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Abstract 
An early-maturity mutant KFJT-1 has been screened out after carbon ion irradiation in sweet sorghum (Sorghum 
bicolor (L.) Moench). In this study, tissue specific digital gene expression analysis was performed between the 
KFJT-1 mutant and the wild type KFJT-CK at seedling stage. The results showed that a total of 717, 2160 and 
2,331 tags-mapped genes were differently expressed in roots, stems and leaves of young seedling, respectively. In 
KFJT-1, 557 (77.7%) genes were up-regulated and 160 (22.3%) genes were down-regulated in young root; 1,232 
(57.0%) genes were up-regulated and 928 (43.0%) were down-regulated in young stem; and 1,577 (67.7%) genes 
were up-regulated and 754 (32.3%) genes were down-regulated in young leaf. Functional annotation revealed that 
most induced genes functioned as “binding”, “synthase activity”, “transferase” and “transporter activity” which 
involved in the biological processes of metabolic and response to stimulus. Surprisingly, the up-regulated genes in 
KFJT-1 were classified into four KEGG pathways: “alpha-Linolenic acid metabolism”, “flavonoid biosynthesis”, 
“inositol phosphate metabolism” and “fatty acid biosynthesis”, which related to the stress resistance and supported 
the outstanding agronomic traits of KFJT-1 in the process of plant growth and development. Among the DEGs, a 
critical photoreceptor from photoperiod pathway PHYA gene was significantly up-regulated in leaf and root of 
KFJT-1, suggesting the mutation could occur on the genomic upstream of PHYA. This work may provide helpful 
insights to further understand the mutation mechanism in sweet sorghum. 
Keywords: tissue-specific expression profiling, young seedling, different expressed genes, sweet sorghum 

1. Introduction 
Sweet sorghum (Sorghum bicolor (L.) Moench) is a useful energy crop because of high photosynthetic efficiency, 
high biomass- and sugar- yielding (Billa et al., 1997). However, being a short-day plant, the grains cannot mature 
under long day condition. We previously isolated an early-maturity mutant KFJT-1 from wild type plants 
KFJT-CK by heavy ion beam irradiation. Resistance experiment showed that proline content was increased by 
11.05% with drought stress, which showed that the tolerance of KFJT-1 to the stress is advantage to KFJT-CK 
(Dong & Li, 2012).  

The biological effects of heavy-ion radiation encompass a wide range of alterations, including developmental 
abnormalities (Kranz, 1994), chromosomal aberrations (Kawat et al., 2001; Kikuchi et al., 2009; Wei et al., 2006) 
and genomic structural variation (Mei et al., 2011; Xu et al., 2006). Many studies has shown that the carbon ions 
beam induce more effective structural alterations in DNA than other radiation (Shikazono et al., 2005), sequence 
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analyses of radiation-induced mutations have been widely carried out in plants (Bruggenmann et al., 1996; 
Shikazono et al., 2000; Shikazono et al., 2003). These genetic variations could directly induce expression 
differentiation of the plenty of genes which involved in the biological processes. Nowadays, Digital gene 
expression (DGE) tag profiling has been widely utilized to monitor the differences in transcriptional level to 
elucidate the genome-wide expression profiling among different tissues and organs. It directly quantify the 
transcript abundance of the uniquely tagged corresponding genes with ultra-high-throughput sequencing of cDNA 
fragments (Hong et al., 2011), which could be conveniently detected for the organisms without prior annotations 
of genomic information, such as cotton (Wei et al., 2013), spruce (Albouyeh et al., 2010), Brassica napus (Jiang 
et al., 2013), and moss (Nishiyama et al., 2012).  

This study aimed to gain comprehensive understanding of DGEs in KFJT-1 compared to KFJT-CK at seedling 
stage and improve our current understanding of the molecular mechanism of KFJT-1 induced by carbon ions 
beam.  

2. Materials and Methods 
2.1 Plant Materials and Growth Conditions 

The dry seeds of equal size from KFJT-1 and KFJT-CK, which showed no moldy and lesion, were selected and 
placed in a 90 mm Petri dish containing double-layer wet filter paper, respectively. The seeds were germinated at 
25±2 oC in a growth chamber under a 16 h light photoperiod provided by fluorescent light tubes (50 μmol m-2s-1). 
Each genotype was replicated three times and 100 seeds were employed for each replication. After 30 days, the 
samples of roots, stems and leaves were harvested, respectively and quickly frozen in liquid nitrogen for RNA 
isolation.  

