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Abstract 
Traditional Chinese fermented vegetables are excellent probiotic food with probiotic lactic acid bacteria that are 
benefical to the health. A novel bacteriocin with molecular weight, 825 Da was found successfully from 
Lactobacillus plantarum 163, which was isolated from Guizhou salted radish. The complete amino acid sequence 
was speculated as YVCASPW based on the mass spectrometry, and was named as bacteriocin 163-1. The 
bacteriocin 163-1 was highly thermostable and stability over a broad pH range (pH 3-6), sensitive to protease K 
and pepsin, and exhibited a wide range of antimicrobial activity not only against lactic acid bacteria (LAB) but 
also against other foodborne pathogens including Gram-positive and Gram-negative bacteria. Bacteriocin 163-1 
could disrupt the cell membrane of bacteria. The observations of the transmission electron microscopy and laser 
confocal microscopy on the cell membrane of Escherichia coli and Staphylococcus aureus showed that 
bacteriocin 163-1 could result in forming pores on the cell membrane and then cytolysis of the bacteria. The new 
bacteriocin with broad-spectrum antibacterial activity will be useful in preservation of vegetable, fruit and food 
as well agricultural bio-controlling.  
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1. Introduction 
Traditional Chinese fermented vegetables are excellent probiotic food with probiotic lactic acid bacteria (LAB), 
which has various health benefits including anticonstipation, anticancer, antioxidative and immune-boosting. The 
functional ingredients from fermentation by LAB such as bacteriocins could be used as bio-preservative. LAB 
strains are generally recognized as safe (GRAS) microorganisms (Burdock & Carabin, 2004), and bacteriocins 
have also achieved GRAS status. Some bacteriocins with remarkable thermostability and pH stability show a 
significant inhibitory activity against spoilage and pathogenic bacteria, indicating that bacteriocin could be 
potentially used as an effective bio-preservative in the food industry. 

Some bacteriocins are already commercially available, such as nisin (produced by Lactococcus lactis), used to 
keep and extend the shelf life of food products in many countries in the world. However, nisin has some 
drawbacks when applied in the food industry. For instance, nisin does not perform the good antibacterial activity 
against Gram-negative bacteria, and it is only effective under an acidic environment. These limits are not 
positive for nisin to be applied in process and conservation for foods. Thus, an alternative novel bacteriocin with 
good antibacterial activities is essential for the food industry. Recently, the researcher is focusing on the mining 
of novel bacteriocin from LAB for such as Lb. plantarum from salted vegetable, yoghurt, fermented meat 
(Biscola et al., 2013; Ahmad et al., 2014; Alvarez-Sieiro et al., 2016). 

Generally, most bacteriocins generated from LAB appear to share a common mode of action which form a pore 
in the sensitive bacterial membrane, and therefore lead to sensitive cell death (Castellano et al., 2003; Oppegård 
et al., 2007). In addition, other type of bacteriocins such as lantibiotic has exhibited different mode of action by 
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binding themselves to lipid II, and therefore lead to cell death through false cell wall synthesis (Cotter et al., 
2005). Furthermore, some of bacteriocins such as Pep 5 cause lysis of treated cells, which is another mode of 
action (Bierbaum & Sahl, 1987). The effective use of bacteriocins in food preservation requires a better 
understanding of their mode of action and their inhibitory action under different biochemical conditions naturally 
occurring in food.  

In this study, the purification, identification, antimicrobial spectrum, biochemical and genetic characteristics of 
new bacteriocin from Lb. plantarum 163 in Guizhou salted radish were comprehensively investigated, and the 
action mode of the bacteriocin against to S. aureus and E. coli was discussed. 

2. Materials and Methods 
2.1 Strains, Media and Growth Conditions 

Lb. plantarum 163 was screened from Chinese fermented salted radish (Hu et al., 2013) and was stored in China 
General Microbiological Culture Collection Center (No. 8224). The lactic acid bacteria and fungi used in this 
study and their respective growth conditions are listed in Table 1.  

