
Journal of Agricultural Science; Vol. 7, No. 8; 2015 
ISSN 1916-9752 E-ISSN 1916-9760 

Published by Canadian Center of Science and Education 

175 

Controlled Humidification of Sweet Potato Stem-Cuttings in a 
Self-Sustaining Humidifier: Effects on Vigour, and Implications for 

Climate Change 

Mark Anglin Harris1
 

1 College of Natural & Applied Sciences, Northern Caribbean University, Mandeville, Jamaica 

Correspondence: Mark Anglin Harris, College of Natural & Applied Sciences, Northern Caribbean University, 
Mandeville, Jamaica. Tel: 1-876-864-1732. Fax: 1-876-962-0075. E-mail: mark.harris@ncu.edu.jm 

 

Received: September 17, 2014   Accepted: October 27, 2014   Online Published: July 15, 2015 

doi:10.5539/jas.v7n8p175          URL: http://dx.doi.org/10.5539/jas.v7n8p175 

 
Abstract 
Predictions of extreme weather associated with global warming signify potential extremes in soil water content, 
and extremes of soil water tension are inimical to early plant growth. Periderm tissue [cork cells], being 
waterproof, restricts root and stem waterlogging whilst the promotion of early roots better prepare stem cuttings 
for survival in dry soils. Sweet potato stem cuttings were stored for up to six days in a chamber humidifier. 
Humidification was achieved by evaporation up to saturation vapour pressure [SVP] in a closed system of 
capillary water evaporating from a fabric which enclosed the cuttings. Treatments included vine cuttings stored 
(1) under grass clippings (traditional treatment) and (2) inside a high humidity (100%) chamber. Root growth 
occurred on 90% of the cuttings in the root length sequence: 9-, 28-, 47 mm after 3, 6 and 9 days respectively in 
the 100% humidity chamber at an average ambient room temperature of 25 oC. Under traditional treatments, root 
growth occurred on only 10% of the cuttings and was 0.5-, 2-, and 3 mm after 3, 6 and 9 days respectively. 
Traditional treatment did not exhibit observable periderm (cork cells) growth at any stage of the study. Periderm 
thicknesses of 3-, 7-, and 9mm occurred on days 3, 6, and 9 for samples held at 100% humidity. No periderm 
was observed for the traditionally treated samples. For field trials, the most vigorous growth in a dry soil was 
observed for cuttings previously subjected to chamber humidification, an important asset when early season 
weed competition is evident and when rapid ground cover is important. In a broader perspective, these results 
can be used to optimize studies of other crops grown from cuttings.  
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Introduction  

1.1 Propagation Problems in Dry Soils 

A lack of roots in dry soils causes wilting and desiccation of vine cuttings, but an evenly moist soil provides the 
best environment for root initiation and development (Meyers et al., 2014). Yet, a strong, early rooting system 
with its wide, deep network speeds up plant development by greatly increasing the absorptive surface area in the 
soil, thereby enhancing the capability to withstand prolonged water stresses (Layne & Tomlinson, 1993). Rapid 
root growth by transplants is therefore necessary for survival in drought-prone locations. The main methods of 
propagation of sweet potato are (1) shoots developed from the vascular cambium and emerging through the 
cortex of the root, the shoots developing adventitious roots and becoming small plants attached to the seed root, 
and (2) vine cuttings which also produce adventitious roots. For propagating the sweet potato, vine cuttings are 
advantageous in that they do not transfer soil borne diseases and nematodes as do sprouts with roots (Yamaguchi, 
1983). In addition, in growing from vines, the entire tuber harvest can be saved for consumption or marketing. 
The use of sprouts has been discouraged as a general practice because yields are lower compared to those from 
vine cuttings (Ikemoto, 1971). 
1.2 Mechanism of Protection 