2.2 RNA Isolation and Library Preparation for DGE 

RNA extraction was performed according to the manufacturer’s instructions of TRIzol reagent (Invitrogen, USA), 
followed by RNase-free DNase treatment (TaKaRa, Dalian, China). The total RNA was checked for quality and 
quantity using a Biophotometer Plus (Multiskan Spectrum, German), and a minimum of 6 ug of total RNA was 
used for Illumina sequencing. The total RNA samples isolated from the three parallels tissues were pooled for 
libraries preparation, in which RC and RF, SC and SF, LC and LF represented the transcripts of roots, stems and 
leaves from control KFJT-CK (“C” characterized) and mutant KFJT-1 (“F” characterized), respectively.  

Over 6 μg from each total RNA samples were constructed as the DGE libraries using Illumina gene expression kit 
(IllumingaInc; San Diego, CA, USA) according to the manufacturer’s protocol (version 2.1B), mRNA was 
purified using biotin-Oligo (dT) magnetic bead adsorption. The first- and second-strand cDNA synthesis was 
performed after the RNA was bound to the beads. The double stranded cDNA were digested with NlaIII to produce 
cohesive end. After purification with Dynabeads, and the digestion was ligated to GEX adapter 1 which contains 
MmeI restriction CATG site, and downstream 17 bp then cut with the NlaIII. The 21 bp tags containing adapter I 
were ligated to GEX adapter 2 to generate a tag library. These tag fragments were amplified by liner PCR for 15 
cycles using PCR primers anneral to the adapter ends. The 85 bp amplicons were seperated on 6% TBE PAGE gel, 
purified and denatured to produce single strand molecules. These molecules were anchored to Solexa sequencing 
array and sequenced on Illuminga GA II at BGI- Shenzhen, Shenzhen, China. Raw sequence data were generated 
by Illuminga pipeline.  

2.3 Sequence Annotation and DGEs Pathways Identification 

Raw sequences were transformed into clean tags by filtering off adapter-only tags and low-quality tags as 
described (Li et al., 2013). All the clean tags were mapped to the reference sequences of Sorghum bicolor and only 
1 bp of mismatch was considered. The remaining clean tags were designed as unambiguous clean tags. In order to 
compare the expression abundance among the samples, the number of unambiguous clean tags for each gene was 
calculated and then normalized to TPM (number of transcripts per million clean tags). The final assembled 
transcripts (≥ 100 bp) were submitted for homology and annotation searches using Blast2GO software v2.4.4 (Wei 
et al., 2013). For BLASTX against the NR database, the threshold was set to E-value lower than 10-5. However, 
most of the gene information of sorghum was hypothetical or putative. Therefore, all the putative sorghum genes 
were BlastX with was performed against Sorghum genes. GO classification was achieved using WEGO software 
together with David Bioinformatics Resources 6.7 (http://david.abcc.ncifcrf.gov/home.jsp). Enzyme codes were 
extracted and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were retrieved from KEGG web 
server (http://www.genome.jp/kegg/). We used a rigorous algorithm to identify differentially expressed genes 
between the KFJT-1 and KFJT-CK in this study. FDR ranking, FDR (False Discovery Rate) was used applied to 
adjust the p-value in multiple tests and analyses (Qin et al., 2011). The transcripts with at least two-fold 
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differences (absolute values of log2 (Ratio) ≥ 1 with FDR < 0.001) were regarded as significantly different 
expressed genes.  

