
Journal of Agricultural Science; Vol. 7, No. 3; 2015 
ISSN 1916-9752 E-ISSN 1916-9760 

Published by Canadian Center of Science and Education 

179 

Optimal Nitrogen Management Enhanced External Chemical Nitrogen 
Fertilizer Recovery and Minimized Losses in Soil-Tomato System 

Huimin Jiang1,2, Jianfeng Zhang1,2 & Juncheng Yang1,2 
1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, P. R. 
China 
2 National Engineering Laboratory for Improving Quality of Arable Land, Beijing, P. R. China 

Correspondence: Juncheng Yang, Institute of Agricultural Resources and Regional Planning, Chinese Academy 
of Agricultural Sciences, P. R. China. Tel: 86-10-8210-6203. E-mail: yangjuncheng@caas.cn 

 

Received: December 20, 2014   Accepted: January 16, 2015   Online Published: February 15, 2015 

doi:10.5539/jas.v7n3p179          URL: http://dx.doi.org/10.5539/jas.v7n3p179 

 

Abstract 

Excess chemical nitrogen (N) fertilization is widespread in intensive greenhouse vegetable production in China 
and has resulted in low recovery efficiency and high losses of chemical N fertilizer. Understanding the fate of 
chemical N fertilizer is crucial for best management of chemical N fertilizer. Using the technique of stable 
isotope 15N-labeled urea, a micro-plot experiment was conducted to estimate the recovery of 15N-labeled urea in 
tomato, residues in soil and losses in soil-tomato system. The treatments included the conventional N 
management with chemical N rate (1000 kg N/ha), named FP and optimal N management with chemical N rate 
(500 kg N/ha), combined with maize straw and drip irrigation, named OPT. Compared with the FP, total dry 
matter yield increased by 6.5%–9.3% for the OPT in the autumn-winter season (AW) and winter-spring seasons 
(WS), respectively. There was a significantly higher recovery efficiency (20.7%) of 15N-labeled urea in the OPT 
compared to the FP (11.3%; P < 0.05). The amount of residual NO3

--N derived from 15N-labeled urea was 
significantly higher in the FP than in the OPT (P < 0.05). More inorganic N derived from 15N-labeled urea was 
incorporated into the stable fraction of organic matter in the OPT and had a positive effect on reducing the N 
leaching with increased time during the season. The loss rate of N derived from 15N-labeled urea was 46.8% in 
the FP, 25.8% greater than in the OPT. Optimal N management improved tomato yields, enhanced chemical N 
recovery efficiency, while minimizing losses in the soil-tomato system. It will be practical for maintaining the 
sustainability of greenhouse-based intensive vegetable systems. 

Keywords: 15N-labeled urea, greenhouse vegetable production, soil NO3
--N accumulation, N recovery efficiency 

1. Introduction 

Greenhouse vegetable production plays an important role in China with 3.5 million hectares under greenhouse 
vegetables and this hectare increases annually by 10% (Guo et al., 2012). In Shouguang, Shandong Province, one 
of the most important vegetable production areas, more than 65.0% of the arable land is used for intensive 
greenhouse production (Song et al., 2009).  

High chemical N fertilization is a common practice by farmers in the management method of greenhouse 
vegetable production to ensure high yields. Seasonal average N input by chemical fertilizer increased during 
1994–2004 from 817 to 1178 kg N/ha in Shouguang (He, 2006), which was 3–5 times more than vegetables 
required (Song et al., 2012). Consequently, the recovery efficiency of chemical N fertilizer is typically < 15%; 
for example only 10% of applied N was taken up by vegetables (Chen et al., 2004; Du, 2005), indicating that 
most applied chemical fertilizer was either washed out of the root zone or lost to the atmosphere and 
groundwater by different pathways (Min et al., 2011). 

Currently, furrow irrigation is dominant in major greenhouse vegetable production areas in China. Cumulative 
irrigation water ranged from to 748 to 1957 mm annually, with an of average 1307 mm in Shouguang, which was 
far more than crop needs or soil water-holding capacity (Song, 2007). Appropriate irrigation management is 
essential for maximizing crop yield, fertilizer and water use efficiency for vegetable production. Drip irrigation 
combined with optimized fertilization could accurately control the timing and amount of irrigation and reduce 
fertilizer losses (Tanaskovik et al., 2011; Fan et al., 2014).  
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Soil organic matter is one of the important components of soil, and has a significant role in greenhouse vegetable 
production. It is widely believed that below 20 g/kg soil organic carbon (C) will decline soil quality (Loveland & 
Webb, 2003). Lei et al. (2010) showed that soil organic C was only 11.4 g/kg in intensively used vegetable 
greenhouses in North China. Intensive use, high temperature and humidity accelerated the mineralization of soil 
organic matter, preventing necessary accumulation (Grandy & Robertson, 2007). Application of plant residues 
with a high C:N ratio (e.g. maize straw) may counterbalance the effects of mineralization. However, drip 
irrigation combined with maize straw method has seldom been studied in intensive production systems for 
greenhouse vegetables.  

