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Abstract 

Drought is one of the major factors limiting crop production in arid and semi-arid regions. Twenty wheat 
genotypes with wide range of sensitivity to drought, including 18 varieties of bread wheat (Triticum aestivum L.) 
and two varieties of durum wheat (Triticum turgidum L.) were used in two separate field experiments in 
2009-2010 at the Experimental Station of College of Agriculture in Shiraz University. Each experiment was 
conducted as a randomized completed block design with three replications. The moisture level in one of the 
experiments was optimum (100% field capacity) while the second experiment was conducted under drought stress 
(45% field capacity). Several biochemical components including enzymatic (catalase, CAT; peroxidase, POD; 
superoxide dismutase, SOD and ascorbate peroxidase, APX) and non-enzymatic (proline and carotenoids, Car) 
antioxidant defense systems and some factors of oxidative damage (hydrogen peroxide, H2O2; lipid peroxidation, 
LPO and membrane stability index, MSI) were analyzed in the two conditions. Drought stress caused significant 
increase in enzymatic antioxidant activities, proline content, H2O2 and LPO content at the flowering stage, while 
Car content and MSI decreased significantly in all genotypes. Drought tolerant genotypes showed the highest 
enzymatic and non-enzymatic antioxidants, highest MSI and the lowest LPO and H2O2. This trend was reversed in 
susceptible genotypes. The enzymatic antioxidants had higher correlation than non-enzymatic with oxidative 
stress factors and yield stability index (YSI). POD showed the highest positive correlation with MSI and the 
highest negative correlation with LPO. H2O2 and MSI showed the highest correlation with YSI. In present study, 
Kavir and Alamut varieties were selected respectively as the most tolerant and susceptible genotypes. 
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1. Introduction 

Drought stress is one of the major factors limiting plant growth and crop productivity in arid and semi-arid 
regions and with increasing global climate change making the situation more serious. (Golestani and Assad, 
1998; Ahmadi et al., 2010) Much of the injury to plants caused by stress exposure is associated with oxidative 
damage at the cellular level. However in certain tolerant crop plants morpho-physiological and metabolic 
changes occur in response to drought, which contribute towards adaptation to such unavoidable environmental 
constraints (Sairam & Sirvastava, 2001). 

 Wheat is a staple food for more than 35% of the world population and it is also the first grain crop in Iran 
(Mohammadi et al., 2006). Wheat often experiences drought stress conditions during crop cycle. Thus, 
improvement of wheat productive for drought tolerance is a major objective in plant breeding programs for arid 
and semi-arid regions (Shao et al., 2005; Ahmadizadeh et al., 2011).  

Drought stress results in stomata closure, which limits CO2 concentration in leaf mesophyll tissue and reduces 
NADP+ regeneration by the Calvin Cycle. These adverse conditions increase the rate of reactivated oxygen 
species (ROS) such as hydrogen peroxide (H2O2), superoxide (O2

•−), singlet oxygen (1O2) and hydroxyl (OH) 
radicals by enhanced leakage of electrons toward molecular oxygen during photosynthetic and respirator 
processes (Foyer et al., 1994). These ROS can cause damage to membrane lipids, proteins and DNA leading to 
cell death (Cadenas, 1989). Plants process very efficient enzymatic (superoxide distumase, SOD; catalase, CAT; 
ascorbate Peroxidase, APX; Peroxidase, POD and glutathione reductase, GR) and non-enzymatic (carotenoids, 
ascorbic acid, glutathione and proline) antioxidant defense systems which protect cell and subcellular systems 
against oxidative damages by scavenging of ROS (Dhindsa et al., 1981; Mittler, 2002). SOD catalyzes the 
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dismutation of superoxide into oxygen and hydrogen peroxide (Alscher et al., 2002). H2O2 can be eliminated by 
CAT, APX and POD (Asada, 1999; Ramachandra et al., 2004). Carotenoid a lipid soluble antioxidant plays a 
multitude of functions in plant metabolism including oxidative stress tolerance (Sarvajeet & Narendra, 2010). 
Accumulation of protective solutes like proline and glycine betaine is a unique plant response to drought stress. 
Also proline is considered as a potent antioxidant and potential inhibitor of programmed cell death (Bates et al., 
1973; Pireivatloum et al., 2010). The objective of the present study was to understand the influence of drought 
stress on oxidative damage, enzymatic and non-enzymatic antioxidant systems in tolerant, intermediate and 
susceptible wheat genotypes and also identify the effective biochemical traits in the screening tolerant genotypes 
to drought. 