When a living plant is wounded, the plant produces waterproofing polyaromatic, polyphenolic, aliphatic domains 
and associated waxy material compounds (Ginzberg, 2008) known as suberin, that are deposited in the cell wall 
of the injured tissue. The corky layer so formed prevents microbial invasion especially as periderm tissue 
contains several anti-fungal constituents which block fungal invasion (Harrision et al., 2001) and water loss 
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(Jana, 1983) by water-proofing of the periderm (Schalk et al., 1986). Thus, cork is virtually impermeable to 
water (Audesirk & Audesirk, 2005; Cuthbert & Davis, 1971), providing biochemical and structural barriers 
against pathogen infection (Ginzberg, 2008). Morris et al. (1984) concluded that thickness of the desiccated cell 
layers was highly correlated with resistance to pathogens and infections. Using 19 sweet potato cultivars, Schalk 
et al. (1986) observed a strong positive correlation between periderm and phellem thickness and resistance to 
wireworm infection for several growth stages of 65 days and longer. The formation of periderm tissue therefore 
enhances the survival of transplants. Thus, even if roots are not initiated before transplanting, the sealing by the 
newly developed periderm layer increases the ease of root initiation after planting (Jana, 1983).  

Periderm growth ideally requires cool, shaded (but not hot and sunny) conditions (Jana, 1983). But when stored 
on the ground (turf or soil) for several days prior to transplanting, cuttings are vulnerable to soil insect infestation. 
Rapid acquisition of periderm tissue at the wounded sites while cuttings are stored off the ground may therefore 
enhance vine growth and survival, while escaping the threat of soil borne pathogens. But off-the-ground storage 
increases desiccation of vine cuttings because relative humidity varies inversely with height above ground level. 
Turgor pressure can be maintained with increased humidity because transpiration is reduced under such 
conditions (Tibbits & Gottenberg, 1976). In addition, Briske and Wilson (1978) showed that very high levels of 
atmospheric humidity dramatically accelerates the growth rate of adventitious roots. 

1.3 Significance of Sweet Potato 

Ipoema batatas (sweet potato) is ranked among the top five crops (yield tonnage) in the tropics (Harrison & 
Peterson, 2001). It is highly nutritious, high in vitamins A and D (Chada & Dakshinamurthy, 1965), and 
compared with other local root crops such as Dioscorea (yam), the root, and leaves in particular, contain 
relatively high levels of protein (Adewolu, 2008; Hognan et al., 2014; Winarno, 1983). Though sweet potato 
plants are hardy, yields are substantially reduced by low rainfall (Jones, 1961; McKeown, 2000), especially in 
the early growth stages (McKeown, 2000) and drier soils (and wetter soils) are included in predicted climatic 
fluctuations associated with global warming.  

1.4 Hypothesis 

To increase potential survival rates of transplanted sweet potato in dry soils, a study investigating the effects of 
two levels of humidity on periderm and/or root growth on cut vines was done. This was because Morris et al. 
(2004) found that optimum conditions were 25 ºC, and 98% relative humidity (RH), while citing temperature as 
the most important factor affecting deposition of lipid, lignin, and periderm formation. Based on the above 
information, it was hypothesized that the treatment of artificially maintaining a high relative humidity around 
vine cuttings of I. batatas away from direct contact with soil would produce periderm and/or root initiation more 
rapidly than would the traditional method. Therefore the effects of maintaining a high relative humidity in a 
closed system would be compared to those of ambient humidity in the traditional manner of ground storage. 
Furthermore, avoiding contact with the soil removes the risk of contamination with soil pathogens.  

2. Materials 

2.1 Area & Treatments 

This study was begun in November 2006 in Portland, northeastern Jamaica and completed in field plots at the 
campus of Northern Caribbean University, Mandeville Jamaica, in August 2013. The well-drained 
kaolinite-dominated red bauxite soils (Harris & Omoregie, 2007) of south-central Jamaica (Mandeville) provided 
the dry soil conditions required for field testing the vigour of stem cuttings after transplanting. There were fifty 
sweet potato stem cuttings per treatment of 30 cm in length. Each cutting contained approximately ten nodes. 
These were freshly cut from field plots and stored under the following conditions: 100% relative humidity (H1), 
or < 95% relative humidity (H2). For H1, the cuttings were incubated in a humidity chamber (section 2.2.1) 
which was stored indoors in the shade at mean ambient temperatures of average 25 ºC (± 5 ºC) for 9 days. The 
humidity was known to be 100% because a thick layer of condensation droplets appeared on the inside surface of 
the polythene covering within 12 hours. Despite temporary disturbances for observations, the condensation 
droplets persisted for the duration (9 days) of the study. The H2 samples were placed on the ground (soil) under a 
10-cm-thick cover of cut grass mulch, and were perpetually shaded from direct sunlight. Shading was 
accomplished by locating the samples under a large tree, the lower branches of which were no more than 2 m 
above ground level.  