To achieve sustainable vegetable production and environmentally safe agriculture, a consecutive three-year field 
experiment was conducted to determine optimal chemical N management method in an intensive greenhouse 
vegetable system in Shouguang. Different N fertilizer management methods were incorporated into the study and 
compared with the local farmers’ conventional management. Combined with the analysis of agricultural, fertility 
and environment effects, the results demonstrated that 50% of the conventional chemical N rate, combined with 
maize straw and drip irrigation, was the optimal N chemical management method (Jiang et al., 2012, 2013). 
However, there is limited information concerning the total recovery of applied chemical N fertilizer in the 
soil-tomato system and the residual effect of chemical N fertilizer on tomatoes during subsequent growing 
seasons in greenhouses. Thus, the main objectives of the present study are to (1) quantify the proportion of 
15N-labeled urea taken up by the different parts of tomato; (2) provide information on recovery of 15N-labeled 
urea in the soil-tomato system; and (3) evaluate the availability of residual 15N-labeled urea to the subsequent 
crop. The results would also show why the optimal chemical N management could achieve sustainable vegetable 
production and environmentally safe agriculture. 

2. Materials and Methods 

2.1 Experimental Site 
A micro-plot experiment was conducted from September 2009 to July 2010 in Daotian (36°49′57.7″N, 
118°54′58.9″E, a town in Shouguang, Shandong Province, China) – a representative region of intensive 
greenhouse production. The mean annual evapotranspiration is 1345.7 mm and the annual precipitation is 550 
mm. The frost-free period is 200 d. The internal temperatures of greenhouses used for vegetable production are in 
the range of 12–45 °C annually, with a mean of 25 °C. The soil texture is 36.0% sand (2–0.05 mm), 61.0% silt 
(0.05–0.002 mm) and 3.0% clay (< 0.002 mm) (Song et al., 2009). The region is characterized as coastal alluvial 
plain, and the elevation does not exceed 50 m. There is no obvious soil acidification.  

2.2 Experimental Design 

Treatments consisted of two successive growing seasons, for the autumn-winter (AW) season, transplanting 
occurred in September and the final harvest was in February of the following year. For the winter-spring (WS) 
season, transplanting was in March and the final harvest in July of the same year. The greenhouse used in the 
present study had been used for vegetable cultivation for eight years before the field experiment site was 
established. The soil fertility was at the mid- to high-yield levels with a high fertilizer application rate (Lu, 2000). 
Soil organic matter and total N concentration in the 0–20 cm soil profile were 14.0 and 1.35 g/kg, respectively. 
Other soil chemical properties were as shown in Table 1.  

 

Table 1. Chemical and physical properties in 0–20 cm soil layer 

Organic matter (g/kg) Total N (g/kg) NO3-N (mg/kg) Olsen-P (mg/kg) Available K (mg/kg) pH 

14.0 1.35 73.3 138.5 584.4 7.7 

 

There were two treatments, with three replicates each, laid out in a completely randomized design. The two 
treatments were as follows: 100% of conventional chemical N rate (FP, 1000 kg N/ha) and 50% of FP combined 
with maize straw and drip irrigation (OPT). A survey to N management practices in the greenhouse-based 
vegetable production system of Shouguang was conducted in 127 farms in July 2007 (Figure 1). Based on the 
results of the survey, local farmers’ conventional fertilizer rates were established (Table 2). Optimal N 
management method was determined using a consecutive three-year field experiment (Jiang et al., 2012, 2013). 
The 15N-labeled micro-plot area (made of corrosion resistant plate of 100 cm length, 75 cm width and 110 cm 
height) was 0.75 m2. Micro-plots were pushed into the soil in early August 2009. About 10 cm of each 
micro-plot was left above the soil surface to prevent soil runoff entering the micro-plot. The planting pattern in 
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the greenhouse vegetable cropping system involved an initial transplantation of tomato, Solanum lycopersicum 
cv. Haoweisite, one of the primary cultivars in the local area. The distance between rows was 70 cm and the 
distance between plants was 40 cm. 