2. Materials and Methods 

2.1 Plant Material and Experimental Conditions 

Eighteen bread wheat genotypes (Triticum aestivum L.) including six drought tolerant genotypes (Azar2, Pishtaz, 
Toos, Chamran, Kavir and Koohdasht), six intermediate (Roshan, Alvand, Tabasi, Niknejad, cross adl and 
Darab2) and six susceptible (Shiraz, Shiroudi, Flat, Bahar, Zarin and Alamut) and two durum wheat genotypes 
(Triticum turgidum L.), Simareh and Yavarus, were also used in two separate field experiments in 2009-2010 at 
the Experimental Station of College of Agriculture in Shiraz University (52o 46' E, 29o 50' N, altitude 1,810 m 
above sea level). Each experiment was conducted as a randomized completed block design with three 
replications. Each plot consisted of six 4 m long rows spaced 30 cm apart. The four middle rows were left intact 
for grain yield determination, and the two outside rows were used for sampling. The moisture level in one of the 
experiments was optimum (100% field capacity) while the second experiment was conducted under drought 
stress (45% field capacity), (Table 2). The amount of water needed for irrigation was calculated from the method 
of Avja and Michael (1987). The characteristics of soil and climates at the experimental station during 
2009-2010 are shown in Table 1 and 2 respectively. Flag leaves of flowering stage in two experiments were 
harvested, weighted and frozen at -70° C for later measurement of biochemical traits.  

 
Table 1. Physical and chemical properties of soil used in the experiments 

Texture pH EC     (dS/m) OC    (%) K    (mg/kg) N   (%) P†   (mg/kg) Soil characteristic 

sandy clay 7.6 0.563 1.36 581 15 15 Values 

†- P, Phosphorus; N, Nitrogen; K, Potassium; OC, Organic Carbon; EC, Electrical Conductivity, pH, level of acidity. 

 
Table 2. Mean temperature, precipitation distribution and total irrigation for each experiment 

Month Year Mean temperature 

(°C) 

Rainfall (mm) Irrigation (mm) 

  No- stressed Stressed 

November  2009 10.62 10.5 131 131 

December  2009 5.66 129 - - 

January 2009 5.1 17 - - 

February 2010 6.13 54.5 - - 

March 2010 10.4 37.5 43 19.35 

April 2010 12.23 24.5 70.42 31.69 

May 2010 17.04 13 113.1 50.89 

June 2010 22.58 0 60.4 27.18 

Total   286 417.92 260.11 

Total water used    703.92 546.11 

      
2.2 Grain Yield and Yield Stability Index Assay 

Grain yield was recorded at physiological maturity stage. The physiological maturity stage was considered when 
90% of seed changed color from green to yellowish and stopped photosynthetic activity. Yield stability index 
(YSI) was calculated using the formula suggested by Bouslama and Schapaugh (1984) as: 

YSI = Ys / Yp 

Where, Ys and Yp represent yield under stress and non-stress conditions, respectively. 
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2.3 Enzymatic Antioxidants Assay 

Frozen leaf samples (0.5 g) were used for enzyme extraction. Samples were homogenized with 2 mL of 50 mM 
phosphate buffer (pH 7.2) using a pre-chilled mortar and pestle. Phosphate buffer contained 1 mM EDTA, 1 mM 
PMSF, and 1% PVP-40. Then the homogenates were centrifuged at 4°C and 15,000×g for 15 min. 

Superoxide dismutase (SOD, EC 1.15.1.1) activity was assayed by measuring its ability to inhibit the 
photoreduction of nitroblue tetrazolium (NBT) using the method of Beauchamp and Fridovich (1971). The 
reaction mixture contained: 50 mM phosphate buffer (pH 7.8), 0.1 mM EDTA, 13 mM methionine, 75 μ M 
nitroblue tetrazolium (NTB), 2 μM riboflavin and 100 μl of the supernatant. Riboflavin was added as the last 
component and the reaction was initiated by placing the tubes under two 15 W fluorescent lamps. The reaction 
was terminated after 15 min by removing the reaction tubes from the light source. Non-illuminated and 
illuminated reac- tions without supernatant served as calibration standards. Reaction products were measured at 
560 nm. One unit of SOD activity was defined as the amount of enzyme that inhibited 50 nitroblue tetrazolium 
(NBT) photoreduction. 

Ascorbate peroxidase (APX; EC 1.11.1.11) activity was measured using the method of Nakano and Asada 
(1981). The assay mixture contained of 50 mM potassium phosphate buffer (pH 7.0) containing 0.5 mM ascorbic 
acid, 0.15 mM H2O2, 0.1 mM EDTA, and 50 μL of enzyme extract (supernatant). Ascorbate peroxidase was 
spectrophotometrically assayed following a decrease in the absorbance at 290 nm. One unit of APX oxidises 1 
mM ascorbic acid in 1 min at 25°C. 

