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Abstract 

This paper examines how maximum residue limits (MRLs) affect the optimal choice by growers of chemical 
applications to control pests and diseases. In practice, growers who export balance both yield risk and pesticide 
residue uncertainty when making chemical application decisions. To address these issues we specify an expected 
utility model and calibrate it to data collected from a 2012 survey of hop growers in the Pacific Northwest. Then 
we simulate hop grower/exporter decisions subject to MRLs across a myriad of scenarios. As anticipated, risk 
preferences contribute to explaining higher chemical use. All else equal, more stringent MRLs tend to induce 
risk averse growers to apply fewer chemicals than do risk neutral growers because of the increasing likelihood of 
crop rejection due to exceeding an MRL. Under specific circumstances risk preferences coupled with underlying 
MRLs have the potential to tip the decision towards less chemical uses with potential for more growers 
implementing integrated pest management strategies or, alternatively, greater use of other pesticides not subject 
to MRL restrictions. 

Keywords: expected utility, hop production, maximum residue limits, risk preferences 

1. Introduction 

Maximum residue limits (MRLs) are a maximum concentration of chemical residue to be legally permitted on 
food and agricultural products. MRLs are heterogeneous across countries and regions and can be applied in both 
domestic and international trade of food and agricultural products. Extensive literature exists on agricultural 
production from continuous stochastic income due to price or output uncertainty (e.g., Just & Zilberman, 1983; 
Babcock & Hennessy, 1996). In contrast this article develops a model of a grower’s input decisions under yield 
risk and uncertain pesticide residue with MRL constraints imposed on exports. We specify a theoretical model 
that (i) incorporates the grower’s risk preferences; (ii) emphasizes the role of MRLs under forward contracts 
(Note 1); and (iii) proposes a decision rule that balances both yield risk and pesticide residue. The simulation 
model illustrates hop production and exports in the Pacific Northwest. A wide range of scenarios are simulated to 
assess hop grower response to key production, trade, MRL, and policy parameters.  

On one hand, hop growers face a substantial degree of production risk from pest/disease infestation. For example, 
during the 1998 season some growers experienced a 60% reduction in yield due to the two-spotted spider mite 
(TSSM) injury. Overall, Washington production was down an average of 10% in 1998 due to TSSM attack (Crop 
Profile for Hops in Washington, 2001). The disease powdery mildew can similarly reduce yield by up to 90% if 
left untreated (Mahaffee, Engelhard, Gent, & Grove, 2009); yield damage of 20% from omitting a fungicide 
application late in the season also been documented (Gent et al., 2014). On the other hand, hop 
growers/exporters increasingly face more stringent MRLs determined exogenously by importing countries. 

The paper makes several primary contributions not present in the literature. First, it demonstrates tradeoffs that 
growers balance between yield risk and pesticide residues when using chemicals to control pests and diseases. 
Second, it addresses decisions for both risk neutral and risk averse growers. Third, it specifically examines 
decisions for hop production providing guidance to grower/exporters previously not available.   
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The remainder of the article is structured as follows. In the next section, we provide a theoretical model. This is 
followed by specification of the empirical model and simulation procedures. These simulations provide 
experimental evidence of hypothetical economic decisions and consequences. Results and implications are then 
provided. We end with concluding remarks and discuss future directions for research.  

2. Theoretical Model 

2.1 Hop Production and Marketing Process 

We assume a stylized hop production and marketing timeline: contract stage, production stage and marketing 
stage. In the contract stage, the hop merchant (buyer) offers a multi-year forward contract (typically 3 to 5 years) 
that specifies the hop price per pound (  ), size of contract (i.e. purchase quantity) (  ), and the pesticide 
tolerance level (  ). Given a hop contract, the representative hop grower makes a decision on the choice of 
chemical levels at the beginning of the production stage. Here define x = (x1, …, xk) as a vector of chemical 
inputs such as fungicides, miticides, insecticides, etc. 