 

 
Figure 1. Variability of local farmers’ conventional rates for application of chemical fertilizer and organic 

fertilizer. The boundary of the box closest to zero indicates the 25th percentile; the solid line within the box 
indicates the median; the broken line indicates the mean; the boundary of the box farthest from zero indicates the 

75th percentile; error bars above and below the box indicate the 90th and 10th percentiles, respectively; and 
bullet points indicate the outliers 

 

Table 2. Fertilization ratesa) in the micro-plot during the AW and W seasons 

Code Treatment 
Chemical fertilization Organic fertilization Total fertilization 

N P2O5 K2O N P2O5 K2O N P2O5 K2O 

  ---- kg/ha season–1 ---- ------------------------ kg/ha y–1 ------------------------

FP 100% of conventional 
chemical N rate  

1000 800 1000 1200 976 1001 3200 2576 3001

OPT 50% of FP + maize straw 
+ drip irrigation  

500 800 1000 1200 976 1001 2200 2576 3001

Note. a) Chemical fertilization was applied in both AW and WS seasons and organic fertilization was only in the 
AW season.  

 

The fertilizer application was as follows in the AW season: 40% chemical N fertilizer (15N-labeled urea 
containing 46% N, abundance 10.3%, produced by the Institute of Chemical Industry in Shanghai, China), 100% 
chemical P fertilizer (calcium superphosphate containing 12% P2O5), 40% chemical K fertilizer (potassium 
sulfate containing 60% K2O) and 100% organic fertilizer (commercial organic fertilizer containing 1.86% N, 
3.11% P2O5 and 0.85% K2O) were applied for the basal dressing. The other 60% chemical N and chemical K 
fertilizers were applied as top-dressing. Thereafter, based on physiological needs and plant growth, four 
additional chemical fertilizers were applied during flowering and fruiting stages. Dry maize straw (0.98% N, 
0.625 P2O5, 1.05% K2O and C:N of 49) was cut to lengths of 1.5 cm and applied at 7500 kg/ha as a basal 
dressing in the OPT treatment. During the WS season in 2010, the basal fertilizer of chemical N fertilizer (no 
15N-labeled urea containing 46% N) and chemical K fertilizer (potassium sulfate containing 60% K2O) 
accounted for 20% of total fertilizer application, and chemical P fertilizer (calcium superphosphate containing 12 
% P2O5) accounted for 100%. The other 80% of N and K fertilizers were applied during flowering and fruiting 
stages.  

Each treatment plot was irrigated separately. Furrow irrigation was used in the FP treatment. The drip system of 
the OPT treatment consisted of polyethylene laterals of 12 mm in diameter, laid parallel to the crop row with 
each lateral serving one row of crop. In the AW season, irrigation was applied a total of eight times, applying 
626 and 410 mm in the FP and OPT treatments, respectively; correspondingly, in the WS season, irrigation was 
applied nine times, applying 728 and 520 mm. 



www.ccsenet.org/jas Journal of Agricultural Science Vol. 7, No. 3; 2015 

182 

2.3 Soil and Plant Sampling 

Five soil core samples were collected from each micro-plot after harvesting and combined to give composite 
samples, sectioned into 0–20, 20–40, 40–60, 60–80 and 80–100 cm depth increments. Each soil sample was then 
separated into two subsamples. One was air dried and stored at room temperature prior to the determination of 
total N and 15N enrichment. The other part was used to determine moisture content and sealed, stored at 4 °C and 
analyzed for the content of soil mineral N and mineral 15N enrichment.  

In each growing season there were 7–11 harvests. Plant shoot and fruit samples were taken from each micro-plot 
on each harvest date for determination of fresh and dry weights. All samples from the same plot were broken up 
and mixed for total N determination. To simulate commercial practice, the plants were pulled from the soil at the 
final harvest and some roots remained in the soil. Plant samples were taken from each plot after harvesting, 
chopped, mixed and weighed before and after drying at 75 °C for 48 h.  

2.4 Chemical Analysis and Methods 

Soil and water were mixed at a ratio of 1:2.5 and a glass electrode was used to measure soil pH (Lu, 2000). 
Analyses of available nutrients in the soil included measurements for soil available P (Olsen et al., 1954), and K 
(Pratt, 1951). Fresh soil samples were extracted with 100 ml of 2 M KCl for 1 h in a 1:5 (w/v) ratio, and then the 
extract was distilled to include both NH4

+-N and NO3
–-N as total mineral N (Ju et al., 2002). The total N content 

of soil and plants were determined using the Kjeldahl determination method (Bao, 2000). The 15N abundance in 
soil and plant samples was measured by a modified ZHT-03 mass spectrometer at 0.1% accuracy (Schindler & 
Knighton, 1999). 