2.4 Real-Time Quantitative RT-PCR (q RT-PCR) Analysis 

Real-time quantitative RT-PCR (qRT-PCR) analysis was used to verify the DGE results. The RNA samples used 
for the qRT-PCR assays were the same as in the DGE experiments. Gene specific primers were designed 
according to the reference unigene sequences using Primer Premier 5.0. Seven genes were selected from the 
DEGs for quantitative qRT-PCR assays. QRT-PCR was performed according to the manufacturer’s 
specifications (). The following SYBR Green PCR cycling conditions were used: denaturation at 95 C for 10 s, 
followed by 40 cycles of 94 C for 5 s and 60 C for 20 s. The PCR experiments were performed using an iQ 5 
Multicolor real-time PCR detection system (BioRAD, USA). Sorghum actin gene (forward: 
GCCGAGCGAGAAATTGTAAG and reverse: ATCATGGATGGCTGGAAGAG) was used as a normalizer. 
The relative gene expression levels were calculated using 2-△△CT.  

3. Result 
3.1 Construction of Digital Gene Expression (DGE) Library for KFJT-1 and KFJT-CK at Seedling Stage  

To obtain a global view of the tissue specific characteristics at the transcriptional level between KFJT-1 and 
KFJT-CK at seedling stage, total six DGE libraries from roots, stems and leaves were sequenced with 
Solexa/Illumina DGE analysis, respectively. Among the libraries, we got the total numbers of tags ranging from 
5.8 to 6.7 million, which composing distinct tags with 125840 and 131973,140208 and 156400, 147227 and 
137977 in young roots, stems and leaves libraries for KFJT-CK and KFJT-1, respectively (Table 1). The number 
of the tags and unambiguous tags mapping to genes was almost the same for about 70%, for example in RC, 62208 
distinct tags (72.07% of clean tag), 62089 unambiguous tags (71.99% of clean tag) was mapping to gene, which 
means that the tags was well matched to the specific genes. Those distinct tags matched to the genes occupied 
about 50% of the clean tags. The distribution of total clean tags and distinct clean tags over different tag-abundance 
categories were shown in Figures 1A and 1B. In terms of the total clean tags, the percentage of 2-5 copies ranged 
from 3.31-3.89%, 6-10 copies from 2.3-2.71%, 11-20 copies from 3.20-3.81%, 21-50 copies from 6.44-7.47%, 
51-100 copies from 7.7-8.83%. The largest percentage was constituted by the copies over 100 which ranged from 
73.58-76.90%. However, compared to the total clean reads, the distinct clean tags displayed different distribution 
among all the six DGE libraries. The largest proportion was constituted by the 2-5 copies for about 54%. The 
second largest part was the 6-10 copies which occupied about 14%, approximately 10% had copy numbers higher 
than 100. The smallest proportion was constituted by 51-100 copies for about 7%. The numbers of the tag-mapped 
genes or unambiguous tag-mapped gene were decreased sharply compared to the distinct tags. For example, the 
number of matched gene in RC was 15768, however, the distinct tags was 62208. Finally, 15786 (RC), 16007 (RF), 
16179 (SC), 16780 (SF), 15378 (LC) and 15200 (LF) tag-mapped genes were generated against sorghum reference 
genome between KFJT-1 and KFJT-CK. The saturation analysis showed that the number of the genes was not 
increased proportionally with the number of sequences (total tag number) when the sequencing counts reached 4M 
(Figure S1). Thus, these tag-mapped genes were completely satisfying the further analysis. 
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Table 1. Statistics of DGE sequencing 

Summary  
Roots Stems  Leaves 

RC RF SC SF  LC LF 

Raw data Total 6091059 5890651 6746137 6493952  6694215 6603642

Distinct tag 298254 305052 333748 343180  341594 328619 

Clean tag Total number 5799507 5601192 6459514 6198815  6318115 6249743

Distinct tag number 125840 131973 140208 156400  147227 137977 

All tags mapping to gene Total % of clean tag 72.07% 71.15% 71.61% 71.10%  66.34% 68.92% 

Distinct tag number 62208 62402 66229 75306  68097 65630 

Distinct tag % of clean tag 49.43% 47.28% 47.24% 48.15%  46.25% 47.57% 

Unambiguous tags 
mapping to gene 

Total % of clean tag 71.99% 71.08% 71.54% 71.00%  66.29% 68.87% 

Distinct tag number 62089 62276 66098 75159  67968 65523 

Distinct tag % of clean tag 49.34% 47.19% 47.14% 48.06%  46.17% 47.49% 

All tag-mapped genes Number 15786 16007 16179 16780  15378 15200 

% of ref genes 53.61% 54.36% 54.94% 56.98%  52.22% 51.62% 

Unambiguous 
tag-mapped genes 

Number 15747 15963 16132 16730  15327 15166 

% of ref genes 53.47% 54.21% 54.78% 56.81%  52.05% 51.50% 

 

