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Abstract  

The purpose of this study was to evaluate the genetic diversity and population structure of 65 mungbean 
accessions collected from East and Southeast Asia, the United States and Guatemala using 15 simple sequence 
repeat (SSR) markers. In total, 47 alleles were detected, the number of the alleles per locus range from two to six, 
with an average of 3.13. The mean major allele frequency (MAF), expected heterozygosity (HE), and 
polymorphic information content (PIC) of the 15 SSR loci were 0.76, 0.05, and 0.28, respectively. Of the 47 
alleles, 17 (36.2%) were common, with a frequency of 0.05– 0.5; 16 (34.0%) were rare (frequency < 0.05) and 
14 (29.8%) were abundant (frequency > 0.5). On the basis of the UPGMA dendrogram, most of the accessions 
were clustered into two main groups. The first group (Group I) included seven accessions and the second 
comprised 58 accessions, which were further divided into four subgroups. Four subpopulations were detected by 
model-based structure analysis. Fifty-five accessions (84.6%) showed a clear relation to each cluster based on 
their inferred ancestry value (>75%), while the remaining 10 accessions (15.4%) were categorized as admixtures. 
Mungbean accessions from US distributed to almost all clusters and 2 accessions shared genetic constituents 
showing it derived from mixed ancestry with Asean accessions. These results could be useful in identifying 
mungbean germplasms and facilitating their improvement programs.  
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1. Introduction 

Mungbean (Vigna radiata L. Wilczek), which originated from India, belongs to the family Leguminosae, 
subgenus Ceratotropis. Due to its protein-rich edible seeds, its ability to fix nitrogen, drought tolerance, and early 
maturity, it is widely planted in various cropping systems (Tangphatsornruang et al., 2009). Mungbean, which 
provides two of the most important and inexpensive sources of dietary protein to the people of Asia and Africa, 
is a tropical legume species (Somta et al., 2008). Mungbean sprouts are a common food in some Asian countries 
and are an excellent source of protein, calcium, and vitamin C. It is commonly used as a vegetable 
accompaniment to a meal (Rehman, Ali, Saleem, & Tadesse, 2010). Mungbean is characterized by a short 
growth period and early maturity, which allows adaption to multiple cropping systems of the lowland tropics and 
subtropics (Gwag, 2008).  

Evaluation of genetic diversity is very important for crop plant genetic resources. DNA-based molecular markers 
provide powerful tools in studying genetic diversity and population structure techniques for analyzing molecular 
markers such as restriction fragment length polymorphism (RFLP) (Schutte et al., 2008), random amplification 
of polymorphic DNA (RAPD) (Dikshit et al., 2007; Lu et al., 2009) amplified fragment length polymorphism 
(AFLP) (Tatikonda et al., 2009) simple sequence repeats (SSRs) (Chapuis & Estoup, 2007; Lung’aho et al., 
2011), and single nucleotide polymorphisms (SNPs) (Ganal, Altmann, & Röder, 2009) are now available. SSRs 
or microsatellite markers, due to their codominance and high polymorphism, are particularly attractive for 
studying genetic structure and the relationships between species(Jegadeesan et al., 2010; Lu et al., 2009; Saxena, 
Saxena, Kumar, Hoisington, & Varshney, 2010; Zhang, Blair, & Wang, 2008). In the present study, genetic 
structure and diversity of 65 mungbean varieties collected from East and Southeast Asia, the United States and 
Guatemala were evaluated using 15 SSR markers.  



www.ccsenet.org/jas Journal of Agricultural Science Vol. 4, No. 9; 2012 

151 
 

2. Materials and Methods  

2.1 Plant Material and DNA Extraction  

A total of 65 accessions of mungbean collected from Korea (Nos. 1–23), the Philippines (Nos. 24–39), Vietnam 
(Nos. 40–43), Thailand (Nos. 44–53), Indonesia (Nos. 54–55), the United States (Nos. 56–64), and Guatemala 
(No. 65) were obtained from the National Agrobiodiversity Center (NAC) of Korea (Table 1). Plant young leaves 
were sampled and DNA was extracted using a Qiagen DNA extraction kit (Qiagen, Valencia, CA, USA) and 
quantified using a NanoDrop ND-1000 UV-Vis spectrophotometer (Dupont Agricultural Genomics Laboratory, 
Newark, DE, USA). Finally, the DNA of each sample was prepared at concentration of 20 ng/ µL.  

