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Abstract 
The purpose of this study was to investigate the performance, digestion of the diet and greenhouse gas emission 
of cows with subacute ruminal acidosis (SARA). Twelve cows were included. The blood parameters, milk yields, 
manure, and urine of healthy (H group) and cows with SARA (R group) were analyzed. The results showed that 
the plasma concentrations of total protein (TP) and globulin (GLO) of the R group were significantly lower than 
those of the H group. Aspartate amino transferase (AST), non-esterified fatty acids (NEFA), beta-hydroxybutyric 
acid (BHBA), creatinine kinase (CK) and L-lactate were significantly higher in the R group than in the H group. 
The levels of neutral detergent fiber (NDF) and acid detergent fiber (ADF) in feces from the R group were 
significantly lower than in the H group. Milk protein and milk fat were significantly lower in the R group than in 
the H group, and the energy corrected milk (ECM) value of the R group was significantly lower than that of the 
H group. The emission of ammonia and methane by the R group was slightly lower than by the H group. These 
results showed that the forage digestibility was significantly higher in the R group than the H group. The 
performance and ammonia and methane emission in the R group were slightly lower than those of the H group.  
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1. Introduction 
It is generally predicated that global warming is caused due to increases in the concentration of greenhouse gases 
(GHG), from anthropogentic activities including carbon dioxide, methane, nitrous oxide and chlorofluorocarbons 
(Patra, 2014). Currently, it was reported that agriculture plays an important role in global environment issues. 
Moreover the livestock sector represents a significantly source of greenhouse emissions worldwide (Gerber et al., 
2013). It is all know there were climate change, sea level increased etc when happened global warming. And the 
climate change has direct and indirect impacts on livestock production (Chauhan & Ghosh, 2014; Taqi, 
Hassanein, & Khalil, 2013). This is an infinite loop, thus we should mitigation the greenhouse emission 
increased.  

A life cycle assessment of GHG emissions indicated that livestock contributes about 18% to the global 
anthropogenic GHG emissions and dairy cattle sector 4% of total anthropogenic GHG emissions (Food & 
Organization, 2010). The main resources of dairy cow sector are feed materials, enteric fermentation, manure 
storage and processing. Feed materials accounts for half of total greenhouse emissions. The enteric fermentation 
contributing to about 40 percent of total greenhouse emissions (Gerber et al., 2013). Livestock manure 
management accounts for almost 10% of greenhouse gas emissions from agriculture globally (Owen & Silver, 
2015). In China the total production of animal manure from large-scale centralized farms is about 837 million 
tons, of which 382 million tons is cow manure (Van der Weerden, Luo, Dexter, & Rutherford, 2014). In additon, 
ammonia (NH3) emitted from cattle manure has environmental and human health effects, including 
eutrophication of surface waters, acidification of ecosystems, and fine particulate matter formation in the 
atmosphere (Lee et al., 2012). It has aroused great concern regarding the pollution associated with livestock 
farming. Above all, there are also several factors affect above conditions, such as dry matter intake, feed 
digestion, feed component, and manure storage methods. And there is no reported whether the diseases can affect 
the GHG emission.  
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China accounts for the first place of cows numbers in the world. The number of cows reached 14.7 million until 
2014. With the rapid development of the dairy industry, some farmers feed a large amount of easily fermentable 
carbohydrate-based feeds or acidic feeds in early and mid lactation to improve the production performance of 
dairy cows. This can result in high-yielding dairy cows suffering from a series of nutritional and metabolic 
diseases, especially subacute ruminal acidosis (SARA). SARA is defined as periods of moderately depressed 
ruminal pH (the minimum pH varies between 5.2 and 5.6) (Guo et al., 2013); it is one of the most common and 
costly digestive disorders of dairy cows, especially in well-managed dairy herds (Antanaitis, Žilaitis, Kučinskas, 
Juozaitienė, & Leonauskaitė, 2015). SARA is characterized by a decrease in ruminal pH, weight loss, slow 
growth and decreased feed conversion rate (Danscher et al., 2015). In addition, it can result in reduced dry matter 
intake (DMI), milk production, and milk fat content, and cause diarrhea, rumenitis, laminitis, and liver abscesses, 
as well as increased mortality rates (Plaizier, Krause, Gozho, & McBride, 2008). It therefore increases the cost of 
veterinary care. Besides, there have been no studies on the relationships among the milk yield, feces, urine 
output and GHG emissions of dairy cows with SARA, and no studies reported that alterations in the clinical 
parameters may directly or indirectly increase the emissions of GHG. Therefore, in this study, an attempt was 
made to determine whether changes occurred in the feed intake, productivity and feces production of dairy cows 
with ruminal acidosis compared with healthy cows. Moreover, we wanted to know whether changes occur of 
GHG emission between the cows with SARA and healthy cows. 