 

Table 1. Antimicrobial activity profile of bacteriocin 163-1 produced from the isolated Lactobacillus plantarum 
163 

Strains Source a Growth conditions Antimicrobial activity b 

Staphylococcus ureus ATCC 25923 nutrient broth/37 °C 19.38±0.68 

Listeria monocytogenes ATCC 19114 nutrient broth/37 °C 16.25±0.58 

Bacillus pumilus CMCC 63202 nutrient broth/37 °C 16.28±0.47 

Bacillus cereus AS 1.1846 nutrient broth/37 °C 13.07±0.27 

Micrococcus luteus CMCC 28001 nutrient broth/37 °C 13.07±0.27 

Lactobacillus thermophilus Our Lab MRS medium/37 °C 9.55±0.52 

Lactobacillus rhamnosus Our Lab MRS medium/37 °C 9.60±0.54 

E. coli ATCC 25922 nutrient broth/37 °C 15.35±0.67 

Pseudomonas aeruginosa AS 1.2620 nutrient broth/37 °C 9.91±1.30 

Pseudomonas fluorescens AS 3.6452 nutrient broth/37 °C 12.92±1.46 

Penicillium notatum AS 3.4356 Potato Dextrose/30 °C 0 

Aspergillus niger AS 3.6459 Potato Dextrose/30 °C 0 

Rhizopus stolonifer AS 3.822 Potato Dextrose/30 °C 0 

Note. a ATCC, American type culture collection; CMCC, China center of medicine culture collection; AS, China 
General Microbiological Culture Collection Center. b Well: 5 mm, Means of three replicate values.  

 

2.2 Purification of Bacteriocin 163-1 

Lb. plantarum 163 was activated in MRS broth at 37 °C for 14 h without agitation. 10 mL pre-culture was 
inoculated into 1,000 mL MRS broth, and incubated at 37 °C for 24 h without agitation. The bacterial cells then 
were harvested by centrifugation (6,000 g, 15 min) at 4 °C, and the cell-free supernatant collected was filtrated 
by 0.45 μm membrane. Then, the cell-free supernatant was separated by preparative chromatography (Waters, 
600) with Waters SunFire OBD-C18 columns (19×150 mm) in a 40 min isocratic elution of 95% 
water-acetonitrile (5%) and containing 0.1% trifluoroacetic acid (TFA). The elution was monitored continuously 
at 267 nm and all individual peaks were collected. Then, all individual peaks were further purified by 
reversed-phase high-performance liquid chromatography (RP-HPLC, UltiMate 3000) using the following 
conditions: Agilent Eclipse XDB-C18 columns, (4.6 × 250 mm), followed by an isocratic elution using 95% 
water-acetonitrile (5%) and containing 0.1% TFA for 40 min. Each individual peak was collected and further 
used for antimicrobial test using Bacillus pumilus CMCC 63202 as indicator.  

2.3 Determination of the Primary Structure of Bacteriocin 163-1 

The molecular mass and amino acid sequence of purified compound (bacteriocin 163-1) were analyzed by a 
matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) (Bruker 
Daltonics, Bremen, Germany) using α-cyano-4-hydroxycinnamic acid as a reference (Hu et al., 2013; Chen et al., 
2014).  
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2.4 Antimicrobial Spectrum of Bacteriocin 163-1 

The bacteriocin 163-1 from preparative chromatography were used to evaluate the antimicrobial activity against 
indicator organisms (seven of positive bacteria, three of gram-negative bacteria and three of fungi). Antibacterial 
activity of bacteriocin 163-1 was measured using agar well diffusion assay method (Ruixiang et al., 2015). 

2.5 Effects of Enzyme, Temperature and pH on the Activity of Bacteriocin 163-1 

The effect of Protease K (30 U/mg), Trypsin (2.5 KU/mg), α-Chymotrypsin (1 KU/mg) and Pepsin (3 KU/mg) 
on the activity of bacteriocin 163-1 was determined. The purified bacteriocin 163-1 from preparative 
chromatography was incubated at the optimum pH at 37 °C for 3 h) with the enzymes of the final concentration 
of 5 mg/mL. The influence of temperature on the activity of bacteriocin 163-1 was examined by treating at 60 °C, 
80 °C and 100 °C for 10, 20 and 30 min, respectively in a thermostatic water bath and at 121 °C for 20 min in an 
autoclave. Lastly, the pH value of the purified bacteriocin 163-1 was adjusted to 2-10 and then kept at 37 °C for 
3 h in a thermostatic water bath. The residual antimicrobial activities were measured after enzymatic, 
temperature and pH treatments using agar diffusion assay method using Bacillus pumilus CMCC 63202 as the 
indicator (Gao et al., 2010; Zhang et al., 2013). 
2.6 Effect of Bacteriocin 163-1 on the Sensitive Cell Growth and Time-Kill Kinetics 

The activity unit of bacteriocin 163-1 was defined as the reciprocal of the highest dilution with antimicrobial 
activity and was expressed in activity units (AU) per milliliter (Barefoot & Klaenhammer, 1983; Pucci et al. 
1988). 