After the growing season the grower realizes the outcomes of hop yield y and pesticide residue q at the end of 
this stage. Here q is interpreted as the level of pesticide residue (inversely related to quality). Terms related to 
hop quality are often specified in a contract (Note 2). 

In the marketing stage, the hop buyer/importer decides whether to accept or to reject the contracted hops. We 
assume the buyer/importer will accept the hops only when the pesticide residue is below a specified tolerance 
level     . Otherwise the buyer/importer rejects the hops delivery.  

2.2 Pesticide Residue and the MRL 

For the purpose of theoretical analysis, we assume hop yield,       , is stochastic. Let        be the pesticide 
residue which is also stochastic. Define a conditional joint probability density function as: 

 (1) 

where, 

x is the vector of chemical inputs. This distribution is taken to be realized at the end of the production stage. In a 
general sense this function structures the relationship among chemical use, crop yield, and residue. More specific 
functional relationships are defined in the simulation section.  

A pesticide tolerance level in the form of a maximum residue limit, or MRL,  , is exogenously determined by a 
third party such as the government or an importing agent. From a purely statistical perspective, identifying a 
MRL is equivalent to estimating an extreme percentile of an unknown distribution (MacLachlan & Hamilton, 
2010). In this manner one can have a pre-specified confidence that an estimate exceeds the true percentile.  

2.3 Input Decisions under Risk  

We assume a hop grower makes input decision at the beginning of production stage. If hops are accepted and 
marketed, i.e.,     , growers will receive a higher contracted price   and, hence, a higher profits π1. In this 
case the grower will receive deterministic revenue of     by fulfilling the contract. If hops are not accepted by 
the buyer nor marketed, i.e.,     , the grower will receive a lower price      and, hence, lower profit π2 < π1 
(Note 3). Combining revenue with costs defines the growers profit function:  

 

2 ˆ , .p y w x q q                                       (2)
 Here, 

w x  is the growers marginal cost of pesticide use and γ represents the remaining production costs. 

The grower chooses the chemical input under the joint distribution in Equation (1) and solves the following 
optimality problem:  

                 (3) 

where the hop grower’s risk preferences are represented by the von Neumann-Morgenstern utility function    . 
Risk aversion is assessed using the Arrow-Pratt absolute risk aversion coefficient                     , with 
r > 0 representing risk aversion (Pratt, 1964). For a constant r it is known as constant absolute risk aversion.  

The optimal level of chemical input solves the first order condition (FOC):  
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                     (4) 

The first line in Equation (4) is the marginal effect of chemical input on the distribution of yield and pesticide 
residue. The second line is the marginal effect of chemical input on the two different utility levels. As shown in 
Babcock and Hennessy (1996), Falco and Chavas (2009) and Antle (2010), we would expect an increase in input 
level to change the shape of the distribution. In general, we expect the mean of pesticide residue distribution 
increases with chemical input. However, the variance effect of an addition chemical input is ambiguous. Thus we 
cannot rule out that an increase in the chemical input may increase the probability of acceptance and decrease the 
probability of rejection, or an increase in the chemical input increases the probability of both acceptance and 
rejection.  

If we assume y and q are independent with marginal distributions of       and      . Then the effect of x on 
the joint distribution 

, 

can be decomposed into the effects on the marginal distributions. The FOC becomes  
 

 

 

 

 (5) 

Consider the case when 0q  , i.e., the MRL stipulates absolutely no tolerance for pesticide residue. In this case 
selected terms in the integration of the first line and the third line become zero in Equation (5) and the FOC 
reduces to 
 

 

  (6) 

Because the MRL is sufficiently stringent, the optimal rate of chemical inputs is the one that maximizes expected 
utility from π2. In addition when hop yield and residue are independent, the effect of the pesticide breaks down 
into the effect on each marginal distribution.  

Now consider the comparative static effect when     . Applying Leibniz’s rule yields 

 

 

 

 

                (7) 

In Equation (7)                         is the profit when     . The second order condition          is 
assumed to be negative. A positive sign in Equation (7) would mean a more stringent government MRL provides 
incentives for chemical reduction. However, the sign on Equation (7) is ambiguous.  