2. Materials and Methods 
2.1 Ethics Statement 

The study was approved by the farm owner and all animal experiments were conducted according to the 
International Guiding Principles for Biomedical Research. The protocol was approved by the Committee on the 
Ethics of Animal Experiments of the Heilongjiang Bayi Agricultural University. 

2.2 Animals and Groups 

Twelve Holstein cows were selected (average parity, 2.1 ± 1.0 lactations; body weight, 618 ± 84 kg) from an 
intensive cattle farm with 2000 dairy cows in Heilongjiang, China. The cows were divided into two groups, 
according to the pH value of rumen fluid and clinical signs: a healthy group (pH > 6.2, n = 6; H group) and a 
SARA group (5.2 < pH < 5.6, n = 6; R group). The cows were housed in individual stalls, bedded on rubber 
mattresses, and had free access to drinking water throughout the trial. They were fed a total mixed ration (TMR) 
at 04:00 and 16:00 daily during the transition period; the composition of the feed is shown in Table 1. The cows 
were milked three times daily, at 04:00, 12:00 and 20:00. The amounts of food intake, and the output of milk, 
manure, and urine were recorded each day, and the study was conducted for 4 days. 

 

Table 1. Composition of the diet fed to the dairy cows 

Ingredients (g/kg) Nutrient composition 

Concentrated feed 308 NE (MJ/100g) 1060 

silage corn 380 EE (%) 8.09 

Chinese hay 27 NDF (%) 39.08 

domestic alfalfa 68 N (%) 3.31 

oat grass 40 P (%) 0.25 

cottonseed 9 DM (%) 58.26 

wet corn 71 OM (%) 95.75 

tableting 31   

Note. NE: net energy; EE: ether extract; NDF: neutral detergent fiber; ADF: acid detergent fiber; N: nitrogen; P: 
phosphorus; DM: dry matter; OM: organic matter.  

 

2.3 Sample Collection 

Blood samples were collected from the vena caudalis mediana using sodium heparin before feeding and milking 
in the morning for 4 days, and immediately centrifuged at 3000 × g for 5 min at room temperature. The 
supernatants were aliquoted separately into Eppendorf tubes (1 mL plasma/tube) and stored at -20 °C until 
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analysis. The samples were later analyzed for determination of glucose (Glc, enzymatic), non-esterified fatty 
acids (NEFA, colorimetric method), beta-hydroxybutyric acid (BHBA, enzyme rate method) total protein (TP, 
chemical method), albumin (ALB, chemical method), globulin (GLO, chemical method), aspartate 
aminotransferase (AST, rate method), creatinine (CREA, enzymatic kinetic method), creatine kinase (CK, rate 
method), and L-lactate (L-ACT, rate method). The parameters in plasma were analyzed using a clinical 
auto-analyzer (Cobas Integra, C701; Hoffmann-La Roche Ltd., Basel, Switzerland).  

The cattle were milked three times per day, and the total milk output was recorded three times a day. At each 
milking, 10 mL of milk was collected, mixed with preservative and stored at -4 °C until analysis. The milk 
samples were later analyzed for determination of milk protein, milk fat and lactose (using a milk composition 
analyzer, Funke Gerber, Germany). 

