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Abstract 
An experimental system by use of magnetic and hydrodynamic force was established to accelerate mass 
transport and thus to shorten the salting equilibrium time in salting of fresh-cut cucumbers. The cucumbers were 
brined with flowing 3% NaCl solution under rotary magnetic field at 22 ºC. During brining period, salt contents 
of the cucumbers at varying Reynolds number of flowing brine, rotary frequency, and magnetic flux density of 
magnetic field were separately investigated and the salt uptake kinetics was also analyzed. Results showed that 
flowing brine disturbed the salt diffusion into cucumber tissues without the application of magnetic field. 
Consequently, the salt uptake rate decreased compared to the conventional brining. No significant difference in 
salt content of cucumbers was observed between the conventional brining and static-magnetic-field-assisted 
brining. The salt uptake rate was improved by the combination of rotary magnetic field and flowing brine. The 
increment of salt uptake rate during this combined treatment got larger with the increase of magnetic flux density. 
Salt uptake rate of cucumber increased with the increase of rotational frequency of the magnetic field and 
Reynolds number of the flowing brine, up to a critical value. A 170% increment in salt uptake rate constant could 
be achieved at magnetic flux density 0.13 T, rotational frequency 5 Hz and Reynolds number 1127. Thus, an 
intergrated technique based upon rotary magnetic field and flowing brine is provided for brining of porous 
agricultural products. 
Keywords: salt uptake rate, fresh-cut cucumber, rotary magnetic field, flowing brine 

1. Introduction 
Salted foods are widely popular owing to their special flavors, long storage life and convenience. Traditional 
salting methods are mainly dry salting and brining (Bellagha, Sahli, Farhat, Kechaou, & Glenza, 2007). In order 
to shorten the salting period and accelerate the ion diffusion into food materials, researchers have developed 
many methods such as agitation-assisted salting (Bona, Carneiro, Borsato, Silva, Fidelis, & Monken, 2007; 
Mayor, Moreira, Chenlo, & Sereno, 2006), ultrasound-assisted salting (Ozuna, Cárcel, Walde, & Garcia-Perez, 
2014; Turhan, Saricaoglu, & Oz, 2013; Benedito, Carcel, Gonzalez, & Mulet, 2002; Cárcel, Benedito, Bon, & 
Mulet, 2007), electric-field-assisted salting (Kusnadi & Sastry, 2012; Oboturova, Evdokimov, Nagdalian, 
Kulikov, & Gusevskaya, 2015; Arroyo, Lascorz, O’Dowd, Noci, Arimi, & Lyng, 2015) and vacuum 
impregnation salting (Pavia, Trujillo, Guamis, & Ferragut, 2000; Barat et al., 2006; Valdez-Fragoso, 
Martínez-Monteagudo, Salais-Fierro, Welti-Chanes, & Mújica-Paz, 2007; Quintero-Chávez, Quintero-Ramos, 
Jiménez-Castro, Barnard, Márquez-Meléndez, Zazueta-Morales, & Balandrán-Quintana, 2012; Rastogi, 
Raghavarao, Niranjan, & Knorr, 2002).  