3. Materials and Methods 

3.1 Hops Survey and Data 

A survey was carried out of hop growers’ production and management practices. The survey which was 
conducted in 2012 targeted the population of hop growers in Pacific Northwest (Note 4). The response rate is 
8.75% and it covers about 10% of the hop hectares in the Pacific Northwest. 

Table 1 provides descriptive statistics for selected variables from the survey data. The average yield per hectare 
was 2401 kg with average revenue of $18061/ha. The average contract price was $7.99/kg with a minimum of 
$4/kg and maximum of $15/kg. The average contract length was 3 years with a minimum less than 1 year and 
maximum of 5 years.  
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Table 1. Descriptive statistics for selected variables from the 2012 grower survey 

Variable  Mean Standard Deviation Minimum Maximum N 

Yield  2401.94 656.07 927.72 3801.44 46 

(kg/ha)       

Revenue  $18061.09 $6334.08 $9622.25 $37721.05 46 

($/ha)       

Contract  2.74 1.48 0 5 46 

(years)       

Parcel  32.20 33.17 0.20 122.22 46 

(hectare)       

Price  7.99 3.30 4.41 15.44 46 

($/kg)       

Note. The value of 0 for contract length was one organic field. A parcel is in hectares reported across all varieties 
and across all farms.  

 

Other descriptive statistics were reported but not presented in the Table 1. Twenty different hop varieties were 
grown with Columbus/Tomahawk (20%), Cascade (11%), and Zeus (10%) leading the varieties reported. 
Growers contracted crops with different agents, including hop merchants (67%), large brewers (31%), and others 
(2%). None of the growers described themselves as an “organic” grower but one did grow a three hectare parcel 
of organic hops under a very short term contract (< 1 year). Average yield loss estimated by growers to powdery 
mildew (2.71%), downy mildew (2.43%) and spider mites (1.14%) which totaled 6.3% with a maximum of 18% 
and minimum of 0% across growers. On average chemicals were sprayed 6-7 times per season to control 
powdery mildew, downy mildew and spider mites, in line with other pesticide survey data (Sherman & Gent, 
2014). Revenue, costs, and other outcomes were consistent with Galinato et al. (2011). 

3.2 Simulation Procedures and Assumptions 

To complement our theoretical model, we conduct an illustrative simulation study of hops production and 
chemical use calibrated to grower survey data. To establish a baseline we simulate expected utility under yield 
risk with no MRL restrictions (     ): 

 (8) 

Next we focus, in particular, on simulating the effects of yield risk, risk attitudes and uncertainties of MRLs on 
input choices. The expectation functional form of Equation (3) is specified as,  

 (9) 

where the first summation is taken over the observations when the MRL is met,     , and the second 
summation is taken over the observations when the MRL is exceeded,     . The rate of inputs that result in the 
highest value of Equation (9) is taken to be the expected utility maximizing rate. Similar to Babcock and 
Hennessey (1996) we select a constant absolute risk aversion (CARA) utility function (Pratt, 1964) as µ(π;r) = 1 
– exp(–rπ) with r as the coefficient of absolute risk aversion.  

A hypothetical yield function is specified dependent upon the number of chemical applications is defined by yi = 
α + βxi –    (                    ) where the parameters are calibrated to an illustrative yield profile. 
When the MRL is not binding the optimal level of chemical is 6 applications, which is close to the mean number 
of applications reported in the grower survey. A damage function (Damage Profile 1) that reduces yield is 
initially defined to be symmetric across choices of chemical inputs contingent on responses from the grower 
survey (scenarios 1-15). Damage Profile 1 considers 4, 5, 6, 7, and 8 applications of chemicals that reduce yield 
by 10%, 5%, 0%, 5%, and 10% respectively. Variations of this damage profile are examined below in further 
model scenarios. 

