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Abstract 
Climate change has the potential to affect Chinese rice production; however, the rice crop could become more 
suitable to new climatic conditions because of benefits derived from new agricultural technologies. In this paper, 
a county-level dataset and crop model were used to analyze actual rice yield suitability by measuring the yield 
gap and yield stability from 1980 to 2011 in 1561 counties of China. The results showed that the national yield 
gap between the actual and potential yields was approximately 23.0%, which is close to the threshold for 
profitable planting. However, a number of counties in the northeastern and southwestern regions showed a 30 to 
50% yield gap, which indicates a relatively lower suitability of the rice. The rice yield stability results indicated 
that the actual stability has exceeded the potential stability in most of the counties of China, thus indicating a 
high level of suitability. Temporally, a decreasing trend was observed for both the yield gap and stability, 
suggesting that the suitability of rice in China has improved, which might be associated with the development of 
agricultural technology. The only noteworthy locations presenting a high yield gap and yield instability were 
several counties in the northeastern region. Since the northeastern region accounts for a significant proportion of 
China's rice production, further investigations should be conducted to identify the underlying causes of the yield 
gaps and determine methods of increasing the yield stability. The implementation of more suitable agricultural 
technology in the area is also suggested to improve the rice suitability in the region.  
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1. Introduction 
In China, rice is one of the most important crops and accounts for approximately 35% of the total cereal crop 
production (FAOSTAT, 2013). Changes in the rice yield have the potential to significantly affect food security in 
China.  

Climate change caused by rise in CO2 concentration has significantly alters the temperature and moisture 
regimes in China (Ding et al., 2006). A number of modeling studies have suggested that those changes have the 
potential to adversely influence Chinese rice growth (Yao, Xu, Lin, Yokozawa, & Zhang, 2007; Chavas, 
Izaurralde, Thomson, & Gao, 2009; Masutomi, Takahashi, Harasawa, & Matsuoka, 2009). For example, climate 
change has been estimated to reduce the Chinese rice yield by 0.3 to 7% and increase the yield variability by 3 to 
9% (Yao et al., 2007). In addition, future rice yield projections indicate regional variability, with rice production 
in northeastern China predicted to benefit from CO2 fertilization effects and rice production in the east and south 
predicted to experience a declining trend in which harmful effect of warming is dominated (Masutomi et al., 
2009).  

Despite the negative potential consequences of climate change, several recent studies focusing on historical rice 
data found that growers appear to have successfully adapted to these negative climate effects by planting suitable 
rice cultivars (Liu, Wang, Zhu, & Tang, 2012; Tao et al., 2013), rearranging rice production areas (Lin, 2005; 
Yang et al., 2007) and providing better water management (T. Zhang, Zhu, Yang, & X. Zhang, 2008; Deng et al., 
2010). Thus, possible negative outcomes have not been observed to a large extent. Accessibility to new 
agricultural technology and updated agricultural infrastructure have enabled Chinese rice to become more 
resilient to climate change and extreme weather shocks and more suitable to growing under new climate 
conditions (Fraser et al., 2008; Simelton, Graser, Termansen, Forster, & Dougill, 2009). The progressively 
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greater suitability of rice in the context of climate change is undoubtedly good news to Chinese rice production. 
However, to our knowledge, a national assessment of rice suitability under climate change has not yet been 
performed.  

Evaluating the historical suitability of rice to climate change at a full national scale would provide new insights 
into how rice cultivation has adapted to past climate change, which could be used to determine whether the 
suitability of rice has improved in relation to climate change at a national scale and identify locations of 
vulnerable hotspots in need of further adaptations. These historical insights could inform our baseline capacity to 
adapt to climate change, which could be used as a guide for Chinese agricultural policymakers.  

Conventional crop suitability assessments are generally based on yield gap analyses (Fischer, Velthuizen, Shah, 
& Nachtergaele, 2002), which assess the actual yield relative to the potential yield to determine the suitability of 
the crop yield according to climatic factors. However, this analysis only considers the yield level and does not 
consider yield stability, another aspect of food security that is becoming increasingly recognized (Schmidhuber 
& Tubiello, 2007). Low yield stability often results in unpredictable food shortages, which threaten food supplies 
and farmers’ livelihoods (Schmidhuber & Tubiello, 2007). However, the consequences of variations in crop 
yields have received little attention.  

The objective of this study is to 1) provide a national assessment on historical rice yield suitability over the 
period from 1980 to 2011 by quantifying the actual yield and yield stability relative to their potential levels and 
2) identify regional variability in yield and stability, which will be used to support rice production security under 
changing climatic conditions. This study uses a high resolution county-level rice yield dataset for China to 
simulate the potential yield for each county; therefore, this study provides a comprehensive evaluation of China's 
rice yield suitability on a national scale.  