In order to determine the effect of bacteriocin 163-1 on the sensitive cell growth, S. aureus (ATCC 25923) or E. 
coli (ATCC 25922) were activated in LB medium, then bacteriocin 163-1 were added at a concentration of 6.4 
Au/mL and 12.8 Au/mL. The sterile distilled water treatment was used as a control while the sterile LB medium 
was used as a baseline. The OD600 of all treatments were measured at 2, 3, 4, 5, 6, 7, 8, 10, 12 and 16 h. In order 
to determine the Time-kill kinetics, S. aureus (ATCC 25923) or E. coli (ATCC 25922) was activated in LB 
medium and incubated at 37 °C for 6 hours with agitation. Then bacteriocin 163-1 was added at a concentration 
of 12.8 AU/mL and the bacteria were counted at 0.5, 1, 1.5, 2, 2.5 and 3 h.  
2.7 Effect of Bacteriocin 163-1 on Release of Proteins and Nuclear Acid in Cells 

To determine the effect of bacteriocin 163-1 on release of proteins and nuclear acid in bacteria cells, S. aureus 
(ATCC 25923) or E. coli (ATCC 25922) were activated in LB medium, and incubated at 37 °C for 6 hours with 
agitation, then bacteriocin 163-1 were added at a concentration of 6.4 AU/mL. The bacterial cells then were 
harvested by centrifugation (6,000 g, 15 min) at 4 °C. The OD280 and OD260 of the cell-free supernatants were 
measured by 0.5, 1, 1.5, 2, 2.5 and 3 h. The sterile distilled water was used as a control while the sterile LB 
medium was used as a baseline. 

S. aureus (ATCC 25923) or E. coli (ATCC 25922) were activated and incubated at 37 °C for 5 hours with 
agitation, then bacteriocin 163-1 were added at a concentration of 6.4 Au/mL for the determination of the lactic 
dehydrogenase (LDH) release. After bacterial cells were harvested by centrifugation at 6000 g for 15 min at 4 °C, 
the LDH contents of the cell-free supernatants were measured at 0.5, 1, 1.5, 2, 2.5 and 3 h using LDH kit 
(Nanjing Jiancheng Bioengineering Institute, China). The sterile distilled water treatment was used as a control 
while the sterile LB medium was used as a baseline.  

2.8 Transmission Electron Microscopy (TEM) Observations on the Sensitive Cell Membrane Treated with 
Bacteriocin 163-1 

S. aureus (ATCC 25923) or E. coli (ATCC 25922) were activated in LB medium, and incubated at 37 °C for 8 
hours (E. coli 4 h) with agitation, then bacteriocin 163-1 were added at a concentration of 6.4 AU/mL, incubated 
at 37 °C for 2 hours, bacterial cells were harvested by centrifugation at 6,000 g for 15 min at 4 °C. The bacterial 
cells were washed by 2.5% Gluteraldehyde twice, finally bacterial cells were fixed by 2.5% Gluteraldehyde and 
the cell membrane observation was done by using Transmission Electron Microscopy (HITACHI, H-600, Japan). 
The sterile distilled water treatment was used as a control. 

2.9 Bacteriocin 163-1 Localization on Celluar 

S. aureus (ATCC 25923) or E. coli (ATCC 25922) were activated in LB medium, and incubated at 37 °C for 8 
hours (E. coli 6 h) with agitation, then fluorescein isothiocyanate (FITC)- Bacteriocin 163-1 were added at a 
concentration of 1 mg/L, and incubated at 37 °C for 0.5 hours with agitation (in dark), bacterial cells were 
harvested by centrifugation at 6,000 g for 15 min at 4 °C, then the bacterial cells were washed by 2.5% 
Gluteraldehyde twice. Then, the bacterial cells were suspended using 2.5% Gluteraldehyde (in dark) and finally 
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Bacteriocin is an active peptide produced by bacteria. From previous studies, many bacteriocins produced by Lb. 
plantarum have been found and identified, such as plantaricin Y produced by Lb. plantarum 510 (Chen et al., 
2014), plantaricin LD1 Produced by Lb. plantarum LD1 (Gupta & Tiwari, 2014). Some of Lb. plantarum could 
produce more than one type of plantaricin, for instance Lb. plantarum C11 could produce plantaricin A, 
plantaricin F, plantaricin E (Hauge et al., 1999). In our previous work, Lb. plantarum 163 could produce 
plantaricin 163 which consist of 32 amino acid with the molcecular weight of 3553 Da (Hu et al., 2013).  