Pesticide residue is assumed to be positively correlated with chemical use. MacLachlan and Hamilton (2010) 
report distributions of pesticide residues are often unknown, and studies have used normal, log normal, Weibull, 
exponential, or power distributions. In the simulations below the residue is assumed to be distributed in the 
family of extreme value distributions. Given the outcomes, the hypothetical binding levels of the MRL used in 
the analysis are 0.4 and 0.2. The exact level of MRL will depend upon the chemical used, time since application, 
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and agents determining its level. Sensitivity analysis is used to examine model outcomes to deviations from the 
parameter assumptions.  

A Monte Carlo simulation is completed to generate data and to realize outcomes from the structure above. Fifty 
iterations are completed for each simulation scenario with 1000 observations drawn each iteration. The optimal 
level of chemical use is defined when the expected utility achieves a maximum over a range of choices. 

3.3 Scenarios 

Scenarios are setup beginning with a baseline model (Scenario 1) and variations of it to provide sensitivity 
analysis to key model parameters and policy variables. The baseline model is simulated when hop yield has 
mean of 2241 kg/ha with standard deviation     567 (see Table 2). The MRL is not binding and the hop grower 
exhibits risk neutrality ( 0.00001r  ). Given responses from the grower survey the contract price,  , is chosen to 
be $11/kg. The contract size, y , is 2241 kg/ha. The hop side agreement price,  , is $6/kg.  

 

Table 2. Primitive parameters used to calibrate the baseline model 

p  Hop base price 
($/kg) 

11.03 Chosen based on the contract 

y  Contract size 
(kg/ha) 

2241.19 

 

Chosen based on the contract 

p̂  Hop spot market price 
($/kg) 

6.62 A average price based on USDA 
estimates 

meany  The mean of hop yield  
(kg/ha) 

2241.19 Chosen based on the survey data 

y  Standard deviation 567 Chosen based on the survey data 

r  Coefficient of risk aversion 0.00001 Chosen to represent risk neutrality 

 

4. Results 

Model results for scenarios 1-15 are presented in Table 3, which are deviations from the baseline model. For the 
baseline model the optimal level of chemical applications is 6 with expected profit of $4843.30. Scenarios 2 and 
3 introduce a binding MRL of 0.4 and 0.2, respectively. Profit reduces to $3573.87 for Scenario 2 and $2806.34 
for Scenario 3 with the number of chemical applications remaining at 6 for Scenario 2 but decreasing to 5 for 
Scenario 3. Scenarios 4 and 5 introduce a risk aversion coefficient of 0.02 but the results are nearly identical to 
Scenarios 2 and 3.  
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Table 3. Simulation results for risk averse and risk neutral growers producing hops 

Scenario 
Absolute Risk 

Aversion  

(r) 

Optimal Chemical 

Usage (xc)  

Expected Utility 

Optimal Chemical 

Usage (xc)  

Expected Profit 

Expected Profit 

($/ha) 

Standard 

Deviation  
MRL 

1-Baseline 0.00001 6.000 6.000 4843.30 ,y res   Not Binding 

2 0.00001 5.960 6.000 3573.87 ,y res   0.4 

3 0.00001 5.000 5.100 2806.34 ,y res   0.2 

4 0.02 5.960 6.000 3349.12 ,y res   0.4 

5 0.02 5.000 5.080 2672.47 ,y res   0.2 

6 2.0 5.020 6.000 3390.72 ,y res   0.4 

7 2.0 4.740 5.180 2700.95 ,y res   0.2 

8 0.02 6.000 6.000 2901.68 4 ,y res   0.4 

9 0.02 5.840 5.120 2483.50 4 ,y res   0.2 

10 2.0 4.200 6.000 3592.08 .5 ,y res   0.4 

11 2.0 4.000 5.140 3165.65 .5 ,y res   0.2 

12 2.0 4.440 5.160 2901.52 , 2y res   0.4 

13 2.0 4.340 4.860 1576.88 , 2y res   0.2 

14 2.0 4.000 5.1600 2464.09 .5 , 2y res   0.4 

15 2.0 4.000 4.760 1586.15 .5 , 2y res   0.2 

 