2. Materials and Methods 
2.1 Data sources and Preparation 

A rice yield dataset at the county level was collected from the Agricultural Information Center at the Chinese 
Agricultural Academy of Sciences. In this study, these data represent the actual rice yields of Chinese farmers, 
which cover 1561 counties (Figure 1a) in 28 provinces (Figure 1b). Climatic data were downloaded from the 
China Meteorological Data Sharing Service System (http://cdc.cma.gov.cn/). Climatic observations include daily 
minimum and maximum temperatures, sunshine hours, vapor pressure, wind speed and rainfall for the period 
from 1980 to 2011. Because the dataset only included 756 stations and did not satisfy the climate input 
requirement of the model for each county, we estimated the daily climate data using the algorithm presented by 
Thornton, Running, & White (1997); this algorithm interpolates the abovementioned data of the 756 climate 
stations into 10 km grid cells and then extracts climatic information from the grid data that corresponds to the 
locations of the 1561 counties.  
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Table 1. Representative cultivars for experimental stations in the study 

Province ID1 Season Cultivar Calibration dataset Validation dataset 

Northeast      

Heilongjiang 1 Single 93-8 Wuchang (2001-2003) Wuchang (2004-2005) 

Jilin 2 Single Qiuguang Tonghua (1993-1997) Tonghua (1998-2000) 

Liaoning 3 Single Liaojing294 Dengta (1998, 2000-2002) Dengta (2003-2005) 

North      

Hebei 7 Single Kendao95-4 Zunhua (2000, 2001) Zunhua (2002, 2003) 

Henan 9 Single TeSanErAi Xinyang (1993, 1994) Xinyang (1995, 1996) 

Northwest      

Ningxia 11 Single Ningjing29 Yinchuan (2002, 2003) Yinchuan (2004, 2005) 

East      

Jiangsu 14 Single Zaofeng6 Xuzhou (2001-2004) Ganyu (1999) 

Anhui 15 Single Xieyou63 Shouxian (2000, 2002) Shouxian (2003, 2005) 

Zhejiang 17 Early Zhe733 Jinhua (1996-1999) Lishui (1994, 1995, 1999),  

Lonogquan (1994, 1996, 1997, 2002) 

Zhejiang 17 Late 2You92 Lishui (1996, 2000, 2001) Longquan (2001), Lishui (2002) 

Central      

Hubei 18 Single Shanyou63 Wuhan (1994-1999) Yunxi (1998-2001) 

Hunan 19 Early Zhefu7 Changde (1997, 1999) Nanxian (1997) Changde (2003) 

Hunan 19 Late Weiyou64 Changde (1986),  

Wugang (1987-1990) 

Wugang (1991-1993), Pingjiang (2001) 

Jiangxi 20 Early Ganzaoxian14 Nanchang (1991, 1992) Nanchang (1993) 

Jiangxi 20 Late Zhongyougui99 Nanchang (2002) Nanchang (2003) 

Southwest      

Sichuan 21 Single DYou63 Leshan (1988, 1992-2001) Bazhong (1994), Dujiangyan (1993-1996) 

Chongqing 22 Single Eryou Youyang (1997, 1998, 2000) Youyang (2001-2003) 

Yunnan 23 Single Dianza31 Dali (2003, 2005, 2006) Dali (2007, 2009) 

Guizhou 24 Single Jinyou63 Guiyang (2001, 2003) Guiyang (2005) 

South      

Fujian 25 Early Jiayu164 Fuzhou (2004-2006) Fuzhou (2007-2009) 

Fujian 25 Late Yixiang2292 Fuzhou (2006) Fuzhou (2008) 

Guangdong 26 Early SanErAi Heyuan (1987-1990) Heyuan (1991-1994) 

Guangdong 26 Late GuangEr104 Heyuan (1985-1988) Heyuan (1989-1992) 

Guangxi 27 Early Teyou63 Nanning (2002-2009) Yulin (1999, 2000), Qinzhou (1996) 

Guangxi 27 Late Boyou903 Nanning (1994-1997) Nanning (2000-2004) 

Note. 1 The ID number corresponds to Figure 1b. 