 

Table 1. The details information of 65 mungbean accessions used in this study 

Serial No. Region Origin IT. No.a Model-subpopb 
1 East Asia Korea M5 S3 
2 East Asia Korea M6 S4 
3 East Asia Korea M21 admixture 
4 East Asia Korea M22 admixture 
5 East Asia Korea M65 S3 
6 East Asia Korea M66 admixture 
7 East Asia Korea M106 S1 
8 East Asia Korea M107 S2 
9 East Asia Korea M108 S2 

10 East Asia Korea M109 S1 
11 East Asia Korea M205 S2 
12 East Asia Korea M217 S1 
13 East Asia Korea M218 S1 
14 East Asia Korea M234 S1 
15 East Asia Korea M325 S3 
16 East Asia Korea M326 S1 
17 East Asia Korea M339 S1 
18 East Asia Korea M365 S2 
19 East Asia Korea M371 S3 
20 East Asia Korea M397 S1 
21 East Asia Korea M426 S1 
22 East Asia Korea M427 S1 
23 East Asia Korea M429 S1 
24 Southeast Asia Philippines M445 S3 
25 Southeast Asia Philippines M446 S3 
26 Southeast Asia Philippines M447 S4 
27 Southeast Asia Philippines M448 S4 
28 Southeast Asia Philippines M449 S4 
29 Southeast Asia Philippines M450 admixture 
30 Southeast Asia Philippines M451 S4 
31 Southeast Asia Philippines M452 S4 
32 Southeast Asia Philippines M453 S4 
33 Southeast Asia Philippines M454 S4 
34 Southeast Asia Philippines M455 S4 
35 Southeast Asia Philippines M456 S1 
36 Southeast Asia Philippines M457 S3 
37 Southeast Asia Philippines M458 admixture 
38 Southeast Asia Philippines M459 admixture 
39 Southeast Asia Philippines M460 admixture 
40 Southeast Asia Vietnam M42 S3 
41 Southeast Asia Vietnam M43 S3 
42 Southeast Asia Vietnam M477 S4 
43 Southeast Asia Vietnam M478 S3 
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44 Southeast Asia Thailand M528 S4 
45 Southeast Asia Thailand M529 S4 
46 Southeast Asia Thailand M553 S4 
47 Southeast Asia Thailand M562 S4 
48 Southeast Asia Thailand M570 S4 
49 Southeast Asia Thailand M571 S3 
50 Southeast Asia Thailand M593 S4 
51 Southeast Asia Thailand M611 S2 
52 Southeast Asia Thailand M659 admixture 
53 Southeast Asia Thailand M667 S2 
54 Southeast Asia Indonesia M601 S4 
55 Southeast Asia Indonesia M735 S3 
56 America USA M637 S3 
57 America USA M685 S1 
58 America USA M686 S2 
59 America USA M719 S3 
60 America USA M721 S3 
61 America USA M732 admixture 
62 America USA M733 S2 
63 America USA M736 admixture 
64 America USA M740 S1 
65 America Guatemala M687 S2 

Total   65  
a: Introduction number of National Agrobiodiversity Center of RDA (Rural Development Administration) in 
Republic of Korea. b: according to inferred value defined by STRUCTURE program. 

 

2.2 SSR Analysis  

Fifteen SSR primers developed by Gwag (2008) were used for genotyping. A three-primer system (Schuelke, 
2000) was used to determine the size of PCR products. In the system, unlike the normal reverse primer, the 
forward primer was composed of normal primer concatenate with a universal M13 oligonucleotide 
(TGTAAAACGACGGCCAGT) labeled with one of three fluorescent dyes (6-FAM, NED, or HEX) that allowed 
PCR products to be triplexed during electrophoresis. PCR amplification was performed in a total volume of 20 
µL containing 50 ng of template DNA, 0.2 mM of each dNTP, 1× PCR buffer, 1U Taq DNA polymerase, 8 pmol 
of each reverse and fluorescent labeled M13 (–21) primer, and 2 pmol of forward primer with M13 (–21) tail at 
its 5’-end. The conditions for the PCR amplification were as follows: 94°C for 3 min, 30 cycles of [94°C for 30 
sec, 60°C for 45s, 72°C for 1 min], 10 cycles of [94°C for 30 sec, 53°C for 45s, 72°C for 1 min], and a final 
extension step of 72°C for 10 min. Microsatellite alleles were resolved using a 3130xl Genetic Analyzer 
(Applied Biosystems, Foster City, CA, USA) with GENESCAN 3.7 software (Applied Biosystems) and sized 
precisely against 6-carboxy-X-rhodamine (ROX) molecular size standards using GENOTYPE 3.7 software 
(Applied Biosystems).  