Scenarios 6 and 7 introduce a larger risk aversion coefficient of 0.20. For Scenario 6, under the MRL = 0.40, the 
number of chemical applications is reduced to nearly 5 for the risk averse grower and remain at 6 for the risk 
neutral grower. Under the MRL = 0.20, or Scenario 7, the number of chemical applications is reduced to 4.74 for 
the risk averse grower and 5.14 for the risk neutral grower. This demonstrates that under certain circumstances 
the risk averse grower will reduce the number of chemical applications and use fewer chemical applications than 
the risk neutral grower.  

Additional simulations are examined to explore sensitivity of the above results to specifications of the yield and 
pesticide residue distributions. For scenarios 8 and 9 we inflate the standard deviation of yield by a factor of 4. 
Under the MRL = 0.40, or Scenario 8, the number of chemical applications is the same as the baseline. However, 
when the decreases to MRL = 0.2 the number of applications is 5.84 for the risk averse grower and 5.12 for the 
risk neutral grower. The important observation is that increased riskiness in yield can overshadow restrictions 
from the MRL, and the number of chemical applications is greater under risk aversion than risk neutrality. For 
scenarios 10 and 11 we deflate the standard deviation of yield by a factor of 0.5. The opposite is observed in that 
chemical applications are again now less for the risk averse grower.  

Under Scenarios 12 and 13 the standard deviation of the pesticide residue is multiplied by a factor of 2.0, 
increasing its uncertainty. It is anticipated that increasing the uncertainty of the residue would further decrease 
the number of chemical applications. For Scenario 12, the number of applications go from about 5 (Scenario 6) 
to 4.44 under risk aversion. For Scenario 13, the number of applications go from about 4.74 (Scenario 6) to 4.34 
under risk aversion. In effect, all else equal, the more growers are uncertain about the pesticide residue the fewer 
chemical applications will be applied. Finally, Scenarios 14 and 15 further demonstrates as yield risk decreases 
and variance of the pesticide residue increases then the number of chemical applications decrease.  

These results provide several important observations worth discussing. First, all else equal, a binding MRL 
decreases chemical applications. Second, all else equal, increasing the variance associated with the pesticide 
residue further decreases the number of chemical applications. However, there is an important balancing act for 
the grower. As demonstrated above, the riskiness of yield and variance of the residue tradeoff with one another 
provided an interesting but not clear cut outcomes to guide chemical use. Finally, in circumstances where 
reductions in chemical applications are optimal, there is an opportunity for integrated pest management strategies 
or, conversely, greater use of other pesticides not subject to the MRL. 
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4.1 Alternative Damage Profiles 

Table 4 presents outcomes from different damage profiles. Initially we considered 4, 5, 6, 7, and 8 applications 
of chemicals with damages of 10%, 5%, 0%, 5%, and 10%, respectively (Damage Profile 1). Damage Profile 2 
for 4, 5, 6, 7, and 8 applications of chemicals are damages of 50%, 25%, 0%, 25%, and 50%, respectively 
(Damage Profile 2). There is no difference between outcomes for the Baseline and Scenario 16. Indeed, because 
of the larger magnitude of damage, even with a MRL = 0.20 (Scenario 17), there is no discernible difference in 
chemical applications relative to the baseline.  