Agitation treatment: The salting time for Prato cheese to obtain 2% salt content at Biot Number below 100 under 
agitation-assisted treatment was half that without agitation (Bona et al., 2007). Ultrasound treatment: The 
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investigation of ultrasound-assisted brining on pork loins at frequency 20 kHz showed that ultrasound treatment 
contributed to the salt diffusion of meat (Siró, Vén, Balla, Jónás, Zeke, & Friedrich, 2009). The effective 
diffusivities of NaCl and water increased by 25%-45% and 41%-153%, respectively, when pork was brined with 
ultrasonic wave at frequency 40 kHz and density 37.5 W·dm-3 in comparison with the samples without ultrasonic 
treatment (Ozuna et al., 2014). Electric filed treatment: Kusnadi and Sastry (2012) analyzed the effective salt 
diffusion coefficients in different vegetables (celery, mushroom and water chestnut) at an electric field intensity 
of 0, 658, 1316 and 1842 Vm-1. The diffusion coefficients increased after the electric field was applied in the 
brining and this increment is positively correlated to the electric field intensity. Moreover, the NaCl uptake of 
potato slices or trips was improved after the treatment by a pulsed electric field, and this improvement was also 
in proportion to density of pulsed electric field (Janositz, Noack, & Knorr, 2011). Vacuum impregnation 
treatment: In the research of Valdez-Fragoso et al. (2007), the optimal vacuum impregnation condition for 
pickling whole jalapeño peppers: 12% NaCl, brine-to-pepper mass ratio of 4.6 and a vacuum pulse (666 mbar, 5 
min)-atmospheric pressure (22 d) treatment was determined by the response surface methodology. On this 
condition, the ratio of NaCl gain to moisture loss was maximized. Besides, the osmotic dehydration of sliced 
tomato was reported to significantly expedite under the vacuum impregnation at 56.25 mbar with osmotic 
solution containing 7.5% NaCl and 32.5% sucrose compared to the conventional dehydration treatment (Corrêa, 
Viana, de Mendonça, & Justus, 2016). 

The NaCl solution (used as brine in the current study) belongs to strong electrolyte solution that contains 
massive charged ions such as Na+ and Cl-. Charged particles in a flowing fluid will be subjected to the magnetic 
force, FL, when this fluid passes through a non-parallel magnetic field, then altering the movement orientation 
(Lindley, 1964). The mass transport of flowing Na+ and Cl- is supposed to be influenced by the magnetic field. 
However, there are rare reports about brining vegetables under the joint influence of rotary magnetic fields and 
flowing brine. Therefore, the primary goal of the study was to establish a novel apparatus combining the 
magnetic field and flowing brine in order to accelerate the salt uptake rate of cucumber cubes during the brining 
process. A glass chamber was placed inside a perpendicular magnetic field generated by four pairs of tile-type 
NdFeB magnets, to contain the cucumber samples. These magnets could be driven by a servo motor with 
different rotary frequencies. A 3% NaCl solution was used as the brine and forced by a peristaltic pump to flow 
circularly in the established system.  

The objective of this research was to explore the influences of rotary perpendicular magnetic field and flowing 
brine on the salt uptake of the cucumber cubes.  

2. Method 
2.1 Instrument 

As shown in Figure 1, while the sodium chloride solution flowed through a perpendicular magnetic field, Na+ 
and Cl- were subject to the equal and opposite magnetic force, FL = qvB (Blank & Soo, 2001). Affected by the 
magnetic force, these ions were forced to gather towards the surface of cucumber cubes and permeate into the 
food matrix.The brine system consisted of glass chamber (A), perpendicular magnetic field (B), servo motor (C), 
circular pipeline (D), peristaltic pump (E) and circulating water bath (F), which is presented in Figure 2. The 
perpendicular magnetic field was generated by fixing eight semicircle neodymium magnets (Din = 70 mm, Dex = 
90 mm, L = 80 mm) in opposite poles towards each other. The inner magnetic flux densities of 0.09 T and 0.13 T 
were obtained with different NdFeB magnets of N38 type and N50 type assembled.  
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pipeline with the brine and drive the solution to circularly flow at different volume flow rates of 355.19, 711.02, 
1234.03, and 2606.86 uLmin-1. The brining process variables were Reynolds number (563, 1127, 1956, and 
4132, which were calculated according to Equation (1), the magnetic flux density (0.09 and 0.13 T) and the 
rotational frequency (1, 5, and 10 Hz). The fresh-cut cucumbers were immersed in NaCl solutions without 
flowing and not subjected to the perpendicular magnetic field were used as the control samples. 

The status of flowing brine were described in Table 1, in which Re-value was calculated from the following 
formula. 