2.3 Data Analysis  

Basic statistics for diversity measurements at each microsatellite locus, including the total number of alleles, 
allele frequency, major allele frequency (MAF), gene diversity (GD), and polymorphic information content (PIC 
value; Yu et al., 2003), were calculated using the genetic analysis package PowerMarker ver.3.25 (Liu & Muse 
2005). The variability at each locus was measured in terms of number of alleles, expected heterozygosity (HE), 
and genetic distance between each pair of accessions using the genetic analysis package POPGENE 1.31(Yeh, 
Yang, & Boyle, 1999).  

The unweighted pair group method with an arithmetic mean (UPGMA) tree from shared allele frequencies was 
constructed using the MEGA 4.0 program (Tamura et al., 2007), which is embedded in PowerMarker. The 
model-based program STRUCTURE 2.2 (Pritchard, Stephens, & Donnelly, 2000) was used to identify 
population structure of the accessions implementing a Bayesian clustering approach. In this model, the 
population genetic structure was characterized by admixture model and correlated allele frequencies. Five 
independent replications were performed for each run with K ranging from two to ten using a burn-in of 10000. 
The most probable value of ΔK was detected by using K as a criterion and the status of each location was 
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established based on Pritchard et al. (2000). A location would be considered to attached with one cluster by 
having more than 75% membership probabilities. 

3. Results  

3.1 SSR Polymorphisms  

All 15 SSR markers showed polymorphisms and a total of 47 alleles were identified (Table 2). The size of the 
PCR products ranged from 110 to 321 bp (Table 2).Polymorphism of SSR markers was measured in terms of the 
numbers of observed alleles (NA), the number of rare alleles, major allele frequency (MAF), expected 
heterozygosity (HE), and the polymorphism information content (PIC). To assess the value of PIC the following 
was utilized: 

PIC = 1-Σpi
2                                   (1) 

Here, pi is the allele frequency of the ith alleles of the locus (Yu et al., 2003). Alleles with a frequency less than 5% 
were defined as rare alleles, whereas common alleles and abundant alleles were defined as those alleles with a 
frequency between 5% and 50% and more than 50%, respectively. The numbers of observed alleles ranged from 
two to six with means of 3.13 per locus while the numbers of rare alleles varied from zero to four with means of 
1.07 per locus. A total of 16 rare alleles comprised 34.0% of all alleles were identified at all 15 loci. Common 
and abundant alleles comprised 36.2% and 29.8%, respectively, of the total. 

 

Table 2. Overall diversity statistics at 15 SSR loci in 65 mungbean accessions 

Locus Size range(bp) NAa NAb MAFc GDd HE
e PICf 

7F 288-236 3 2 0.90 0.19 0.17 0.18 
13F 171-200 2 0 0.85 0.26 0.09 0.23 
14H 269-275 5 2 0.62 0.47 0.00 0.36 
17H 165-181 2 0 0.93 0.13 0.11 0.13 
38H 124-142 2 0 0.95 0.10 0.11 0.10 
77H 219-321 3 1 0.52 0.50 0.00 0.37 
87F 281-293 2 0 0.75 0.37 0.00 0.30 
91F 169-183 2 0 0.76 0.40 0.02 0.38 
93N 110-125 3 1 0.65 0.54 0.00 0.51 
113F 165-237 2 0 0.98 0.05 0.02 0.04 
142N 242-278 2 0 0.65 0.53 0.22 0.49 
172H 247-250 5 3 0.80 0.32 0.00 0.27 
180F 271-274 2 0 0.89 0.19 0.00 0.18 
184N 289-297 6 4 0.75 0.38 0.00 0.30 
198N 241-321 6 3 0.49 0.52 0.00 0.40 
Total  47 16     
Mean  3.13 1.07 0.76 0.33 0.05 0.28 

a: Number of alleles; b: Number of rare alleles; c: Major allele frequency; d: Gene diversity; e: Expected 
heterozygosity; f: Polymorphism information content. 

