.000 25.200 20.560 46.000 56.000 2.079 2.609 

Mean 67.67 3.244 11.748 14.680 8.559 9.571 11.058 17.056 16.827 0.957 1.116 

Standard deviation 25.99 1.765 0.809 8.757 0.693 4.719 4.639 6.448 8.089 0.432 0.425 

Note. a: Degree of freedom; b: Mean Daily Germination; c: Coefficient of Velocity of Germination; d: 
Germination Rate Index; e: Mean Germination Time; f: Root length/shoot length ratio; g: Root weight/shoot 
weight ratio. 
*, **: Significant at 5% and 1% probability level, respectively. 

 
3.1 Germination Percentage (%) 

Drought stress leads to drop the germination percent, due to less availability of free water to the kernel, as the 
PEG lowers the osmotic potential of the external medium (Datta, Mondal, Banerjee, & Mondal, 2011). The 
germination percentages of all the seven cultivars were at the highest level for control treatment and started to 
decrease by increasing the level of water stress using PEG. These findings are in line with the result of Moayedi, 
Boyce, Barakba, and Ghodsi (2009) who reported that the decline in germination percentage was observed with 
increasing the osmotic stress up to -0.9 Mpa. 

It can be concluded that reducing in germination percentage is associated with either decreasing the water 
absorption into the seeds or delaying of the germination events (Khan et al., 2013). The decreasing trend in 
germination was generally the same for all three germination periods, counting for most of the cultivars except 
the germination after four days for Azadi cultivar (Figure 1). At this stage, the germination was linearly increased 
with the increased water stress. Short exposing of the kernel (only four days) to the induced condition had less 
stress effect on the germination process, which might be a reason of the lineared increased germination. While at 
the eighth and twelves days the germination of this cultivar was more affected by the induced stress due to 
longer exposing to the induced water stress. Azadi had less germination ration compared to control, but with a 
little effect compared to other cultivars, as it showed better performance to resist the stressed condition.  

Regardless of the water stress, Azadi cultivar had the highest percentage of germination at 12th day. The last 
stress condition (at -15 bars of osmotic pressure) exhibited better germination performance (98%) for Azadi 
compared to other cultivars. It has been indicated that when a grain accomplishes a critical level of hydration it 
will be proceed toward a full germination without stopping (Almaghrabi, 2012). This cultivar considered being 
drought tolerant as their germination percentage did not reduce significantly with the increased moisture stress 
during germination, because some plants can develop their biochemical and physiological function to tolerate the 
water deficient condition (Chachar et al., 2016). However, the physiological changes below the critical level of 
hydration could be effective and inhibit the germination, attaining a critical level of hydration for this genotype 
(40%) made the germination to be proceed without cessation (Chachar et al., 2014). Adana cultivars at the 
second osmotic solution (-5 bar) had higher germination percent compared to control condition after Azadi; then 
it was linearly reduced to less germination percent compared to control treatment. Among all the cultivars 
Rizgari was the most affected by water stress, giving the lowest and significant germination percent (Table 3).  
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the minimum MDG value (1.632 days). The highest reduction percent of the induced stress compared to control 
(58.73%) for MDG was referred to Rizgari confirming its sensitivity to drought stress during the germination 
period. Sham 6 also gave a closed ratio of MDG reduction for the stressed conditions compared to distilled water. 
The results here indicate decreasing in mean daily germination due to the reduction of osmotic pressure from 
0.00 bar (control) to -15 bar. Decreasing of mean daily germination is resulted from requiring more time to 
germinate as the drought stress increased (Zare’, Tavili, & Shahbazi, 2010).  

 

 

Figure 2. Effect of water stress on the Mean daily germination of seven wheat cultivars counted for 12 days 

 

3.3 Coefficient of Velocity of Germination (CVG) 

The mean square value of CVG was significantly different at 1% level among the various cultivars. While 
non-significant mean square was observed for different levels of drought stress and their interaction with the 
cultivars. The lowest coefficient of the velocity of germination was observed for control treatment and it was 
increased with the increased drought stress. This trend was realized in most of the cultivars (Figure 3). Azadi had 
the highest CVG value of 12.106, followed by Aras cultivar, as they were appeared to be more tolerant to 
drought stress conditions. Despite the necessity of high energy for biological processes under the stress condition, 
the cultivars under study were able to continue in their physiological activities to give higher CVG value 
compared to control treatment. Similar results were obtained for some wheat cultivars induced to water stress by 
Almaghrabi (2012) using Polyethylene Glycol at different concentration levels. Based on the result obtained for 
CVG, Azadi performed higher adaptation to drought stress condition compared to other cultivars.  