2.5 Ammonia Volatilization 

An instrument was designed to collect NH3 volatilized from the soil surface during the AW season in 2009. Two 
pieces of sponge were immersed in 15 ml of glycerol phosphoric acid (50 ml of phosphoric acid and 40 ml of 
glycerol) before installation in a PVC cylinder 15 cm in diameter and 10 cm high (Figure 2). The base of the 
cylinder was inserted 1 cm into the soil. The lower sponge absorbed NH3 volatilized from the soil surface in the 
cylinder and the upper sponge absorbed NH3 from outside the cylinder and prevented its absorption by the lower 
sponge. The instrument was installed immediately after fertilizer application or irrigation. The lower sponge was 
replaced with new one after 24 h and the upper sponge was changed every 3 days. The sponges were taken to the 
laboratory and extracted with 300 ml of 1 M KCl for 30 min. About 500 ml of equilibrium liquid was sampled 
and stored frozen before analysis (Wang et al., 2004). 

 

 
Figure 2. Sketch of ammonia absorption equipment in 15N-labeled urea micro-plot 

 

2.6 Calculation and Statistical Analysis 

The principal method of analysis of stable isotopes is mass spectrometry. Abundance, also called natural 
abundance, of an element is the percentage of the number of atoms in the stable nuclide divided by the total 
number of atoms of the element. The difference between the abundance of the stable nuclide and the natural 
abundance is the atom percent excess of the element, which is also called enrichment (Zhang et al., 2012).  

The percentages of plant N derived from fertilizer and soil were calculated by the following equations (Malhi et 
al., 2004):  

 
Sponge 
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Sponge 2 cm 

4 cm 
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%Ndff = (atom% 15N excess of total N in plant)/(atom% 15N excess of total N in fertilizer) × 100 (1) 

%Ndfs = 100 - %Ndff                                 (2) 

Ndff (kg/ha) = %Ndff × TN                               (3) 

Ndfs (kg/ha) = TN - Ndff                                (4) 

Where %Ndff is the percentage of total N in fruit or shoot derived from the 15N-labeled urea, and the weighted 
mean was calculated to determine %Ndff in the whole plant. Where atom% 15N excess of total N in plant = 
(atom% 15N excess of total N in plant of fertilized plot) - (atom% 15N excess of total N in plant in unlabeled 
fertilizer plot), and atom% 15N excess of total N in fertilizer = (atom% 15N abundance of fertilizer) - (atom% 15N 
abundance of atmosphere (0.37%)). %Ndfs is the percentage of N from soil. We calculated the total N in the 
plant tissue derived from the 15N-labeled urea, Ndff (kg/ha); and the total N in the plant tissue derived from the 
soil, Ndfs (kg/ha). TN is the total N of 15N-labeled urea taken up in the plant part, kg/ha.  

The percentage of recovery of 15N-labeled urea in the plant parts or remaining in the soil at the end of crop 
growing season by the isotopic method was calculated using Equation 5 (Bronson et al., 2000):  

REN(%) = (TN×%Ndff)/F × 100                           (5) 

Where REN is recovery efficiency of applied 15N-labeled urea in plant or remaining in the soil N pool and F is 
the rate of 15N-labeled urea applied (kg/ha). 

The ammonia volatilization rate was calculated using Equation 6 (Xu et al., 2013): 

RAV = M/(A×D) × 10-2                               (6) 

Where RAV is the ammonia volatilization rate (kg N/(ha d)), M is the amount of ammonia N collected by the 
PVC collector (in mg), A is the cross-sectional area of the PVC collector (in m2) and D is the interval for 
ammonia volatilization sample collection (in days). 

The results were subjected to analysis of variance (ANOVA) to determine whether the differences among data 
were significant (means ± standard errors, n = 3). The analysis was performed using SAS 8.0 for Windows 
software package (SAS Inc., 1999). The least significant difference (LSD) was used to determine differences 
between individual treatments. All tests were conducted at a significance level of P < 0.05. Graphics were 
prepared using the Origin 8.0 and SigmaPlot 10.0 software programs. 

3. Results 

3.1 Crop Dry Matter and N Uptake from 15N-Labeled Urea by Different Parts of Tomato  
The higher chemical N fertilizer rate (FP) did not produce higher total dry matter yields (fruit + shoot). On the 
contrary, compared with the FP treatment, reducing 50% chemical N fertilizer, combined with maize straw and 
drip irrigation, (i.e. OPT treatment), increased total dry matter by 6.5 and 9.3% in the AW and WS seasons, 
respectively (Table 3). 