 

Table 4. Further simulation results under alternative damage profiles 

Scenario Damage Profile 

Absolute Risk 

Aversion 

(r) 

Optimal Chemical 

Usage (xc)  

Expected Utility 

Optimal Chemical 

Usage (xc) 

Expected Profit 

Expected Profit 

($/ha) 
MRL 

1-Baseline 1 0.00001 6.000 6.000 4843.30 Not Binding 

16 2 0.00001 6.000 6.000 5225.90 Not Binding 

17 2 2.0 5.920 6.000 2978.31 0.2 

18 3 0.00001 7.000 7.000 4824.44 Not Binding 

19 3 2.0 4.560 5.000 3340.17 0.2 

 

Now consider an asymmetric profile with damages of 10%, 5%, 2.5%, 0%, and 5%, respectively (Damage 
Profile 3). Scenario 18 with no binding MRL simply increases the number of applications from 6 to 7. This is not 
surprising with the shift in yield from the asymmetric damage profile. Imposing a MRL = 0.20 in Scenario 19 
reduces the number of applications to 4.56 for the risk averse grower and 5.00 for the risk neutral grower. This is 
consistent with Scenario 7 but exhibits a larger decrease in the number of applications. Under this profile more 
applications of chemicals control better yield damage but also increase chemical residue. It is clear from the 
above scenarios that the likelihood and magnitude of change will depend on various factors including the shape 
of the yield and damage functions. 

5. Conclusion 

Many forces affect a grower’s chemical input usage during the hop production season and marketing process. 
This paper focuses on how pesticide residue and yield risk affect a hop grower’s chemical input decision. 
Intuitively, it is likely that a grower/exporter uses less chemical inputs when he or she is facing more stringent 
tolerance limits on pesticide residue (i.e., MRLs). But other tradeoffs exist. Consequently, an expected utility 
model with risk preferences is specified and simulated to identify grower tradeoffs between yield risk and 
uncertainty in pesticide residue with MRLs. The empirical model illustrates hop production and exports in the 
Pacific Northwest.  

Model results provide several important observations worth discussing. First, all else equal, a binding MRL tend 
to decrease chemical applications. Second, all else equal, increasing the variance associated with the pesticide 
residue (more uncertainty) further decreases the number of chemical applications. However, there is an important 
balancing act for the grower. As demonstrated above, the riskiness of yield and variance of the pesticide residue 
tradeoff with one another providing and interesting but not clear cut outcomes to guide chemical use. Finally, in 
circumstances where reductions in chemical applications are optimal, there is an opportunity for integrated pest 
management strategies or, alternatively, greater use of other pesticides not subject to MRL restrictions.  

The model and empirical results are hypothetical and not a definitive study of MRLs in agricultural production. 
Nevertheless they provide an initial assessment of the situation in hop production and interesting insights to 
growers’ decisions and the consequences of these decisions. Because of limited data we simulate scenarios with 
average chemical costs and stylized damages. We focused only on yield damage in the present analysis, but 
reductions in crop quality also impact decisions on pesticide use. Quality defects due to pests may be equally 
important to yield depression in some instances. However, damage functions for quality defects are difficult to 
assess and may interact with customer demand (Zadoks, 1985). As a result our findings are general observations, 
as opposed to specific recommendations. Future research should include gathering more extensive data on yield 
and quality damage, and the relationship between pesticide use and resultant residue levels.  Moreover, it 
should examine the issue of ambiguity loss as well as risk aversion. 
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Notes 

Note 1. For example, hops have historically been purchased using multi-year forward production contracts. Only 
a small share of the hops produced targets the spot market. On average, over 90% of the crop has been contracted 
in advance of harvest where hop’s price and purchase quantity are “locked in” at the time the contract is issued. 

Note 2. In general, hop’s descriptive quality attributes include hop cone’s color, size, moisture etc. In the current 
paper we are interested in the quality issues related to pesticide residue, which we assume can be tested and 
determined by the hop merchant.  

Note 3. Personal communications with hop growers in the Pacific Northwest indicate that growers often have 
side agreements with other growers by which they purchase hops to fulfill contracts in deficit events. Hence, we 
assume for convenience that the contact size is met with a lower net price.  
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Note 4. The majority of hop farms are located in Washington’s Yakima Valley. In 2008 for example, Washington 
State produced 12381 hectares of hops, which made up about 75% of the US commercial hop’s production. 
Behind Washington was Oregon with 2578 hectares and Idaho with 1592 hectares which make up around 15.5% 
and 9.5% of the US commercial hop production respectively.  
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