 

 

Figure 3. Effect of water stress on the coefficient of velocity of germination of seven wheat cultivars 
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3.4 Germination Rate Index (GRI)  

It has been reported by Gholamin and Khayatnezhad (2010) that water stress in wheat starts with dropping the 
rate of germination and seedling growth. As like as germination the mean squares of cultivars and PEG 
concentrations of GRI were highly significant (1%), while the mean square values of their interaction were not 
significant (Table 2). The highest value of germination rate index was observed for Azadi cultivars (29.826), 
indicating the high tolerance of the cultivar to water stress (Figure 4). While the lowest value was recorded for 
Rizgari, being the most sensitive to give the maximum reduction of GRI (66.40%) compared to control. This fact 
is in accordance with what was obtained by Mollasadeghi, Ghanifathi, Masoumzadeh, & Aghahasanbeyglo 
(2014) who reported the high susceptibility of germination rate index in some bread wheat cultivars to the 
variation in osmotic potential.  

 

 
Figure 4. Effect of water stress on the germination rate index of seven wheat cultivars 

 

3.5 Mean Germination Time (MGT) 

It is clear from data presented in Table 2 that MGT was significantly affected by different wheat cultivars while 
no significant differences were observed in term of Polyethylene concentration and their interaction with 
cultivars. Significant differences was also obtained among different wheat genotypes for MGT at different levels 
of PEG 6000 and putrescine (Aydin, Pour, Halİloğlu, & Tosun, 2015). The minimum value of mean germination 
time (8.26 days) was found for Azadi, showing higher tolerant to the increased concentration of PEG when 
compared to other cultivars. Increased PEG concentration had a negative and significant impact on mean 
germination time for Rizgari cultivar (Figure 5), giving higher and significant value of 9.810 days. Less water 
availability under high concentration of PEG 8000 is one of the reasons to increase mean germination time (Iqbal 
& Ashraf, 2006).  

 

 
Figure 5. Effect of water stress on the mean germination time of seven wheat cultivars 
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Figure 7. Effect of water stress on the shoot length of seven wheat cultivars 

 

Apart from the root and shoot lengths, root/shoot ratio also being a good indicator to tag the drought tolerant 
genotype. The present study revealed significant variations for the root/shoot ratio between the cultivars (Figure 
8). It has been indicated that drought resistant genotypes had balanced root and shoot growth (Dhanda, Sethi, & 
Behl, 2004). Less differences in root/shoot ratio for different drought stresses was for Rizgari to give 13.4%, 
followed by Aras and Azadi. For some of the cultivars, the increased value of root/shoot ratio was observed with 
the increase in PEG concentration. Physiological activities of the root system are realized to be less sensitive to 
low water content, while sap transferring to the upper part of seedling required higher water potential (Sani & 
Boureima, 2015).  

 

 

Figure 8. Effect of water stress on the coefficient of root/shoot length ratio of seven wheat cultivars 

 

3.8 Root and Shoot Dry Weight (mg/seedling) 

Racing the concentration of PEG had recorded the progressive increasing in root weight at different rates for all 
cultivars except Aras (Figure 9). Under high PEG treatment (-10 and -15 bar), the maximum root weight was 
recorded for Rizgari and Sham6 cultivars. 
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Figure 9. Effect of water stress on the seedling root weight of seven wheat cultivars 

 

PEG prompted a decrease in shoot weight in number of cultivars (Figure 10). The reduction in shoot fresh 
weight was attributed to less number and smaller leave development with the increased PEG concentration of the 
growth media. The minimum shoot weight was observed for Adana while the maximum shoot weight was 
recorded for Sham6, followed by Rizgari (Table 3).  

 

 
Figure 10. Effect of water stress on the seedling shoot weight of seven wheat cultivars 

 

It is important that drought resistance is categorized by a small reduction of shoot growth under drought stressed 
condition (Ming, Pei, Naeem, Gong, & Zhou, 2012; Moucheshi, Heidari, & Assad, 2012). However the high 
root/shoot weight ratio was observed for Rizgari cultivar, the most persistent cultivar was Azadi, being more 
stable in the ratio of root/shoot weight (23.12%) for different stress conditions compared to control treatment. 

3.9 Principal Component Analysis (PCA) 

The PCA analysis was performed, as the most frequently used multivariate method, to assess the relationships 
between all attributes to identify superior cultivar (s) for the water-stressed condition. The relationships among 
different parameters were graphically displayed in a biplot of PCA1 and PCA2, based on the rank correlation 
matrix. Biplot diagram revealed that the first and second components justified 54.77% and 28.83% of total 
variation, respectively, with different characteristics studied (Table 4) and accounted for 83.60% of total 
variation.  
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Table 4. Principal component analysis for the studied traits of seven wheat cultivars 

Traits F1 F2 

Germination 0.308 0.348 

MDG 0.308 0.348 

CVG 0.393 -0.112 

GRI 0.332 0.310 

MGT -0.392 0.122 

RL -0.181 0.459 

SHL 0.161 0.492 

RWT -0.295 0.328 

SHWT -0.079 0.092 

RL/SHL -0.349 0.106 

RWT/SHWT -0.344 0.234 

Eigenvalue 6.025 3.172 

Variability (%) 54.771 28.833 

Cumulative % 54.771 83.605 

 

Three groups were identified considering both components simultaneously (Figure 11). The germination, MDG, 
GRI and SHL were clustered in group I, while MGT, RL, RWT, SHWT, RL/SHL, RWT/SHWT were associated 
with group II and CVG with group III.  