Catalase (CAT, EC 1.11.1.6) activity was measured by following the reduction of H2O2 (ε = 39.4 mM− 1 cm− 1) at 
240 nm according to the method of Dhindsa et al. (1981). The assay solution contained 50 mM potassium 
phosphate buffer (pH 7.0) and 15 mM H2O2. The reaction was started by the addition of 100 µl enzyme extract 
to the reaction mixture and the change in absorbance was followed 1 min after the start of the reaction. One unit 
of activity was considered as the amount of enzyme which decomposes 1 mM of H2O2 in one minute. 

Peroxidase (POD, EC 1.11.1.7) activity was determined according to the method of Chance and Maehly (1955). 
The tetraguaiacol formed in the reaction has a maximum absorption at 470 nm and thus the reaction can be 
readily followed spectrophotometrically. The enzyme was assayed in a solution containing 50 mM phosphate 
buffer (pH 7.0), 5 mM H2O2 and 13 mM guaiacol. The reaction was initiated by adding of 33 µl enzyme extract 
at 25°C. One unit of enzyme was calculated on the basis of the formation of guaiacol to tetraguaiacol for 1 min. 

2.4 Non-enzymatic Antioxidants Assay 

The content of proline was extracted and determined by the method of Bates et al. (1973). Leaf tissues (0.5 g) 
were homogenized in 3 % sulfosalicylic acid and the homogenate was centrifuged at 3,000×g for 10 min. The 
supernatant was treated with acetic acid and ninhydrin, boiled for 1 h, and then the absorbance was determined at 
520 nm. Proline concentration was calculated with a standard curve and expressed as µmolg-1 fresh mass. 

The amount of carotenoids (Car) was determined according to Lichtenthaler and Wellburn (1983). Leaf tissues 
(0.5 g) were homogenized in acetone (80%). Extract was centrifuged at 3,000×g and absorbance was recorded at 
646.8 nm and 663.2 nm for chlorophyll assay and 470 nm for Car determine by spectrophotometer. Car and 
Pigments content were calculated due to the following formulae: 

Chl a = (12.25 A663.2– 2.79 A646.8) 

Chl b = (21.21 A646.8 – 5.1 A663.2) 

Car = (1000 A470 – 1.8 Chl a – 85.02Chl b)/198 

2.5 Oxidative Damage Assay  

Hydrogen peroxide (H2O2) content was determined according to Alexieva et al. (2001). Leaf tissue (0.5 g) was 
homogenized in ice bath with 5 cm3 of cold 0.1% (m/v) trichloroacetic acid (TCA). The homogenate was 
centrifuged (10,000×g, 20 min, 4°C) and 0.5 cm3 of the supernatant was added to 0.5 cm3 of 100 mM potassium 
phosphate buffer (pH 7.0) and 1 cm3 of 1 M KI. The absorbance was read at 390 nm. The concentration of H2O2 
was determined using a standard curve plotted with a known concentration of H2O2.  

Lipid peroxidation (LPO) rates in plant tissues were determined by measuring the malondialdehyde (MDA) 
according to the method of Heath and Packer (1968). MDA content was determined with thiobarbituric acid 
(TBA) reaction. 0.5 g tissue sample was homogenized in 5 ml 0.1% trichloroacetic acid (TCA). The homogenate 
was centrifuged at 10,000×g for 10 min. 4 ml of 20% TCA containing 0.5% TBA was added to 1 ml aliquot of 
the supernatant. The mixture was heated at 95°C for 30 min and quickly cooled in ice bath. After centrifugation 
at 10, 000×g for 10 min. The non-specific absorbance of the supernatant at 600 nm was subtracted from the 
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maximum absorbance at 532 nm for MDA measurement. The level of lipid peroxidation was expressed as µmol 
of MDA formed using an extinction coefficient of 155 mM-1 cm-1.  

Membrane stability index (MSI) estimated according to Sairam (1994). Two sets of leaf tissues (0.1 g) were 
placed in 10 ml of double-distilled water. One set was kept at 40°C for 30 min and its conductivity recorded 
using a conductivity bridge (C1). The second set was kept in a boiling water bath (100°C) for 10 min and its 
conductivity also recorded (C2). The membrane stability index was calculated as: 

MSI= [1 – (C1/C2)] × 100 

2.6 Statistical Analysis of Data  

Analysis of variance and Pearson correlations coefficients in all the measurements were conducted by SPSS 16. 
Means were separated using Tukey's test at P < 0.05. To compare the effects of stress and non-stress, and 
genotypes by moisture conditions interaction, a combined analysis of variance was used. 