Plants take up N mainly from fertilizer N and soil N. The N uptake from fertilizer N and soil N by tomato was 
415.9 and 312.2 kg/ha in the FP treatment for the AW and WS seasons, respectively, and correspondingly 445.5 
and 331.3 kg/ha in the OPT treatment. The results showed that more fertilizer N and soil N was taken up by 
tomato in the OPT than the FP treatment. The trace technique of using 15N-labeled urea can be used to follow the 
sources of N uptake by a crop. In the AW season, for the conventional application rate of 1000 kg/ha (FP), the 
percentage of total N uptake derived from the 15N-labeled urea in tomato tissue was 23.1%, and so the 
percentage of N from soil N was 76.9%. For the lower N application of OPT, the percentage of total N uptake 
derived from 15N-labeled urea in tomato tissue dropped to 19.3%, and so the percentage derived from soil N 
reached 80.7%. Similarly, > 75% of total N in the tomato was obtained from the soil N pool. Compared with the 
AW season, the percentage of total N uptake derived from 15N-labeled urea was significantly lower in the WS 
season (P < 0.05). With the higher N application (i.e. FP treatment), the N uptake from urea by tomato in the 
OPT treatment dropped 10.2% in the AW season, but increased 6.0% in the WS season. The result indicated that 
more fertilizer N was utilized in the OPT treatment with the increased period of cultivation.  

According to the N distribution pattern in different parts of tomato (Table 3), the N uptake was higher by tomato 
shoots than by fruit. In the FP treatment, 64.8% and 56.3% of total fertilizer N was taken up by shoots in AW 
and WS seasons, respectively; and correspondingly in the OPT treatment, 64.3% and 57.1%. There was no 
significant difference between the FP and OPT treatments. 
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Table 3. N uptake of 15N-labeled urea by tomato 

Tomato Treatment 

Dry matter (kg/ha) N uptake (kg/ha) Ndff (kg/ha)  Ndfs (kg/ha) 

AW 
season 

WS 
season 

AW 
season 

WS 
season 

AW 
season 

WS 
season 

 AW 
season 

WS 
season 

Fruit FP 6867.7a 5803.6 a 146.4a  124.5 a 40.8a  7.3 a  105.6 a 117.2 a 

OPT 7151.4a 5989.8 a 158.9a 123.6 a 37.7a 7.6 a  121.2 a 117.0 a 

Shoot FP 8390.9a 8033.5 a 269.5a 187.7 a 55.2a 9.4 a  214.3 a 178.3 a 

OPT 9061.2a 9136.4 a 286.6a 207.6 a 48.5a 10.1 a  238.1 a 197.5 a 

Total 

biomass 

FP 15258.7a 13837.1 a 415.9a 312.2 a 96.0a 16.7 a  319.9 a 295.5 a 

OPT 16212.6a 15126.2 a 445.5a 331.3 a 86.2a 17.7 a  359.3 a 314.5 a 

Note. Figures followed by the same letter within a column for the same parts of tomato are not significantly 
different (P < 0.05) based on one-way ANOVA. 

 

3.2 Recovery of 15N-Labeled Urea in a Soil-Tomato System  

In the AW season, the recovery efficiency of 15N-labeled urea in tomato was 9.6% in the FP treatment (Table 4). 
The recovery efficiency of 15N-labeled urea remaining in the 0–100 cm soil profile was 58.0%. A total 676.2 
kg/ha of N remained in plant and soil, and the N recovery efficiency in the soil-tomato system was 67.6%. The 
15N not accounted for in the plant and soil was presumably lost, giving a loss rate of 15N-labeled urea of 32.4%. 
The amount of N recovered in the soil-tomato system decreased but the recovery efficiency increased when less 
chemical N fertilizer was used in the tomato field. When chemical N fertilizer application was reduced to 500 
kg/ha (OPT), N uptake by plants was also down to 86.2 kg/ha, but the recovery efficiency was slightly higher at 
17.2%. In the 0–100 cm soil profile, the residual N content was 372.6 kg/ha representing a recovery efficiency of 
74.6%. The total plant and soil N recovery was 459.0 kg/ha, total N recovery efficiency was 91.8% and N loss 
rate was 8.2%. In the WS season, the recovery efficiency in the soil-tomato system was significantly lower than 
in the AW season (P < 0.05). The N recovery efficiency was 11.2% and 37.4% in the FP and OPT treatments, 
respectively. There were higher N recovery efficiencies in tomato and soil in the OPT treatment, with 
accumulative recovery efficiency of applied 15N-labeled urea in tomato in both seasons of 11.3% (FP) and 20.7% 
(OPT). Of all the 15N-labeled urea absorbed by the tomato, 85.2% (FP) and 83.0% (OPT) accumulated in the 
AW season. After the two seasons, 9.6% and 33.8% of 15N-labeled urea remained in the 0–100 cm soil profile 
under the FP and OPT treatments, respectively; and the corresponding N loss rates of applied 15N-labeled urea 
were 79.2% and 45.4%. More 15N-labeled urea remained in the soil and there was a lower N loss rate in the OPT 
than in the FP treatment.  