 

The major allele frequency per locus and the expected heterozygosity in all the accessions varied from 0. 49 to 0. 
98 and 0 to 0. 22, with averages of 0. 76 and 0. 05, respectively. The genetic diversity and PIC value ranged from 
0. 10 to 0. 54 and 0. 10 to 0. 51, with averages of 0. 33 and 0. 28, respectively. Positive relationships were found 
between genetic diversity and PIC values. For some loci, however, the degree of polymorphism showed no 
correlation with the number of alleles (Table 2).  

3.2 Geographical Analysis of Diversity  

As shown in Table 3, among all the accessions, the series of the average number of alleles was as follows: Korea 
> United States > Thailand > Philippines > Vietnam > Indonesia > Guatemala. At the countries level, the highest 
genetic diversity was observed in Korea (GD = 0.37, PIC = 0.31), followed by the United States (GD = 0. 36, 
PIC = 0. 30), the Philippines (GD = 0. 24, PIC = 0. 20), Thailand (GD = 0.22, PIC = 0.19), Vietnam (GD = 0.16, 
PIC = 0.13), Indonesia (GD = 0. 13, PIC = 0. 10), and Guatemala (GD = 0. 10, PIC = 0. 08).  
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Table 3. Number of mungbean accessions, number of alleles, major allele frequency, genetic diversity, 
polymorphic information content according to originated region/country. 

Region Country NAa NAb MAFc GDd PICe 

East Asia Korea 23 2.47 0.73 0.37 0.31 

Southeast Asia Philippines 16 2.00 0.83 0.24 0.20 

 Vietnam 4 1.40 0.89 0.16 0.13 

 Thailand 10 2.07 0.87 0.22 0.19 

 Indonesia 2 1.27 0.87 0.13 0.10 

America USA 9 2.27 0.73 0.36 0.30 

 Guatemala 1 1.20 0.90 0.10 0.08 
a: Number of mungbean accessions; b: Number of alleles; c: Major allele frequence; d: Gene diversity; 
e: Polymorphism information content. 

 

3.3 Distance-based Phylogeny  

The genetic relationships of populations in the present study was analysed by calculating the shared allele 
frequencies. A dendrogram (Figure 1) was generated using MEGA 4 (Tamura et al., 2007) embedded in the 
PowerMarker program (Liu & Muse, 2005). Similarity coefficients generated by PowerMarker varied from 0 to 
0.8, with an average of 0.33, and were used to construct an UPGMA dendrogram using MEGA 4 software. Most 
of the accessions studied were clustered into two main groups by the UPGMA dendrogram (Figure 1). The first 
group (Group I) included seven accessions from Korea. The second group consisted of 58 accessions and was 
further divided into four subgroups. Subgroup GII- I included four accessions from Korea. GII -II consisted of 
five accessions (two from the United States and three from Southeast Asia). GII-III (26 accessions) and GII-IV 
(23 accession) both consisted of accessions from East Asia, Southeast Asia, and the United States. The resulting 
phylogram (Figure 2) revealed a complex accession distribution pattern.  

 

Figure 1. UPGMA dendrogram showing phylogenetic relationships among 65 mungbean accessions from East 
Asia, Southeast Asia and America. The colour of the blocks correspond to those of the three regions 

 

3.4 Population Structure Analysis  

A model-based approach was used to infer the population structures and detect the ancestral and hybrid forms 
within accessions in the present study (Pritchard et al., 2000). Results of five independent replications for each 
run with K ranging from two to ten were consistent, but the distribution of LnP(D) revealed a continuingly 
increasing curve without a clear maximum for the true K. The ad hoc quantity (ΔK) was used to estimate the real 
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In conclusion, present result pointed out that Mungbean accessions from US, with high heterogeneity, genetically 
related with Asean accessions.  
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