 

In this study, the ORYZA2000 model was used as a tool to evaluate potential yields under optimum supplies of 
water and nitrogen, and these yield values were used to represent yield changes exclusively caused by climatic 
conditions. Other management information (i.e., emergence dates, seed-bed duration and planting density) was 
assumed to be province-specific and set to the average value of the experimental rice data. Crop coefficients 
were derived from the representative rice cultivars and assumed to be province-specific. For certain provinces in 
the northwest, we lacked experimental rice data; in these cases, the cultivar coefficients from nearby provinces 
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that share a similar cropping system were used. Moreover, because the county-level yield dataset did not provide 
separate yields for the early and late rice seasons, the simulated early and late rice yield potentials were averaged 
and weighted by the sowing areas for early and late rice according to provincial level data from a statistics 
yearbook and from the National Bureau of Statistics of China website (http://www.stats.gov.cn/tjsj/ndsj/). We 
assumed that the province-specific percentages of early and late season rice were consistent between years for all 
counties in the province, and the yield values for each county-year combination were estimated by multiplying 
the area-weighted percentage for the simulated early and late rice yields. Although clearly not ideal, such 
practices allowed us to determine a first-order approximation of the yield potential for all of China that could be 
compared with the available county yield data. 

2.3 Index of the Yield Gap and Variation Differences 

To achieve the objectives of this study, two indices were used to quantify the actual rice yield suitability in 
relation to climate change: a yield gap index and yield variation difference index. All of the statistical analyses 
were executed in R version 3.02 (R Core Team 2013).  

Yield gap. The yield gap was defined as the percentage difference between the potential and actual yield 
(Equation 1), and the index was used to quantify the similarity between the actual yields and their potential 
levels in each county. A lower value of the index indicates that the actual yield is closer to its potential level and  

more suitable for the climatic conditions.  

YG =
Yp – Ya

× 100%
Yp 

Where, YG denotes the yield gap (%) and Yp and Ya denote the potential and actual yield, respectively. 

Yield variation difference. As mentioned in the introduction section, yield stability is another important index for 
crop suitability. In this study, we adopted the yield variation index used by Reilly et al. (2003) to quantify the 
yield stability (Equation 2).  

V =
Yt – Ytrend

× 100%
Ytrend 

Where, V is the yield variation difference (%), Yt is the rice yield in year t (ton ha-1) and Ytrend is the fitted yield in 
each series, which is determined using a smoothing spline method and indicates the yield trend over time (ton 
ha-1).  

The yield gap was similarly defined by quantifying the suitability of the rice cultivar relative to the yield stability 
by determining the difference between the actual and potential yields (Equation 3).  

VD = Va – Vp                                    (3) 

Where, VD is the yield variation difference (%), Va is the yield variation calculated from the observed county 
yield data, and Vp is the yield variation calculated from the simulated potential yield data.  

3. Results 
3.1 ORYZA2000 Calibration and Evaluation 

The ORYZA2000 model was calibrated based on the observations on day after emergence (DAE) of flowering 
and maturity dates and rice yields. Based on Figure 2 and Table 2, there is a good agreement between the 
simulated and observed yields and phenology for both the calibration and validation datasets. The normalized 
root-mean-square error (NRMSE) for the yield simulation was approximately 13%, and the NRMSE for 
phenology varied from 3.7–5.1% (Table 2).  

 

(1) 

(2) 
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distribution in stability, with the rice yield in the northern region more variable than that in the southern region 
for both the potential (Figure 4a) and actual yields (Figure 4b) averaged over the study period. One of the 
reasons for the observed variability may be the longer growing season in the north, which causes a greater 
potential for variability under adverse climatic conditions. However, the actual yield variation was generally 
lower than the potential yield variation, which caused a uniform negative yield variation difference except in 
certain counties in the northeast (Figure 4c). The negative values indicate that the actual rice yield has already 
become more stable than the values derived under potential climate change conditions. Higher yield variability 
under potential conditions is not uncommon and has been observed in American (Hansan & Jones, 2000) and 
European maize (Reidsma, Ewert, Boogaard, & Diepen, 2009). In our region, the local adaptive responses to 
adverse climatic impacts not accounted for in the crop model may further reduce the influence of climatic factors 
and promote even lower observed yield variability. Such inconsistency between the potential and actual yield 
variations was also observed temporally (Figure 6). Compared with the spatial distribution for the potential yield 
variance trends (Figure 6a), the actual yield variance trends exhibited a uniform decreasing trend over time in 
most counties (Figure 6b). The more stable trend of the actual yield was consistent with several earlier empirical 
studies (Simelton, Graser, Termansen, Forster, & Dougill, 2009; Zhang et al., 2008), which attributed this trend 
to progressive improvements in several socio-economic factors in China, including technical inputs, breeding 
investments and mechanization. As a result, the yield variation differences also experienced a downward trend, 
indicating improved rice suitability because of the current agricultural technological developments in China. 
Therefore, our results suggest a positive outcome for yield stability because Chinese rice cultivars were able to 
maintain a stable yield according to average values and temporal trends.  