 

Table 4. Recovery and loss of 15N-labeled urea in soil-tomato system at harvest time 

Season Treatment 

Recovery of 
15N in tomato 

(%) 

Residual soil 
15N (0-100 cm) 

(kg/ha) 

Residual 

soil 15N 

(%) 

Recovery of 15N 

in tomato and 

soil (kg/ha) 

Recovery rate 

in tomato and 

soil (%) 

N lost 

(kg/ha) 

N loss rate 

(%) 

AW 

season 

FP 9.6b 580.2a 58.0b 676.2a 67.6b 323.8a 32.4a 

OPT 17.2a 372.8b 74.6a 459.0b 91.8a 41.0b 8.2b 

WS 

season 

FP 1.7 b 95.6b 9.6b 112.3b 11.2b 467.9a 46.8a 

OPT 3.5 a 169.2a 33.8a 186.8a 37.4a 186.0b 37.2b 

Note. Figures followed by the same letter within a column for the same parts of tomato are not significantly 
different (P < 0.05) based on one-way ANOVA. 

 

3.3 Profile Distribution of the 15N-Labeled Urea Residue in Soil 

A major proportion of the residual 15N-labeled urea was enriched in the top 0–40 cm layer, and the N residue 
content was low in the deeper layers of soil in the AW season (Figure 3a). The surface 0–40 cm of soil contained 
76.4% of the total residual N in the soil under the conventional 1000 kg/ha fertilizer level. At the 500 kg/ha 
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fertilizer level, the 0–40 cm top layer of soil contained 86.9% of the total soil residual N. There was less 
accumulation of 15N-labeled urea down to 40 cm in the OPT compared to the FP treatment. There were different 
trends in distribution of the 15N-labeled urea residue in soil in the WS compared to the AW season. A major 
proportion of the residual 15N-labeled urea was enriched in the top 40–100 cm surface layer in the FP treatment, 
containing 66.0% of the total residual N in soil – thus the leaching risk was increased (Figure 3b). In contrast, 
15N-labeled urea distributed in the 0–40 cm of the soil profile was significantly higher and the N residue content 
lower in the deeper layers of soil in the OPT compared to the FP treatment (P < 0.05). 

 

 
Figure 3. Distribution of 15N-labeled urea residual in the soil profile (0–100 cm) for different treatments  

Note. (a): AW season, (b): WS season. 

 

NO3
--N was the dominant form of soil mineral N derived from 15N-labeled urea, and NO3

--N content decreased 
with increasing soil depth in the AW season (Figure 4a). The content of NO3

--N accounted for 92.5% and 91.2% 
of the total soil residual N in the FP and OPT treatments, respectively. Application of the lesser amount of 
chemical N fertilizer, combined with maize straw and drip irrigation, resulted in markedly less NO3

--N 
accumulation in the same soil profile compared with the FP treatment (P < 0.05). The NO3

--N accumulation was 
mainly distributed throughout the 0–40 cm soil profile. The percentages of NO3

--N accumulated were 75.8% and 
81.9% in the FP and OPT treatments, respectively. In the WS season (Figure 4b), NO3

--N was also the dominant 
form of soil mineral N derived from 15N-labeled urea in the FP treatment, accounting for 67.2%; however, in the 
OPT treatment, soil organic N was the dominant form and accounted for 75.9%. 

 

 
Figure 4. Distribution of 15N-labeled urea NO3

--N in the soil profile (0–100 cm) for different treatments 

Note. (a): AW season, (b): WS season. 
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3.4 Ammonia Volatilization Derived from 15N-Labeled Urea 

The temporal variations in the ammonia volatilization derived from 15N-labeled urea in the AW season are shown 
in Figure 5. A similar pattern in the FP and the OPT treatment showed that the ammonia volatilization fluxes 
reached maxima on the second day after each N fertilizer application in basal dressing, followed by a rapid 
decline. However, ammonia volatilization fluxes reached maxima on the third day after each N fertilizer 
application in top-dressing, followed by a rapid decline. Most of the ammonia volatilization occurred during the 
first 5 d after N fertilizer application.  

The maximum fluxes were recorded at 0.4, 0.3, 0.2, 0.2 and 0.3 N kg/(ha·d) in the FP treatment after basal 
dressing and top-dressing, respectively. The significantly lower ammonia volatilization from the OPT treatment 
was largely due to the lower fertilizer N inputs during these periods (relative to the FP treatment) (P<0.05). The 
total 15N-labeled urea loss through ammonia volatilization from the FP treatment was 2.9 N kg/(ha·d) during the 
whole growing season, which accounted for 0.3% of total 15N-labeled urea applied to the greenhouse vegetable 
field. The total 15N-labeled urea loss through ammonia volatilization from the OPT treatment was 1.0 N kg/(ha·d) 
during the whole growing season, which accounted for 0.2% of total 15N-labeled urea input into the greenhouse 
vegetable field. Because ammonia volatilization was small during the AW season, it was not measured in the WS 
season. 