Fresh feces and urine samples were collected from individual cows. Feces were collected from the ground in the 
barn at 05:00, 13:00 and 20:00, and the total weight was recorded. Samples of 500 g fresh feces were collected 
from the rectum of each cow every day and stored at -20 °C until analysis. Fecal samples were later analyzed for 
determination of dry matter (DM, dried at 65 °C in a forced-air oven for 48 h), neutral detergent fiber (NDF, Van 
Soest’s detergent fiber analysis), acid detergent fiber (ADF, Van Soest’s detergent fiber analysis), starch 
(anthrone sulfuric acid method), crude protein (CP, micro-Kjeldahl method), nitrogen (N, Dumas method), and 
gross energy (GE).  

Individual urine samples (approximately 200 mL per sampling) were collected at the same time as the fecal 
collections by massaging the perineum. The samples were stored frozen at -20 °C until analysis, and were later 
analyzed for determination of creatinine (CREA, enzymatic kinetic method), urine acid (UA, molybdenum 
phosphate method), and urea (urease method).  

2.4 Methane and Ammonia in Fecal Emissions 

Aliquots of the manure or urine samples were composited on an equal-weight basis for the healthy (H) and 
SARA (R) groups; the pooled fecal and urine samples were mixed on the basis of the ratio of daily manure and 
urine produced by the H and R groups. Gas emission from manure was defined as the rate of gas emission 
(mg/kg per min) from cattle feces and urine composites incubated for 100 to 122 h in simulated storage under a 
controlled environment (room temperature, 25 °C, and continuous air influx of 2 L/min). In this experiment, the 
emission potential of methane（CH4） in manure was analyzed using a steady-state flux chamber system 
(Wheeler, Topper, Brown, & Varga, 2007). The ammonia (NH3) emission potential in feces was analyzed using 
Nash reagent by spectrophotometry. Briefly, the manure and urine mixtures were placed in a chamber within 
glass jars (surface area 80 cm2) equipped with a lid consisting of two inlets, which were connected to a circular 
diffusion Teflon tube inside the chamber, through which continuous-sweep airflow (2 L/min) was provided. The 
chamber outlets were attached to a multi-valve switching apparatus, which allowed automated, sequential gas 
measurements from each jar using an INNOVA 1412 photoacoustic gas monitor (AirTech Instruments A/S, 
Ballerup, Denmark). Emission data were collected approximately every 3 h; the measurements were converted to 
a per-minute basis and these data were used in the statistical analysis. Manure (200 g) was placed in the 
chambers immediately before the beginning of the incubation, thus representing manure processes occurring on 
the barn floor immediately following excretion, and mixing of feces and urine. CH4 production in the rumen 
depends upon dietary factors, rumen function, and fermentation dynamics, and incubations were carried out at 
25 °C for 122 h (Lee et al., 2012).  

2.5 Statistical Analysis 

SPSS17.0 software (SPSS Inc, Chicago, USA) was used for statistical analysis using single factor variance; the 
results were expressed as means ± standard deviation. Energy corrected milk (ECM) was calculated as: [(0.038 × 
g crude fat + 0.024 × g crude protein + 0.017 × g lactose) × kg milk] ÷ 3.14 (Reist et al., 2002). 

3. Results 
3.1 Blood Biochemistry, Milk Components and Urine Parameters 
Table 2 shows that the concentrations of TP in plasma of R group was significanlty difference compare to H 
group (P < 0.01), the concentration of GLO in R group was significantly lower than H group (P < 0.05), the 
concentration of CK, AST and NEFA in R gorup was significantly higher than H group (P < 0.01), and the 
L-ACT, CREA and BHBA contents in plasma of R group were significantly higher than in the H group (P < 
0.05). The CREA contents in urine of R group was significantly lower than H group (P < 0.05). The 
concentration of urea in urine of R group was significantly lower than H group (P < 0.01). In addition, the levels 
of fat and protein in the milk of the R group were significantly lower than those of the H group (P < 0.01). 
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Table 2. Parameters of blood, urine and milk compared between healthy cows and those with SARA 