By combining the yield gap index and variation difference index, this study mapped the actual yield suitability 
from 1980 to 2011 (Figure 7). Over most of the study area, the actual rice yields exhibited a high level of 
suitability in relation to the local climate. On average, the actual yields over the study period were close to the 
potential values and exhibited a high level of stability (Figure 7a), especially for the eastern and southern regions, 
which are the traditional rice production regions in China. Temporally, the yield gap between the actual and 
potential rice yields was reduced and became more stable over the majority of the study regions (Figure 7b). At a 
national level, several large yield gaps in the northeast and southwest regions should be given a higher priority 
and investigated in further studies because the actual rice yield has performed well in terms of stability, and the 
yield gaps have the potential to decrease. Finally, the only locations that showed a high yield gap and high 
variance differences were located in the northeast and northwest regions. Because of recent increases in the rice 
planting areas (Lin, 2005; Yang et al., 2007) and the greater production demands on the northeastern region to 
meet China's food self-sufficiency (Simelton, 2011), further investigations are recommended to maintain yield 
improvements and ensure yield stability in the northeastern region of China.  

5. Conclusions 
In order to understand how yield suitability changes in China, we investigated rice yield gap and stability over 
1980 to 2011 in 1561 counties of China. The level and variance of yields relative to their potential ones indicates 
whether the historical climate change and technology improvement has made the yield more suitable for their 
growing environments or not. Potential yield changes due to climate were calculated by crop model, which 
compared with actual yield statistics. Results suggest that the national yield gap between the actual and potential 
yields was approximately 23.0%. However, this presents a regional heterogeneity; a number of counties in the 
northeastern and southwestern regions showed a 30 to 50% yield gap, which indicates a relatively lower 
suitability of the rice. On the other hands, actual rice yield stability has exceeded the potential stability in most of 
the counties of China, thus indicating a high level of suitability. There is a decreasing trend for both yield gap 
and stability, indicating that the suitability of rice in China has improved, which might be associated with the 
development of agricultural technology. The only locations showing a high yield gap and yield instability were 
several counties in the northeastern region. Therefore, we conclude that the region of northeastern in China has a 
potential to improve the level and stability of yields. Given the northeastern region accounts for a significant 
proportion of China's rice production, further investigations should be conducted to identify the underlying 
causes of the yield gaps and determine methods of increasing the yield stability. 
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Appendix 
Appendix A 

Model configuration in each province in our simulation 

Province Cropping Season Cultivar 
Emergence Seed-bed duration Planting density
Julia day Day length Plant m-2 

Northeast      

Heilongjiang Single 93-8 124 22 90 

Jilin Single Qiuguang 116 29 90 

Inner Mongolia Single Qiuguang 116 29 90 

Liaoning Single Liaojin294 112 35 90 

North      

Beijing Single Kendao95-4 121 39 136 

Tianjin Single Kendao95-4 121 39 136 

Hebei Single Kendao95-4 121 39 136 

Shanxi Single Kendao95-4 121 39 136 

Henan Single TeSanErAi 124 34 120 

Shandong Single TeSanErAi 124 34 120 

Northwest      

Ningxia Single Ningjing29 116 19 120 

Gansu Single Ningjing29 116 19 120 

Shaanxi Single Ningjing29 116 19 120 

East      

Jiangsu Single Zaofeng8 134 35 120 

Anhui Single Xieyou63 131 30 120 

Shanghai Single Zaofeng8 134 35 120 

Zhejiang Early Zhe733 98 26 120 

Zhejiang Late 2you92 175 33 120 

Central      

Hubei Single Shanyou63 115 34 90 

Hunan Early Zhefu7 95 27 90 

Hunan Late Weiyou64 177 26 90 

Jiangxi Early Ganzaoxian14 93 24 90 

Jiangxi Late Zhongyougui99 177 28 90 

Souwest      

Sichuan Single D You63 94 43 90 

Chongqing Single Eryou 99 41 90 

Yunnan Single Dianza31 100 34 90 

Guizhou Single Jinyou63 107 40 90 

South      

Fujian Early Jiayu 164 80 30 100 

Fujian Late Yixiang2292 183 26 100 

Guangdong Early SanErAi 77 22 90 

Guangdong Late GuangEr104 191 22 90 

Guangxi Early Teyou63 40 22 90 

Guangxi Late Boyou903 193 23 90 

Hainan Early Teyou63 40 22 90 

Hainan Late Boyou903 193 23 90 
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