 

 
Figure 5. Effects of different N treatments on rate of ammonia volatilization 
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4. Discussion 

4.1 Effect of Different N Fertilizer Treatments on Recovery Efficiency of 15N-Labeled Urea in the AW Season 
Our results showed that the majority of N fertilizer applied was not used by the tomato during the growing 
season. The recovery efficiency of 15N-labeled urea by tomatoes was only 9.6% in the FP treatment, indicating 
that 90.4% of the N fertilizer applied was not recovered in the tomato (including fruit and shoot) during the AW 
season. Similar result was obtained by Han et al. (2010), which < 10% of the applied inorganic N fertilizer is 
actually used for vegetable production. It meant that the recovery of crop were extremely low and extremely 
inefficient, when a crop recovery was only 11% (Zhu et al., 2005).  

The recoveries of N fertilizer by crops are prone to be highly variable, and are affected by different management 
practices. In the present study, OPT treatment improved the recovery efficiency of 15N-labeled urea in tomato to 
17.2% compared to 9.6% in the FP treatment in the AW season. Some reports also obtained similar results, for 
example, conventional (2100 kg/ha) and optimum N treatment (900 kg/ha) during cucumber growth in a 
greenhouse resulted in N recovery efficiencies of 4.9% and 10.6%, respectively (Yang et al., 2013). Recovery 
efficiencies of N fertilizer were in the range of 5.1%–44.0% with use of different management practices in red 
soil in South China (Cai et al., 1995), implying that the fertilizer combination had significant effects on 
recoveries of N fertilizer. Drip irrigation with optimized N fertilization had a positive impact on increasing the N 
recovery efficiency, which may have been due to better water utilization, higher uptake of nutrients (Bafna et al., 
1993; Hebbar et al., 2004) and excellent soil-water-air relationships with higher oxygen concentrations in the 
root zone (Gomat et al., 1973). Another possible reason was the combination of maize straw. Huo et al. (2005) 

reported that the combination of inorganic N and wheat residues improved N fertilizer use efficiency of summer 
maize, suggested that reasonable accommodating the application proportion of C and N nutrition in soil by 
application maize straw could increase residual rate of chemical N fertilizer in soil and advance N use efficiency 
of crop.  

4.2 The Residual Effect of 15N-Labeled Urea on Subsequent Crops 

Despite a considerable amount of 15N-labeled urea still remaining in the 0–100 cm soil profile, crop recovery of 
N fertilizer (applied as 15N-labeled urea in the AW season) by the subsequent crop was < 5.0% of the initial 
amount applied. The recovery efficiency of 15N-labeled urea by tomato in WS season was 1.7% and 3.5% in the 
FP and OPT treatments, respectively, equivalent to 17.7% and 20.3% of corresponding values in the AW season. 
As expected, most of the N fertilizer recoveries was in the AW season, and decreased in the subsequent growing 
season. This suggested that the re-utilization of residual N in the soil was very limited. Our results were in 
agreement with reports that the recovery of 15N-labeled urea in millet was 3.0% for maize in a maize–millet 
rotation (Pilbeam et al., 2002), while the recovery of residual urea-ammonium nitrate-15N in maize for three 
subsequent growing seasons in a continuous maize system were in the range of 1.7%–3.5% (Timmons & Cruse, 
1991). The low recovery of residual N by subsequent crops might be, in part, due to a large amount of fertilizer 
N preventing the use of N present naturally in soil. Residual N fertilizer was composed of ammonium, nitrate, 
soil microbe biomass and N-containing metabolites, with a considerable proportion of these being transformed 
into more stable soil pools (Jensen et al., 1997). Additionally, the content of N in irrigation water should not be 
overlooked. The NO3

--N concentrations of irrigation water were uniformly > 10 mg/L, the acceptable standard 
level for drinking water. The average value of NO3

–-N concentration was 29.6 mg/L. The N fertilizer of 120.4 
kg/ha was added to soil followed by irrigation water in the whole season. Compared with FP treatment, there 
was more residual uptake of 15N-labeled urea by subsequent crops in the OPT treatment. Malhi et al. (2011) also 
suggested that the retention of straw combined with inorganic N fertilizer could increase N uptake efficiency by 
subsequent crops. Choi et al. (2004) found that the combined application of inorganic N and straw could result in 
N immobilization during early stages, and the nutrients may be released later when the nutrient demands of 
plants are higher (Herai et al., 2006).  