Items H group R group 

Blood biochemistry  

TP (g/L) 79.71±5.95 71.59±4.10** 

GLO (g/L) 42.39±8.38 35.18±5.49* 

AST (U/L) 82.88±13.15 97.36±12.25** 

Glc (mmol/L) 4.23±0.58 4.29±0.55 

NEFA (mmol/L) 0.41±0.18 0.71±0.18** 

BHBA (mmol/L) 0.68±0.15 1.04±0.49* 

BUN (mmol/L) 5.15±0.48 5.81±2.26 

CREA (umol/L) 61.50±7.38 69.45±7.85* 

CK (U/L) 159.56±32.09 337.36±77.19** 

L-ACT (mmol/L) 0.39±0.14 0.55±0.23* 

Urine biochemistry    

CREA (umol/L) 4631.48±1780.42 2749.30±555.76* 

UA (μmol/L) 756.33±222.07 755.69±208.28 

Urea (mmol/L) 100.99±25.22 64.19±16.40** 

Milk components    

Fat 3.28±0.43 2.55±0.47** 

Protein  3.31±0.38 2.83±0.27** 

Lactose 5.12±0.31 5.20±0.17 

Note. TP: total protein; ALB: albumin; GLO: globulin; AST: aspartate aminotransferase; Glc: glucose; NEFA: 
non-esterified fatty acid; BHBA: beta-hydroxybutyric acid; BUN: blood urea nitrogen; CREA: creatinine; CK: 
creatinine kinase; UA: urea acid; L-ACT: L-lactate.  

** Indicated highly significant difference (P < 0.01); * indicates significant difference (0.01 < P < 0.05); and 
without * indicates no significant difference (P > 0.05).  

 

3.2 Fecal Component Analysis 

As shown in Table 3, there was a significant difference in the ADF between the H group and the R group (P < 
0.01); and the NDF of R group was significantly lower than the H group (P < 0.05). ADF and NDF of the R 
group were lower than those of the H group. Moreover, the EE of the R group was significantly higher than that 
of the H group (P < 0.01). There was no significant difference in the DM, starch, CP, nitrogen and GE between 
the H and R groups. However, the concentrations of CP, N and GE in the R group were slightly higher than in 
the H group.  

 

Table 3. Differences in fecal components between healthy cows and those with SARA 

Items 
Feces 

H Group R group 

Dry Matter (%) 16.79±1.43 16.93±4.01 

NDF (%) 50.67±3.52 44.60±1.96* 

ADF (%) 33.77±1.85 27.33±2.38** 

Starch (%) 2.45±0.20 2.33±0.30 

CP (g/100g) 2.41±0.46 2.77±0.17 

EE (g/100g) 0.53±0.18 2.41±0.38** 

N (%) 2.18±0.14 2.30±0.13 

GE(KJ/100g) 256.04±34.91 291.33±22.19 

Note. NDF: neutral detergent fiber; ADF: acid detergent fiber; CP: crude protein; GE: gross energy; N: nitrogen; 
EE: ether extract. 

** Indicates highly significant difference (P < 0.01); * indicates significant difference (0.01 < P < 0.05); and 
without * indicates no significant difference (P > 0.05). 



www.ccsenet.org/jas Journal of Agricultural Science Vol. 8, No. 4; 2016 

96 

3.3 Differences in Performance, Manure and Urine Output between Healthy Cows and Those with SARA 

As shown in Table 4, there was a significant difference in ECM and urine/ECM between the H group and the R 
group (P < 0.05), but there was no significant difference in intake, fecal dry matter excretion (FE), urine output, 
FE/ECM, ECM, ECM/DMI and FE/DMI. 

 

Table 4. Comparison of performance between healthy cows and those with SARA 

Items H group R group 

DMI(kg) 13.38±2.28 13.30±2.71 

MY(kg) 27.57±5.20 26.34±5.15 

FE(kg) 4.88±1.59 4.64±2.03 

urine(L) 23.15±6.85 15.53±4.40 

ECM 25.48±4.46 21.44±2.99* 

FE/DMI 0.37±0.10 0.34±0.11 

FE/ECM 0.19±0.04 0.22±0.11 

ECM/DMI 1.93±0.34 1.69±0.47 

Urine/ECM 1.00±0.20 0.72±0.15* 

Note. ECM: energy corrected milk; FE: fecal dry matter excretion; MY: milk yield. 