3.2 Tissue-Specific Gene Expression in the Development of the Seedling between KFJT-1 and KFJT-CK 

To compare differential expression patterns between KFJT-1 and KFJT-CK, we normalized tag distribution for 
gene expression level in each library to make an effective library size and extracted significance of differentially 
expressed transcripts (DETs) with FDR ≤ 0.05 and log2 fold-change ≥ 1 by edgeR (Empirical analysis of Digital 
Gene Expression in R). The regulated genes were shown in Figure 2. The red dots and green dots represent 
transcripts higher or lower in abundance for more than two fold, and the blue dots represented the transcripts that 
differed less than two fold between the KFJT-1 and the wild type. In root, a total of 557 genes were up-regulated 
(77.7%, red dot in Figure 2A) and 160 genes were down-regulated (22.3%, green dot in Figure 2A). In stem, a total 
of 1,232 genes were up-regulated (57.0%, red dot in Figure 2B) and 928 genes were down-regulated (43.0%, green 
dot in Figure 2B). In leaf, total 1,577 genes were up-regulated (67.7%, red dot in Figure 2C) and 754 genes were 
down-regulated (32.3%, green dot in Figure 2C). An increasing trend in the number of differently expressed genes 
was observed in young stem and leaf compared to young root. The total numbers of the tags-mapped genes were 
717, 2160 and 2331 in root, stem and leaf, respectively (Figure 3A). Venn analysis revealed that 66 genes were 
differently expressed in the all young root, stem and leaf. In addition, 219 genes were differently expressed both in 
leaf and root, 489 genes in leaf and stem, and 148 genes in root and stem. Numbers of 284, 1457 and 1557 genes 
were differentially expressed specific to the root, stem and leaf, respectively (Figure 3B). To be mentioned, about 
99% unique tags were expressed within five-fold difference (red bar in Figure 4) between KFJT-1 and KFJT-CK, 
covered 99.85% in young root, 99.39% in young stem and 98.77% in young leaf, respectively. Only 0.1-1.01% of 
the DEGs over five folds was up-regulated (green bar in Figure 4), while 0.05-0.23% was down-regulated. 
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Table 2. List of first twenty pathways for DEGs 

Table 2A. List of first twenty pathways in root 

Pathway term (RC vs RF) Pathway ID DEGs tested P value Q value 
Glutathione metabolism ko00480 15 (3.23%) 0.0000858 0.009091637

Sulfur metabolism ko00920 5 (1.08%) 0.009928955 0.442890563

Glycolysis/Gluconeogenesis ko00010 12 (2.59%) 0.01419812 0.442890563

Stilbenoid, diarylheptanoid and gingerol biosynthesis ko00945 14 (3.02%) 0.02643276 0.442890563

Sesquiterpenoid and triterpenoid biosynthesis ko00909 4 (0.86%) 0.02738994 0.442890563

Biosynthesis of secondary metabolites ko01110 82 (17.67%) 0.02848042 0.442890563

Ribosome ko03010 17 (3.66%) 0.02924749 0.442890563

Vitamin B6 metabolism ko00750 3 (0.65%) 0.03542163 0.469336598

Cysteine and methionine metabolism ko00270 7 (1.51%) 0.04333564 0.510397538

Selenocompound metabolism ko00450 3 (0.65%) 0.05098186 0.540407716

Limonene and pinene degradation ko00903 9 (1.94%) 0.06588606 0.564560846

Glycine, serine and threonine metabolism ko00260 6 (1.29%) 0.06739679 0.564560846

Spliceosome ko03040 16 (3.45%) 0.07073317 0.564560846

Amino sugar and nucleotide sugar metabolism ko00520 10 (2.16%) 0.07456464 0.564560846