2.1.1 Techniques 

The objective was to produce a system of self-sustained relative humidity of 100% around stem cuttings 
continuously for several days. A pore radius of 0.2 mm in a glass tube would raise water only 70 mm whereas 
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that of 10 µm would cause a 1.4 m rise, and 1 µm would give a maximum rise of about 15 m (Rank, 2010). 
However, due to the effects of evaporation, in practice the rise would be considerably lower (Hall & Hoff, 2007). 
Yet in a humidified chamber, evaporation is required initially for an increase in humidity, after which it must be 
reduced to achieve 100% relative humidity (RH). Hence there was a need to control the evaporation. Such a 
closed system of controlled humidity would operate according to the relationship: 

E = eh                                      (1) 

where the total evaporation E depends on the wetted height h and the evaporation rate e (per unit area) is 
established by the microenvironment (Hall & Hoff, 2007). The evaporation rate e must match the rate of 
capillary rise which decreases over time. Therefore, to achieve a steady-state in the system, a plastic polythene 
shroud of thickness .5 mm was used to cover and tightly seal the fabric (Figure 1) thereby reducing evaporation 
and water loss from the system. A permeable medium of suitable capillarity could rapidly attain and maintain 
saturation vapour pressure (SVP) while inside the chamber. To determine the most suitable material for such 
capillary transmission of water from the basin, equidimensional lengths of various fabrics and textures: nylon, 
closed-weave cotton cloth (1 mm-thick denim), open weave thick cotton cloth (1 mm-thick “terry cloth”), or 1 
mm- thick jute hemp were placed each in a water-filled narrow-diameter graduated cylinder and observed until 
the stabilization point for capillary rise was indicated and recorded. 

 

 
Figure 1. Humidifier showing condensed water vapour maintained for six days on the internal surface of the 

polyethylene covering. The water vapour was produced and maintained by capillary forces in a fabric soaked in a 
bucket of water at the base of the system and suspended on a hollow wire frame 

 

The fabric with the highest capillary rise and water content, and hence the most effective potential supplier of 
water vapour molecules was found to be the tightly woven “denim” cotton cloth (weighing approximately 650 g 
m2). This was due to its narrow pore columns and, possibly, its tortuosity, which reduces gravitational flow 
downwards, negative charge (polarity), and sufficient thickness.  

2.1.2 Humidity Measurements 

Humidity for the traditional treatments was determined using a hair tension dial hygrometer.  

2.1.3 Frame of Humidifier 

A closed chamber facilitated sustained humidity at SVP. This required a sufficiently large evaporative surface 
which enhanced capillarity. An enlarged evaporative surface area and a steady state height of water column were 
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maintained by a source of sufficient liquid water in a basin at the base of the gas-tight enclosure. 

A 120 cm long, 35 cm diameter cylindrical cage was made from 8 mm (1/4-inch) squared aperture wire netting 
(Figure 2). On each of five plastic-coated wire shelves were placed 10 stem cuttings of 30 cm length. Pre-wet 
denim cloth (above-mentioned) was wrapped around the wire frame and the whole system enclosed in a 0.5 mm 
thick polythene covering with a closed end at the top. The open end was placed over the wet cloth (Figure 1) 
supported by the netting and the whole assembly placed in a plastic bucket containing water. The cloth was 
submerged in the water up to a height of 15 cm. In terms of the transfer of matter, this was a closed system 
because the external polythene shield was to prevent the loss of water vapour. Heat loss was also reduced due to 
polyethylene’s opacity to far infra-red rays. This retained heat was to increase the rate of evaporation.  

2.3 Statistics 

The objective of the study was to compare the effects of one treatment against that of the other (control group). 
To accomplish this, a t-test was used to determine the probability that the difference between the means was 
authentic and significant. 