** Indicates highly significant difference (P < 0.01); * indicates significant difference (0.01 < P < 0.05); and 
without * indicates no significant difference (P > 0.05). 

 

3.4 Comparison of Emission of CH4 and NH3 between Healthy Cows and Those with SARA 

The composited fecal and urine samples were thawed and mixed in a ratio of 1.17:1 and 1.58:1 for the H group 
and R group, respectively. There was no significant difference between the two groups; and emission values 
peaked at 40 h for both groups. The trend in emissions was the same (Figure 1). Figure 2 shows that, the R group 
achieved peak emission earlier than the H group, but the emission of NH3 was lower than that of the H group 
after 12 h. Moreover, the total emissions of NH3 by the R group were lower than those for the H group. 
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Figure 1. CH4 emission curves for healthy cows and those with SARA 
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Figure 2. NH3 emission curves for healthy cows and those with SARA 

 

4. Discussion 
4.1 Differences in Plasma Parameters between Healthy Cows and Those with SARA 
SARA is characterized by reduced DMI, milk production, and milk fat content, and it causes diarrhea, rumenitis, 
laminitis, and liver abscesses, as well as increased mortality rates (Plaizier et al., 2008). However, it has also 
been reported that the DMI is not decreased in cows with SARA (Guo et al., 2013). In our study there is no 
significant difference between healthy cows and those cows with SARA, which is consistent with the research of 
Guo et al. (2013). It maybe associate with the severity of SARA or the individual difference of the cows. And no 
studies stated clearly the causes of DMI decrease. NEFA is mobilized as the energy of the body becomes 
insufficient (Bobe, Young, & Beitz, 2004; Li et al., 2012). NEFA and BHBA are indictors of negative energy 
balance (NEB): cows are in NEB when the contents of BHBA and NEFA are increased (van Knegsel, Van Den 
Brand, Dijkstra, Tamminga, & Kemp, 2005). In our study the BHBA and NEFA of cows with SARA was 
increased when compared with healthy cows. 

AST is produced predominantly in the liver and its plasma levels become elevated whenever a disease process 
affects liver cells (Kunutsor, Apekey, & Walley, 2013; Vozarova et al., 2002). In our study, the concentration of 
AST was increased, which suggested that the liver may be damaged when cows develop SARA. The TP content 
also changes when the liver is damaged; it consists of globulin and albumin (Volynets et al., 2012). When the 
liver is damaged or chronic diseases such as diarrhea cause dehydration, the concentration of TP will be 
increased; cows with SARA usually have diarrhea. In this study we found the concentrations of TP and GLO 
were decreased, which was inconsistent with previous research.  

In addition, CREA and CK are increased when muscle is damaged, and in our study these parameters were 
increased, which suggests that cows with SARA have muscle damage (Ehlers, Ball, & Liston, 2002). It has been 
reported that lactic acid increases in the rumen when the ruminal pH is lower than 5.5 (Morgante, Stelletta, 
Berzaghi, Gianesella, & Andrighetto, 2007); in our study, the lactate level was significantly higher in the R than 
in the H group.  

4.2 Comparison of Performance Parameters between Healthy Cows and Those with SARA  

Paradoxically, reduced DMI is seen as a clinical sign of SARA, and several researchers have shown that DMI 
decreases during experiments involving induced SARA. However, the effects of induced SARA on DMI are 
inconsistent; some researchers reported that the induction of SARA did not reduce feed intake (Guo et al., 2013). 
In this study, we found no difference in DMI between healthy cows and those with SARA, as in some previous 
studies. A decrease in milk yield is another sign of SARA, but in our study there was no significant difference in 
milk yield between healthy cows and those with SARA, while the ECM of the R group was significantly lower 
than that of the H group. The ECM is calculated from the amounts of milk fat, milk protein and lactose (Reist et 
al., 2002). Reduced milk fat content is frequently used on farms as an indicator of SARA, and is described as 
“low milk-fat syndrome” or “milk fat depression”. Milk fat depression has been used as a basis for systems 
predicting the effectiveness of different diet structures in encouraging chewing (Enjalbert, 2006). Rumen pH is 
positively associated with milk fat concentration (Kolver & De Veth, 2002). The milk fat and milk protein of the 
R group in this study were significantly lower than those of the H group, which indicates an effect of SARA on 
milk production.  
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4.3 Characteristics of Rumen Digestion in Healthy Cows and Those with SARA 