ABC transporters ko02010 9 (1.94%) 0.1039357 0.671309224

Peroxisome ko04146 7 (1.51%) 0.1053809 0.671309224

Caffeine metabolism ko00232 1 (0.22%) 0.1076628 0.671309224

Carotenoid biosynthesis ko00906 9 (1.94%) 0.1189165 0.700286056

Flavonoid biosynthesis ko00941 12 (2.59%) 0.1282596 0.715553558

Proteasome ko03050 4 (0.86%) 0.1386467 0.73482751 

 

Table 2B. List of first twenty pathways in stem 

Pathway term (SC/SF) Pathway ID DEGs tested P value Q value 
Fatty acid metabolism ko00071 16 (1.19%) 0.000612223 0.07346681 

Ribosome ko03010 44 (3.28%) 0.005398256 0.27306652 

Taurine and hypotaurine metabolism ko00430 6 (0.45%) 0.006826663 0.27306652 

Other types of O-glycan biosynthesis ko00514 5 (0.37%) 0.01560009 0.3743676 

Regulation of autophagy ko04140 14 (1.04%) 0.01770056 0.3743676 

Amino sugar and nucleotide sugar metabolism ko00520 26 (1.94%) 0.02162359 0.3743676 

Carotenoid biosynthesis ko00906 25 (1.86%) 0.02409221 0.3743676 

Phenylalanine, tyrosine and tryptophan biosynthesis ko00400 11 (0.82%) 0.02495784 0.3743676 

Glycerophospholipid metabolism ko00564 23 (1.71%) 0.02836514 0.37820187 

Porphyrin and chlorophyll metabolism ko00860 11 (0.82%) 0.03293996 0.39527952 

Peroxisome ko04146 18 (1.34%) 0.03923865 0.41932133 

Ubiquinone and other terpenoid-quinone biosynthesis ko00130 10 (0.74%) 0.05126163 0.41932133 

Butanoate metabolism ko00650 8 (0.6%) 0.05197998 0.41932133 

Pyruvate metabolism ko00620 17 (1.27%) 0.0522923 0.41932133 

alpha-Linolenic acid metabolism ko00592 15 (1.12%) 0.05507743 0.41932133 

C5-Branched dibasic acid metabolism ko00660 2 (0.15%) 0.05590951 0.41932133 

Lysine degradation ko00310 9 (0.67%) 0.06190139 0.43469967 

Tyrosine metabolism ko00350 13 (0.97%) 0.06520495 0.43469967 

beta-Alanine metabolism ko00410 7 (0.52%) 0.07620636 0.47301936 

Biosynthesis of secondary metabolites ko01110 212 (15.79%) 0.07883656 0.47301936 
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photomorphogenic responses in Arabidopsis (Mas et al., 2003), mostly it was negatively regulated by CCA1/LHY, 
and positively regulated by the WNK1 gene (Wang & Tobin, 1998). Interestingly, the genes all above were 
assigned to late flower, which was contradicted against the early flower phenotypic of KFJT-1. This might be 
contributed to the complex regulatory module for photoperiodic flowering signaling. We proposed that the earlier 
flower characteristic of KFTJ-1 was related to the up-regulation of PHYA in young root and leaf. Previous study 
indicated that PHYA are the major day-length sensors in Arabidopsis (Mockler et al., 2003) and thought to 
promote flowering. The PHYA mutant flowers significantly later than the wild type in response to day-length 
extensions with a far-red-enriched white light (Johnson et al., 1994), differed between long-days and short-days 
(Weller et al., 1997). Interestingly, the PHYA is tissue-specific expressed in KFJT-1. Previous study on 
Arabidopsis suggested that sucrose could depress expression of PHYA (Dijkwel et al., 1997). Thus, we conferred 
that the down-regulated PHYA in young stem in KFJT-1 was due to high content of sucrose which mutual adjusted 
by the gene 3.2.1.26 and 2.4.1.13.  

5. Conclusion 
To our best knowledge, this study gained comprehensive understanding of DGEs between KFJT-1 and KFJT-CK, 
which was the first genome-wide effort to investigate the transcription dynamics of sweet sorghum induced by 
carbon ion beam at seedling stage. Furthermore, this work provides some useful information to develop function 
genes for the industry process of energy crop by carbon ion beam. 
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