 

 
Figure 2. Frame of humidity chamber [relative humidity = 100%] 

 
3. Results  

Vine cuttings were examined on days 1, 2, 3, 6, 9, of treatment. After one day, only the H1 treatment produced 
roots (Table 1). At 100% humidity (H1), roots were observed on 90% of the cuttings in the root length sequence: 
9-, 28-, and 49 mm after 3, 6, and 9 days respectively. Root vigour appeared very high compared to that of the 
traditionally-treated samples, based on eye observation. Of the fifty cuttings in the H2 treatment, only 10% had 
developed new roots (Table 1). Further, roots appeared less vigorous than the H1 samples even after 9 days, by 
which stage they had withered and dried. Thus even the traditional method of curing in the field did not produce 
roots and probably depends on the maintenance of specific humidity and/or temperature levels (see section 4). 
Losses of cuttings can be high under such conditions without careful monitoring, even within hours of storage. 
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Table 1. Roots on fifty sweet potato vine cuttings: number and length at nodes [50 samples treatment -1] 

Treatments* [4 replicates] Samples with roots [no.] 
Day 1 Day 3 Day 6 Day 9 

--------[mean root length mm]------- 

H1 45 0a 9d 28e 47f 

H2 5 0 a 0.5b 2c 3c 

Note. *H1 = 100% humidity, H2 =<95% humidity & exposed to weather. Column values followed by different 
letters are significantly different (P < .01). S.D.: H1 d3 = 2, d6 = 17, d9 = 27; H2 d3 = .1, d6 = 1, d9 = 1.3. 

 

3.1 Periderm Growth 

After just two days, the H1 treatment produced visually observed periderm tissue in the form of toughened cells 
at cut points on stems on every vine cutting. After 6 days, the H1 periderm was more than twice the thickness of 
that observed on day 3 (Table 2).  

 
Table 2. Mean visually observed periderm growth [mm] on vine cuttings [50 samples treatment -1] 

Treatments* [4 replicates] Number Day 1 Day 3 Day 6 Day 9 

H1 50 0 3b 7c 9d 

H2 0 0 0 0 0  

Note. *H1 = 100% humidity, H2 =< 95% humidity & exposed to weather. Column values followed by different 
letters are significantly different (P < .01). S.D. for H1: d1 = .2, d3 = .7, d6 = 1.7, d9 = 3. 

 
3.2 Temperature and Humidity Changes 

Temperature readings were recorded at 10 a.m. on the mornings of days 1, 3, 6 and 9. The temperature in the H1 
was substantially warmer than determined for all other treatments, while differences among all controls were 
insignificant (Table 2). It had been anticipated that the energy required for evaporation from the chambered 
treatments would have decreased temperatures inside all chambers. However, average temperatures were 35 ºC, 
34 ºC, and 31 ºC for the H1 chamber, thereby constantly remaining at >30 ºC after three days. This was a mean 
of 7 ºC higher than the ambient temperatures of the traditional treatment (Table 3).  

 

Table 3. Mean Temperature (˚C) During Storage of Potato Vine Cuttings at 10 a.m. [average values] 

Treatments* [4 replicates] Day 1 Day 3 Day 6 Day 9 Mean 

H1 23a 35c 34c 33c 31 

H2 22a 24a 24a 26a 24 

Note. *H1 = 100% humidity, H2 =< 95% humidity, exposed to weather. Column values followed by different 
letters are significantly different (P < .05). S.D.: H1 d1 = 2, d3 = 1, d6 = 1.6, d9 = 1.5; H1 d1 = 2, d3 = 1, d3 = 3, 
d9 = 1.  

 

3.3 Field Growth 

The results of vine cuttings planted in a dry, porous soil are depicted in Figure 3. This shows that after three days 
in the ground, the treated cuttings with root and periderm appeared more robust and had not wilted, in contrast to 
the controls.  
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Figure 3. Sweet potato vine cuttings two days after transplanting in dry soil. Prior to transplanting, the cuttings at 

left were subjected to ambient relative humidity of 100%. Cuttings at right were exposed to < 95% relative 
humidity 

 

Due to the low proportion of lignified tissue in sweet potato shoots (Noggle & Fritz, 1983), this water stress 
would have readily reduced cell turgidity not only past its critical value, but to “permanent” wilting, causing 
destruction of cells and leaf losses. After 5 days, the traditional samples had recovered, such that no difference 
between treatments was observed at that stage. However, it is reasonable to suggest that had the soil been drier, 
more losses could have occurred for the humidified samples compared to those traditionally treated. 