 

 

Figure 11. Biplot of principal component analysis of seven wheat cultivars and studied traits. Group I – high 
water stress resistant cultivars during germination process; Group II – high water stress tolerant for seedling 

characteristics; Group III – low water stressed cultivars for germination and seedling characteristics 
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Group I consists of Azadi cultivar, which has a good performance for germination, MDG, GRI and SHL under 
induced water stress (Figure 11). The cosine of the angle between the vectors of two characteristics approximates 
the correlation between them. Shoot length found to be in a positive and significant association with germination 
and MDG and GRI, meaning that prediction of the Shoot length as one of the drought-resistant trait could be 
explained through germination. Ahmad, Shabbir, Minhas, and Shah (2013) had similar result in identifying a 
strong positve correlation between Shoot lenght and germination pecent. In the second group (II), Rizgari was 
superior in MGT and most of the seedling traits, explaining its resistance in seedling traits under induced water 
stress and all of these traits were in a strong and negative association with CVG. Group III included most of the 
cultivars studied having a good germination velocity, showing negative and significant association with most of 
the traits of second group. The cultivars here were variable in their resistance to water-stressed conditions 
according to the traits studied. Biplot analysis has been used widely by other researchers for screening drought 
tolerant cultivars of wheat (El-Mohsen, El-Shafi, Gheith, & Suleiman, 2015; Farshadfar, Elyasi, & Aghaee, 
2012). However the variation angles of the dataset with Biplot analysis does not precisely translated into 
correlation coefficients, the angles are informative enough to reflects the importance of the largest contributor to 
the total variation at each axis of differentiation (Abdi & Williams, 2010).  

3.10 Cluster Analysis 

As like as PCA, the cluster analysis classified the cultivars for the induced drought, based on the traits studied, 
into three groups of 1, 1 and 5 cultivars, respectively (Figure 12). The first group contained Azadi with higher 
germination rate and shoot length, and it was considered as a drought resistant group especially at germination 
stage. The second group consisted of Rizgari with higher performance for the seedling characteristics when 
exposed to the drought condition using PEG-6000. While the rest of cultivars were grouped in the third cluster 
showing their reasonable performance for CVG only with the variable response for other traits studied during the 
water stress conditions. Biplot results of the current study are in agreement with cluster analysis in identifying 
the same tolerant genotypes for the induced water stress. Cluster analysis has been utilized to describe the 
variation and grouping the genotypes based on drought tolerance indices (El-Mohsen, El-Shafi, Gheith, & 
Suleiman, 2015; Golabadi, Arzani, & Maibody, 2006).  

 

 

Figure 12. Dendrogram of seven wheat cultivars based on cluster analysis using various germination and 
seedling characteristics. Group I including Azadi cultivar (drought tolerant during germination), Group II 

including Rizgari cultivar (drought tolerant at seedling stage) and, Group III including five cultivars of Sham6, 
Aras, Maxipak, Adana and Sham4 (variable drought resistant) 
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4. Conclusion 
In the current study osmotic stress caused significant effects on the germination and seedling traits of the studied 
cultivars. Azadi cultivar had the best performance for most of the traits under the drought stress conditions, 
which indicates the contributor characteristics of this genotype in tolerating drought stress. The introgression of 
desired allele (s) of stress tolerance from the related wild species into Azadi cultivar under local condition could 
be the reason of superiority of this cultivar under water stress. Rizgari cultivar had better performance for the 
seedling characteristics more than germination progress. It shows higher root length and root weight than other 
cultivars under induced water stress. Hence, Rizgari could tolerate drought stress at the seedling and later stages 
if passed the germination period at regular water status. This cultivar suits the local condition as most of the 
drought stress will come after the germination period. The best response of these two cultivars to drought stress 
condition could assure their suitability to be cultivated in arid and semiarid areas of Kurdistan.  

Principle component analysis and Cluster analysis were in support to the analysis of variance to discriminate the 
genotypes at different level of drought stress through the studied characteristics. All three analysis positioned the 
genotype into three distinct groups; Azadi was tolerant to water stress throughout most of the germination 
characteristics, making the first group. Rizgar as the second group was suitable to resist the water stress during 
the seedling growth. While other cultivars had variable level of resistance to the induces stress for the studied 
characteristics.  

The parameters here are found to be a useful index to discriminate drought tolerant genotypes at early growing 
stage under induced water-stressed environments. The current study will help the breeder for rapid selection of 
the tolerant genotype for any breeding program, avoiding extensive field trials.  
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