4.3 Accumulation and Loss of 15N-Labeled Urea 

Of the applied 15N-labeled urea, 580.0 and 372.8 kg N/ha remained in the 0–100 cm soil profile at harvest in the 
AW season under the FP and OPT treatments, respectively. We found that the residual 15N-labeled urea in soil 
was largely present as NO3

--N and accounted for 92.5% and 91.3% in the FP and OPT treatments, respectively. 
This was in agreement with the result of Broadbent (1980), who suggested that residual N fertilizer mainly 
remained as inorganic N in the first season. The significantly (P < 0.05) higher NO3

--N accumulated down to 40 
cm in the FP (129.8 kg N/ha) compared to the OPT treatment with 61.4 kg N/ha, where it cannot be easily 
absorbed by the crop. In the WS season, NO3

--N was also the dominant form of soil mineral N derived from 
15N-labeled urea in the FP treatment: 67.2% NO3

--N had accumulated in the 0–100 cm profile and > 50% of 
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NO3
--N had accumulated down to 40 cm. Large amounts of residual NO3

--N increase the risk of N loss to the 
groundwater. Lin et al. (2011) showed that 70% of deep groundwater has been polluted by NO3

- in Shouguang, 
resulting from flood irrigation with excessive N application. Less N input could reduce NO3

- leaching (Min et al., 
2012). In the present study, N fertilizer applied in the OPT treatment was half of that in the FP treatment, and 
only 24.1% NO3

–-N had accumulated in the 0–100 cm soil profile. It has been demonstrated that inorganic 15N 
can be incorporated into the stable fraction of organic matter and has a positive effect on the reduction in NO3

- 

leaching (Ju et al., 2007; Kai et al., 1973). Generally, straw application increases soil organic matter content and 
soil buffer capacity (Luxhøi et al., 2007). Our result showed that soil C:N increased from 5.8 to 6.8 with straw 
incorporation, which might be useful in improving the soil environment for establishment of the microbial 
community. In addition, straw application was conductive to immobilize mineral N into the soil organic pool 
(Qiu et al., 2013). Thus, the reducing the conventional N fertilizer application by 50% and combining it with 
maize straw could significantly reduce the amount of NO3

--N in greenhouse vegetable production.  

High N losses occur with high rates of N application in greenhouse vegetables. In the present study, the loss rate 
of N derived from 15N-labeled urea was 46.8% in the FP treatment, an increase of 25.8% compared with the OPT 
treatment. Similar conclusion was made by Zhu et al. (2005), who evaluated the season N balance in a hot 
pepper cropping system and found that 52.0% of N applied as fertilizer was lost from the soil-plant system. N 
losses also occurred via gaseous N emissions; and ammonia volatilization is an important pathway for N loss 
from agricultural fields, which results in a reduction in N recovery efficiency and increase environmental 
pollution (Zhou et al., 2009). Our data suggested that N lost through ammonia volatilization derived from 
15N-labeled urea only accounted for 0.9% and 2.4% of the total N lost in FP and OPT treatments, respectively. 
This result agreed with that of Zhu et al. (2005), who found negligible ammonia volatilization from a vegetable 
field in northern China. Compared with FP treatment, ammonia volatilization was significantly lower in the OPT 
treatment. One possible reason might be the reduced N fertilization combined with drip irrigation. Li (2010) 
suggested that during the cucumber growing season, ammonia volatilization decreased by 22.1%–37.2% under 
conditions of reduced irrigation water and N fertilizer. Returning maize straw to the field is another possible 
reason. Su et al. (2014) reported that returning maize straw to the field resulted in a significant reduction in 
ammonia volatilization compared to without returning. The reduction of ammonia volatilization loss might be 
ascribed to straw decreasing the soil N availability. 

5. Conclusions 

As a result of intensive greenhouse vegetable production in northern China, the potential risk of chemical N 
over-applied is increasing apparent and is threatening ecosystem and the sustainability of food production. Thus, 
providing optimal chemical N management method to improve chemical N use efficiency, reduce the risk of 
excessive chemical N application and enhance cultivated land productivity will have a crucial effect on the 
developments of greenhouse vegetable. The results obtained in the present study revealed that in the fertile soils 
used for greenhouse vegetable production, chemical N fertilizer application could be reduced from the 
conventional rate of 1000 to 500 kg N/ha without loss of crop yields and significantly enhanced recovery 
efficiency of chemical N fertilizer and reduced chemical N losses to the environment, but should be combined 
with straw and drip irrigation. Considering the high chemical N use efficiency and the minimum environmental 
threat, we should fully take into account the optimization application by reducing chemical N inputs combined 
with adjustment of the C/N ratio and water-fertilizer coupling. These combined approaches represent a practical 
means for reducing excess N input while maintaining the sustainability of greenhouse-based intensive vegetable 
systems.  
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