4. Discussion 
Maintaining a high relative humidity (100%) around vine cuttings of I. batatas away from direct contact with 
soil produced periderm more rapidly than did the traditional method. Further, the treatment produced 
adventitious roots far more successfully than the traditional treatment of ground storage in the shade. As shown 
above (3.3), pre-rooted humidified cuttings appeared more vigorous than those without roots after transplanting 
in a dry soil. Yet, Holwerda and Ekanayake (1991) found that for two sweet potato cultivars they used, 
pre-rooting the cuttings were of no benefit in terms of survival after planting. As this study involved samples 
from a single cultivar, replicate experiments should determine the extent that these results can be applied among 
strains within the I. batatas species. Moreover, the roots of samples exposed to 100% humidity deteriorated, 
failed to retain turgidity, shrivelled and died within five minutes of subsequent exposure to < 90% humidity 
(Table 4). In other words, such treated roots failed to withstand what are normal soil humidity levels even for a 
few minutes.  
 
Table 4. Effect of root length on root longevity after decreasing ambient humidity from 100% to < 90% [average 
values, four replicates] 

Root length [mm] 10 5 2 1 

Longevity [seconds]* 180a 225b 340c 630d 

Note. Column values followed by different letters are significantly different (P < .05). *S.D. [longevity]: 180 = 7, 
225 = 4, 340 = 11, 630 = 4.  

 

Therefore, with such a high susceptibility to lowered humidity, it is reasonable to suggest that the pre-formed H1 
roots rapidly deteriorated in the dry soil of the field trial. Yet, in the dry soil, the same vine cuttings were more 
vigorous than traditionally treated samples (Figure 4). The explanation could lie in the age of the roots: not only 
had the H1 cuttings borne more abundant roots, but at several points on the stems, potential adventitious roots 
were almost breaking through the stem epidermis (Table 5).  
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Table 5. Effect of ambient humidity on the total number of potential adventitious roots observed on 50 sweet 
potato vine cuttings [for each treatment of four replicates] after three days 

Ambient Humidity <90% 100% 

Number of Potential Roots 4a 208b 

Mean number of roots on a cutting 0.8 4.2 

Note. Column values followed by different letters are significantly different (P < .05). 

 

Table 5 reveals that the mean number of potential adventitious roots on each H1 sample exceeded that of each 
H2 sample in a ratio exceeding 52:1. Thus on the vast majority of H2 samples no potential adventitious roots 
were observed. As shown in Table 4, the survival rate on exposure to lowered ambient humidity varied inversely 
with root length (and hence with root age). Tensiometer readings for the kaolinite-dominated red soil revealed a 
soil water potential of < -33 kPa, thereby indicating a soil water content below soil field capacity. Therefore it is 
reasonable to suggest that the pre-emergent potential roots observed during humidification (on the H1 samples), 
and which emerged after transplanting, resisted the lowered humidity of the dry soil, just as younger roots did in 
the laboratory study. It is likely that the great proportion of emerging short roots supported by the stem would 
have remained viable for a longer time in the dry soil than the older roots. In a study of the effect of root cell size 
and transplant age on yield of transplanted eggplant Harmon et al. (1991) significantly increased early yields 
with larger root cell sizes. These can be equated with the younger, robust root cells of H1 treatment in this study, 
as compared with the withering older ones subjected to < 95% humidity. The youthful vigour extended the life of 
the root, thereby providing nutrients for the shoot. Similarly, Harris (2015) found that prolonging the metabolism 
of inflorescences on Mangifera indica until fruit-set, produced fruit on previously non-fruiting trees. The 
relatively high vigour of the H1 samples could thereby be probably explained.  

4.1 Periderm and Temperature 

The periderm thickness on the H1 samples after just 3 days was found to have exceeded 0.5 mm. Walter and 
Schadel (1983) observed that wounds were healed when the wound-periderm layer attained a thickness of just 
3-7 cells in diameter. Further, Schalk et al. (1986) found that resistance to soil insects was most effective early in 
root development, varied directly with phellem (one of three periderm layers) and periderm thickness, and that 
the number of cells in phellem tissue increased with thickness of the periderm. Such high early rates of periderm 
increase are therefore advantageous because, as stated earlier, the physical and chemical barrier of a thick 
periderm provide a degree of resistance to pathogen incursion (Ginzberg, 2008) during the early stages of 
establishment in the soil. It is therefore predicted that the rapid thickening of the H1 periderm observed in this 
study should improve the vigour and longevity of particular vine cuttings after transplanting.  