= / Re vD                                       (1) 

Where Re is the Reynolds number, ρ is the density of the fluid (kgm-3), v  is the mean velocity of the fluid 
(ms-1), D is the inner diameter of pipeline (m), and  is the dynamic viscosity of the fluid (mpa·s) (Stein & 
Sabbah 1974). v  was transformed by the volume flux of the brine, ρ was the obtained as mass per unit volume 
at 20 ºC and  was measured with a Brookfield viscometer (DV-E, Brookfield Engineering Labs Inc., Stoughton, 
USA) at 20 ºC. 

 

Table 1. Conditions of flowing brine 

Volume flow rate 

(uLmin-1) 

Mean velocity v  
(ms-1) 

Density ρ 

(kgm-3) 

Inner diameter D 

of pipeline (m) 

Dynamic viscosity μ 

(mpa·s) 
Reynolds number, Re 

355.19 0.0128 1041.27 0.046 1.091 563 

711.02 0.0256 1041.27 0.046 1.091 1127 

1234.03 0.0445 1041.27 0.046 1.091 1956 

2606.86 0.0940 1041.27 0.046 1.091 4132 

 

2.3 Salt Content Determination and Mathematical Modeling 
Salt content in the cucumber cubes was determined by the titration with 0.1 M AgNO3 solution (Passos et al., 
2005) at the brining period of 0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8, and 12 hours. The salinity changes were modeled 
using negative exponential functions (Equation (2), Quintero-Chávez et al., 2012). Then the salt uptake rates 
were obtained and analyzed.  

( ) [1 exp( )]Y t a b kt                                     (2) 
Where Y(t) is the salt content (g100 g-1) in cucumber cubes estimated at the brining time, t; a is the initial salt 
content (g100 g-1) in the samples at initial time; b is the brining potential salt content (g100 g-1); k is the rate 
constant (h-1) of the potential brining. 

2.4 Data Analysis 

Differences between the means of salt content at brining treatments were tested by ANOVA at a significant level 
of 5%. SPSS software (version 19.0; SPSS, Chicago, IL) was used to determine the standard deviation. 
Parameters in the salt uptake models were solved by using SAS software (version 9.3; SAS Institute, Cary, NC). 

3. Results and Discussion 
3.1 Effects of Magnetic Field or Turbulent-Flowing Brine 

The salt content in cucumber cubes subjected to traditional brining, static magnetic field-static brining, static 
magnetic field-turbulent flowing brining and rotary magnetic field-turbulent flowing brining are illustrated in 
Figure 4. The model parameters of these negative exponential models for salt content changes in cucumber 
samples are summarized in Table 2. Great determination coefficients, R2, ( 0.9188) and low mean square error, 
MSE ( 0.0114), were observed, indicating acceptable quality of these models in the description of the salt 
diffusion process. The higher k-value meant a shorter salt equilibrium time. As shown in Figure 4, the increase of 
salt content in the cucumber tissues was rapid in the early brining period while gradually slowing until the 
equilibrium between the solution and the sample dominated by osmotic pressure was reached. This coincided 
with the trend of salt content changes in pickled celery and pepper (Quintero-Chávez et al., 2012). No significant 
difference (P > 0.05) was observed in salt content in the samples subjected to traditional brining and static 
magnetic field-static brining process. This indicated that the static magnetic field alone (B = 0.13 T) did not 
accelerate salt diffusion into the cucumber tissue. Meanwhile, static magnetic field-turbulent flowing brine (B = 
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Table 5. Parameters of the negative exponential models for salt uptake of cucumbers under rotary static magnetic 
field-laminar flowing brining treatments 

Rotary magnetic-laminar flowing brining treatments a (g/100 g) b (g/100 g) k (h-1) R2 MSE (g/100g)

Traditional brining 0.0465 1.2052 0.4481 0.9821 0.0031 

B=0.13 T, f=5 Hz, Re=1127 0.0428 1.3166 1.2079 0.9947 0.0010 

B=0.13 T, f=5 Hz, Re=563 0.0643 1.2073 0.9510 0.9917 0.0016 

B=0.09 T, f=5 Hz, Re=1127 0.0051 1.2847 0.8723 0.9902 0.0020 

B=0.13 T, f=10 Hz, Re=1127 0.0531 1.2339 0.3395 0.9949 0.0010 

B=0.13 T, f=5 Hz, Re=1956 0.0807 1.1697 0.2741 0.9950  0.0008 

Note. R2 is determination coefficient; MSE is mean square error. 