Bacteriocin 163-1 was another antibacterial substance from Lb. plantarum 163. The molecular weight of 
bacteriocin produced by Lb. plantarum are between 2 kDa-5 kDa, for example, plantaricin C19 (3.8 KDa) (Atrih 
et al., 2001), plantaricin UG1 (3-10 KDa) (Enan et al., 1996), plantaricin MG (2180 Da) (Gong et al., 2010), 
plantaricin-149 (2.2 KDa) (Kato et al., 1994), plantaricin ASM1 (5045.7 Da) (Hata et al., 2010), and plantaricin 
163 (3553 Da) (Hu et al., 2013). In this study, we discovered a new bacteriocin 163-1with 825 KDa of molecular 
weight, which was similar to those found in molecular level, such as Acidocin NX2 (824 Da) (Zhang et al., 
2014). And it was confirmed that the sequence of bacteriocin 163-1 was no homology by search of protein 
BLAST (BLAST) against the GenBank database (http://www.ncbi.nlm.nih.gov/BLAST) and Bactibase 
(http://bactibase.pfba-lab-tun.org), thus suggesting that bacteriocin 163-1 may be a novel bacteriocin.  

3.2 Antimicrobial Spectrum of Bacteriocin 163-1 

The antimicrobial activities of bacteriocin 163-1 was shown in Table 1. The bacteriocin 163-1 significantly 
inhibited the growth of Gram-positive bacteria (S. aureus, Listeria monocytogenes, Bacillus pumilus, Bacillus 
cereus, Micrococcus luteus, Lactobacillus thermophilus, Lactobacillus rhamnosus) and the Gram-negative 
bacteria (E. coli, Pseudomonas aeruginosa, and Pseudomonas fluorescens), but had no antimicrobial activity 
against fungi such as Penicillium notatum, Aspergillus niger, and Rhizopus nigricans, indicated that bacteriocin 
163-1 had a broad antimicrobial spectrum. As shown in previous literature, most of bacteriocin, such as 
plantaricin F, plantaricin E, plantaricin J could only showed antibacterial activity against homologous species 
(Anderssen et al., 1998), whereas only a few plantaricin appeared to be a broad spectrum of antimicrobial 
activity. A bacteriocin with broad antibacterial activity may be more useful and valuable in agro-food industry. 

3.3 Effects of Enzyme, Temperature and pH on the Activity Bacteriocin 163-1 

Effects of enzyme, temperature and pH on the activity bacteriocin 163-1 were investigated and the results were 
shown in Table 2. The antimicrobial activity of bacteriocin 163-1 was found to be fully lost after enzymatic 
treatments with protease K, pepsin, and partially lost after enzymatic treatments with trypsin, α-Chymotrypsin, 
thus highlighting the typical property of a peptide.  

Further, the stability of bacteriocin 163-1 was tested at 60 °C, 80 °C, 100 °C and 121 °C and under a different pH 
(2-10). Surprisingly, it was observed that the activity recovery of bacteriocin 163-1was more than 90% by 
treatments of 60-121 °C in pH 4, appeared to be good thermostability. On other hand, its recovery was more than 
70% when tested at pH 3-10, of which showed remarkable pH stability in pH 3-8. The result was consistent with 
previous findings about bacteriocin peptides such as plantaricin MG (Gong et al., 2010), plantaricin 163 (Hu et 
al., 2013). The good physicochemical properties of bacteriocin 163-1 could offer an essential promise for its 
application in the processing and preservation of foods as well bio-controlling of plant diseases.  

3.4 Effect of Bacteriocin 163-1 on Cell Growth and Time-Kill Kinetics S. aureus and E. coli 

The effect of bacteriocin 163-1 on cells growth and Time-kill kinetics of S. aureus and E. coli was shown in 
Figure 2. The growths of S. aureus and E. coli were partly inhibited when they were treated with bacteriocin 
163-1 at a concentration of 6.4 AU/mL (Figures 2a and 2b). However, S. aureus growth was fully inhibited, but 
E. coli growth was done before 8 h of culture when bacteriocin 163-1 was added at a concentration of 12.8 
AU/mL (Figures 2a and 2b), suggested S. aureus was more sensitive to bacteriocin 163-1 than E. coli and it 
needed higher concentration of the bacteriocin to fully inhibit growth of E. coli. The growth of S. aureus was 
highly inhibited after 1 h with the treatment of 12.8 AU/mL (Figure 2c). The growth of E. coli was significantly 
reduced from 0.5 h to 3 h, and a 5-log reduction was observed after 3 h when treated with bacteriocin 163-1 at a 
concentration of 12.8 AU/mL (Figure 2d).  
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