4.2 Explanation for Root Growth 

The above findings are in agreement with Briske and Wilson (1978) who showed that elongation rates for the 
longest root per seedling in a 100% humidity soil environment at 15 ºC, 20 ºC, 25 ºC, and 30 ºC, were 0.40, 0.74, 
1.04, and 1.22 cm/day respectively. Hence root growth increased up to 30 ºC. Briske and Wilson (1978) also 
observed an approximately 50% reduction in root elongation with just a 4% lowering of ambient humidity from 
100% to 96%. Therefore at 96% humidity, the corresponding root lengths for the same temperatures were 0.28, 
0.36, 0.38, 0.44. Similar results (at least qualitatively) were observed in the present study, which is in agreement 
with Morris and others (2004) who found 98% relative humidity ideal for root growth.  

Interestingly, the aim of traditional treatment is to “cure cuttings in the shade.” Yet, despite treatments in this 
study having all been conducted in the shade, the main effective factor was not shade (contrary to expectations), 
but a high level of ambient humidity. Thus in this study, shade per se did not trigger root initiation. But being of 
high porosity, grass mulch failed to maintain water vapour levels as efficiently as polythene. Grass mulches trap 
moisture and reduce desiccation more effectively in the shade than at higher temperatures; this probably 
accounts for the traditional view of shade being an imperative for curing of transplant cuttings. However, this 
study shows water vapour (despite heat), and not shade, as the single most critical factor studied, for root 
initiation on potato vine cuttings. 

4.3 Source and Role of Heat 

Three factors in the system affected the temperature in the H1 chamber: evaporation/condensation, metabolic 
processes, and the design of the chamber. As the samples were stored in the shade and surrounded by a 
long-wave infra-red barrier, the major heat source would have been from the rapid cell division producing roots 
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and periderm tissue. The perpetual wetness of the fabric surrounding the samples would have transported this 
heat, because increasing moisture content of a material increases its thermal conductivity (Bouguerra et al., 
1998). However the thick external polythene barrier to infra-red rays prevented the loss of that heat to the 
external atmosphere. The role of the polythene was thus to (1) retain water and (2) increase the evaporation rate 
by retaining heat in the humidifying system. The heat released in the system by condensation was only that 
recycled from evaporation on the inside. This increased heat energy would have helped to maintain high 
humidity levels. Nevertheless, as root and periderm tissues appeared before the occurrence of extra heat, it is 
clear that rapid growth of those (periderm) tissues occurred despite, and not because of, the higher temperatures.  

4.4 Applications 

Prior to transplanting, large farms require extensive areas for storing (curing) vine cuttings. A major problem 
with the humidifier of this study is the small volume of the chamber, which accommodates only 80 vine cuttings. 
A possible cost-effective alternative which mimics the chamber humidifier may produce similar results. It was 
therefore postulated that spreading vine cuttings on a table and covering them with wet material under a 
polyethylene covering may be just as effective. For large farms, such an intervention may be sufficient to 
accommodate thousands of vine cuttings. This postulation was tested at the end of this study, and shown to be 
correct. Thus vine cuttings stored under wet newspaper sheets sealed with polythene sheets on large tables 
produced similar results to those for the humidified chamber. 

Forced humidity (being 100% efficient) requires no addition of water in contrast to grass-covered vine cuttings 
at intervals during hot, dry days to prevent desiccation of vine cuttings. Cut vines left lying on the ground in the 
shade are subject to infection by soil-borne pathogens, and vagaries of the weather, such as removal by wind or 
flooding. In contrast, during forced humidity, all cuttings are suspended in the air high above ground level in 
protected chambers. Chamber humidification promises significant protection as well from soil-pathogen attacks 
in transplanted sweet potato vine cuttings. Moreover, if these results are transferable to other plant species, 
benefits in dry soils could accrue. Improved ability of fresh stem cuttings to withstand extremes of soil water 
tension inimical to early plant growth improves the potential to survive increased climate changing conditions. 
However, it is stressed that the vigorous growth, longevity and high level of turgidity at 100% R.H. achieved in 
this study were not achieved for plants having woody stems.  
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