Table 1. Characteristics and composition of the substrate components employed in the germination and development of lettuce seedlings and of the soil used for the cultivation of mature lettuce plants

Commercial substrate† used for the production of lettuce seedlings (Bioplant Gold)

<table>
<thead>
<tr>
<th>pH</th>
<th>Electrical conductivity (mS cm⁻¹)</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5 - 6.0</td>
<td>1.0 - 1.2</td>
<td>Pinus bark, aggregating agents, vermiculite, NPK and micronutrients</td>
</tr>
</tbody>
</table>

Spent mushroom substrate‡ used for the production of lettuce seedlings

<table>
<thead>
<tr>
<th>pH</th>
<th>P</th>
<th>K</th>
<th>Ca²⁺</th>
<th>Mg²⁺</th>
<th>Zn</th>
<th>Mn</th>
<th>B</th>
<th>Fe</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8</td>
<td>5.1</td>
<td>14.8</td>
<td>25.3</td>
<td>1.9</td>
<td>45.3</td>
<td>115.3</td>
<td>5.2</td>
<td>1290</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Soil used for the cultivation of mature lettuce plants

<table>
<thead>
<tr>
<th>pH</th>
<th>P</th>
<th>K</th>
<th>Ca²⁺</th>
<th>Mg²⁺</th>
<th>Al³⁺</th>
<th>H + Al³⁺</th>
<th>CEC⁶</th>
<th>M⁵</th>
<th>V⁵</th>
<th>OM⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>15</td>
<td>92</td>
<td>3,800</td>
<td>1,200</td>
<td>200</td>
<td>4,000</td>
<td>7,200</td>
<td>0.2</td>
<td>44.8</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>Mn</td>
<td>B</td>
<td>Fe</td>
<td>Cu</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.2</td>
<td>27.3</td>
<td>0.4</td>
<td>37.4</td>
<td>2,500</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† Bioplant® (Bioplant Agricola Ltda, Nova Ponte, MG, Brazil);
‡ From cultivation of *Agaricus subrufescens*;
§ CEC, Cation exchanged capacity; M, percentage of Al saturation; V, percentage of base saturation; OM, Organic matter.

Table 2. Proportions of components employed in the preparation of substrates employed in the germination and development of lettuce seedlings

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Proportion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mushroom spent compost†</td>
</tr>
<tr>
<td>S1</td>
<td>0</td>
</tr>
<tr>
<td>S2</td>
<td>15</td>
</tr>
<tr>
<td>S3</td>
<td>30</td>
</tr>
<tr>
<td>S4</td>
<td>45</td>
</tr>
<tr>
<td>S5</td>
<td>60</td>
</tr>
<tr>
<td>S6</td>
<td>75</td>
</tr>
</tbody>
</table>

† From cultivation of *Agaricus subrufescens*;
‡ Bioplant® (Bioplant Agricola Ltda, Nova Ponte, MG, Brazil).
Table 3. Summary of the analysis of variance of variables relating to lettuce seedlings as a function of the amount of spent mushroom compost present in the substrate on which they were produced

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>Degrees of freedom</th>
<th>Number of leaves</th>
<th>Height of aerial part</th>
<th>Fresh mass of aerial part</th>
<th>Dry mass of aerial part</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substrates</td>
<td>5</td>
<td>0.049</td>
<td>0.958</td>
<td>0.0493*</td>
<td>0.00027*</td>
</tr>
<tr>
<td>Error</td>
<td>8</td>
<td>0.083</td>
<td>1.361</td>
<td>0.0150</td>
<td>0.00008</td>
</tr>
<tr>
<td>Coefficient of variance (%)</td>
<td></td>
<td>11.88</td>
<td>11.88</td>
<td>15.25</td>
<td>11.89</td>
</tr>
<tr>
<td>Means</td>
<td></td>
<td>2.433</td>
<td>9.825</td>
<td>0.805</td>
<td>0.075</td>
</tr>
</tbody>
</table>

* Statistically significant according to F test at 5% probability.

Table 4. Summary of the analysis of variance of variables relating to marketable crisphead lettuce heads as a function of the amount of spent mushroom compost present in the substrate on which the seedlings were produced

<table>
<thead>
<tr>
<th>Sources of variation</th>
<th>Degrees of freedom</th>
<th>Head circumference</th>
<th>Height of stem</th>
<th>Fresh mass of head</th>
<th>Dry mass of head</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substrates</td>
<td>5</td>
<td>47.983</td>
<td>0.671</td>
<td>2170.766*</td>
<td>17.919*</td>
</tr>
<tr>
<td>Blocks</td>
<td>3</td>
<td>333.583*</td>
<td>2.859</td>
<td>7378.277</td>
<td>2.788</td>
</tr>
<tr>
<td>Error</td>
<td>15</td>
<td>59.158</td>
<td>1.205</td>
<td>543.01</td>
<td>3.6</td>
</tr>
<tr>
<td>Coefficient of variance (%)</td>
<td></td>
<td>7.92</td>
<td>18.73</td>
<td>10.87</td>
<td>11.74</td>
</tr>
<tr>
<td>Means</td>
<td></td>
<td>97.078</td>
<td>5.863</td>
<td>214.41</td>
<td>16.16</td>
</tr>
</tbody>
</table>

* Statistically significant according to F test at 5% probability.
Figure 1. Fresh mass (A) and dry mass (B) of the aerial parts of lettuce seedlings grown on substrates containing different amounts of spent mushroom compost from Agaricus subrufescens

A

Y = 0.41 - 0.233X - 0.0285\text{X}^2
R^2 = 0.87

B

Y = 0.47 - 0.015X - 0.0025\text{X}^2
R^2 = 0.80
Figure 2. Fresh mass (A) and dry mass (B) of marketable crisphead lettuce heads derived from seedlings grown in substrates containing different amounts of spent mushroom compost from *Agaricus subrufescens*.