 

As shown in Figure 7a, when B-value was fixed to be 0.13 T and Re-value was fixed to be 1127, significant 
increase (P < 0.05) in salt content at the brining early period (t < 2.5 h) was observed with the rotational 
frequency increasing from 1 to 5 Hz. The varying magnetic flux density generated by the rotary perpendicular 
magnetic field induced electromotive forces in the brine. Then, the inductive voltage also expedited the ionic 
conduction (Rossow, 1958; Roth, 2011). However, the increase of frequency from 5 Hz to 10 Hz caused 
significantly (P < 0.01) decrease in the salt gain rate in comparison to that of treatments at 1 and 5 Hz. The 
k-value at 1, 5 and 10 Hz were 0.7506, 1.2079 and 0.3395 h-1, respectively (Table 5). Similarly, in Kulshrestha 
and Sastry’s research (2003), the diffusion coefficients of beet dye during brining at the frequency of 0, 10, 50, 
250, and 5000 Hz, all increased initially and then decreased at the action of moderate electric field. The most 
rapid diffusion was obtained at the frequency of 10 Hz and at the electric field intensity of 23.9 Vcm-1.  

Figure 7b reveals the effect of Re-value of the laminar flowing on the salt content in salted cucumber. A 
threshold Re value ought to exist. Below this threshold, a higher velocity of NaCl solution caused the increase of 
salting rate constant. The highest k-value (1.2079 h-1) was achieved at operating condition of B-value equaled 
0.13 T, f-value equaled 5 Hz, and Re-value equaled 1127 (Table 5). This result agrees with the previous findings 
where a salt diffusion into garlic samples was initially increased and then decreased by the high brine mobility 
(Jin et al., 2015).  

A significant increase in salt content of cucumber cubes (P < 0.05) was noticeable at the first 1.5-hour of brining 
time as the magnetic flux density rose from 0.09 to 0.13 T at the rotational frequency of 5 Hz and Re value of 
1127 (Figure 7c). Meanwhile, the k-value was increased from 0.8723 h-1 to 1.2079 h-1, which was 170% higher 
than that of traditional brining (Table 5).  

Both the contribution of large magnetic flux density and Reynolds number to enhancing salt diffusion were 
resulted from the strong action of magnetic force on the moving ions, which could be explained by formula FL = 
qvB (Blank & Soo, 2001).  

4. Conclusion 
A novel brining method that combines perpendicular magnetic field with flowing brine was proposed to 
accelerate the salting process of cucumbers. Negative exponential models were sufficiently used to analyze the 
salt absorption of cucumbers. The results showed that the combination of the perpendicular magnetic field with 
flowing brine could increase the salt uptake rate by 170% when compared with the traditional brining method. 
This promotion attributed to the action of Lorentz force on moving free ions. Without the assistance of 
perpendicular magnetic field, the salt diffusion into the samples was disturbed by the flowing brine. Meanwhile, 
brining treatment under perpendicular magnetic field alone showed no significant difference in salt content of 
cucumber cubes either when compared to the traditional brining method. Furthermore, rotary magnetic field was 
more effective than static magnetic field in promoting salt diffusion. For the rotary magnetic-laminar flowing 
brining treatments, salt uptake rate increased with the magnetic flux density and there existed threshold 
rotational frequency and Reynolds number for accelerating salt diffusion. This research lays the foundation for 
porous food processing, such as salting and mineral fortification based on the joint action of rotary magnetic 
fields and flowing electrolyte solutions. 
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