The feed digestibility and DMI are decreased when cows develop SARA (Antanaitis et al., 2015). In our study, 
the digestion of NDF, ADF and starch was increased in cows with SARA when compared with healthy cows. 
The ADF and NDF are often used to estimate feed intake, energy values and performance. It has been reported 
that the digestibility of NDF and ADF has a tendency to decrease as the energy level increases (Li, He, 
Aziz-ur-Rahman, & Cao, 2014) and when the ruminal pH is lower than 6.3, the digestion of ADF and NDF is 
decreased (Anantasook et al., 2013). These observations are not in agreement with our results. Fat is the most 
variable component in milk and is highly dependent on dietary composition and ruminal fermentation 
characteristics (Moraes, Strathe, Fadel, Casper, & Kebreab, 2014). In our study, the milk fat of the R group was 
significantly lower than that of the H group, which suggests that the digestive ability of the rumen was decreased. 
This is consistent with the clinical signs of SARA. Otherwise, the digestion of CP, nitrogen, and starch showed 
no significant differences between the groups, but the digestion of CP and nitrogen was slightly lower in cows 
with SARA than in healthy cows. 

4.4 Comparison of Ammonia and Methane Emissions between Healthy Cows and Those with SARA  

NH3 and CH4 are emissions from the dairy industry, and which to be associated with severe environment 
pollution. Dairy cows are one of the largest livestock sources of NH3 emissions (Hünerberg et al., 2013). CH4 
production in the rumen depends upon dietary factors, rumen function, and fermentation dynamics (Budak & 
Yılmaz, 2013; Patra & Lalhriatpuii, 2016). In dairy cows with SARA, the ruminal pH is decreased, which affects 
rumen function, and results in a decrease in CH4 production. There is a strong relationship between CH4 
production and DMI or energy intake. A number of studies have also reported that feed intake (DM or energy) is 
a key explanatory variable in equations for predicting CH4 emissions in cattle (Patra & Lalhriatpuii, 2016). In 
our study, there was no significant difference in DMI and energy intake between the H and R groups. Kasuya 
and Takahashi (2010) found a positive correlation between NDF intake and daily CH4 emission (Aguerre, 
Wattiaux, Powell, Broderick, & Arndt, 2011). In our research, the NDF digestibility in the R group was higher 
than in the H group, while the emission of CH4 showed no significant difference. NH3 emission from manure, 
which is a serious concern, originates primarily from urine and especially urinary N. The changes in fecal N and 
urinary N excretion, and urinary N composition suggest that manure N may be less vulnerable to NH3 
volatilization in cows with high compared with low feed conversion efficiency (Arndt, Powell, Aguerre, Crump, 
& Wattiaux, 2015). Moreover, many studies have shown strong links between urinary N concentration and NH3 
emissions. The majority of urinary N is in the form of urea which, when mixed with urease enzymes found in 
soil and feces, is rapidly converted to ammonium and NH3 gas. In our study, the amount of N in the feces and 
urine of the R group was significantly lower than in the H group, and the amount of NH3 emitted by the R group 
was lower than that of the H group (Figure 2). A reduction in manure pH during the first days of storage and 
formed the crust at the surface, lead to the NH3-oxidizing bacteria in the organic crust may reduce the emission 
of NH3 (Aguerre, Wattiaux, & Powell, 2012). CP is mainly converted to NH3 in the rumen, but there was no 
significant difference in CP between the H and R groups in our study.  

5. Conclusion 
In summary, this study on the changes in production performance, digestion and GHG emission of cows with 
SARA and healthy cows showed that the performance and digestion of cows with SARA was decreased when 
compared with healthy cows. There was no significant difference in GHG between the two groups of dairy cows, 
but the emission of NH3 by the R group was lower than that by the H group. 
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