3. Results and Discussion 

3.1 Enzymatic Antioxidants Defense Response 

The results of the present study showed that considerable variations among genotypes for antioxidant activity 
were observed when grown under drought stress and non-stress conditions (Table 3). Peroxidase (POD) activity 
increased significantly (P< 0.01) under water stress condition. POX is one of the major enzymes that have a role 
in the biosynthesis of lignin and defense against water stress by scavenges H2O2 in chloroplasts (Mittler, 2002; 
Sarvajeet & Narendra, 2010). The highest POD activity were observed in genotypes Toos, Pishtaz, Chamran, 
Kavir and Koohdasht (drought tolerance, group 1), and the lowest activity in Bahar, Shiraz, Zarin, Alamut and 
Shiroudi (susceptible, group 3) under water stress condition. The ratio was intermediate in Alvand, Niknejad 
Cross Adl and Roshan (intermediate tolerance, group 2). From Figure 1, we observed that genotypes in group1, 
group 2 and group 3 had the highest, intermediate and lowest yield stability index (YSI), respectively. 

 

Table 3. Changes in enzymatic antioxidant (catalase, CAT; superoxide dismutase, SOD; peroxidase, POD and 
ascorbate peroxidase, APX) activity and non-enzymatic antioxidant (Proline and carotenoids, Car) content in 
wheat genotypes in response to drought stress. 

Genotypes 
CAT        

(Ug-1 FW) 

SOD         

(Ug-1 FW) 

POD         

(Ug-1 FW) 

APX         

(Ug-1 FW ) 

Proline        

(µmol g-1 FW) 

Car         

(mg g-1 FW) 

 Non-stress Stress Non-stress Stress Non-stress Stress Non-stress Stress Non-stress Stress Non-stress Stress 

Bahar 39.1 j-l 44.2 c-k 370.8 j-o 426.1 g-k 56.1 o-q 60.5 l-p 138.5 k-n 159.4 f-k 4/84 h 27/31 b-e 7/47 a 5/91 c-i 

Chamran 37.8 kl 48.5 a-e 354.1 k-o 640.7 b 86.8 b-d 94.8 ab 148.7 g-n 206.0 a-d 8/83 f-h 23/03 c-e 5/53 d-m 4/87 g-o 

Cross Adl 34.0 l 42.3 e-k 339.7 m-p 493.9 c-g 54.3 pq 73.2 e-j 130.7 mn 148.9 g-n 4/15 h 33/37 a-c 7/43 a 4/90 g-o 

Shiraz 39.3 j-l 44.8 b-j 339.5 m-p 352.5 k-o 62.9 i-p 63.2 i-p 140.7 j-n 168.9 d-i 3/10 h 35/82 ab 6/36 a-f 4/86 h-o 

Kavir 39.2 j-l 49.0 a-d 315.0 n-p 560.7 c 48.8 q 88.2 a-d 144.9 i-n 223.5 a 3/20 h 36/11 ab 6/02 a-f 6/14 a-f 

Shiroudi 37.9 kl 47.3 a-g 330.9 m-p 377.5 i-n 61.9 k-p 69.4 f-m 151.5 f-n 154.0 f-m 4/49 h 22/73 c-e 3/36 pq 2/66 q 

Koohdasht 41.4 g-k 51.9 a 319.4 n-p 687.8 ab 58.9 m-q 91.1 ac 158.8 f-l 209.0 a-d 5/05 h 33/06 a-c 7/32 ab 7/05 a-c 

Darab2 43.6 c-k 49.8 a-c 397.6 h-m 502.0 c-f 71.6 f-k 95.0 ab 172.3 d-h 216.9 ab 3/27 h 28/75 a-e 4/38 k-p 3/79 o-q 

Seimare 40.3 h-l 51.6 a 325.5 m-p 673.8 ab 54.7 pq 78.9 d-f 141.5 j-n 194.9 b-d 5/78 h 40/15 a 6/03 b-h 5/18 f-n 

Falat 34.8 l 39.9 j-l 345.1 m-p 389.8 h-n 62.4 k-p 74.3 e-h 135.0 k-n 148.0 g-n 6/90 g-h 22/56 c-e 5/60 d-l 4/49 j-p 

Niknejad 38.9 j-l 45.9 a-i 421.9 g-l 524.0 cd 65.5 h-o 83.4 c-e 127.8 mn 165.6 e-j 4/60 h 21/99 c-e 6/37 a-f 4/70 i-o 

Yavarus 39.8 i-l 47.9 a-f 326.7 m-p 449.5 d-i 63.7 h-p 69.7 f-l 148.8 g-n 190.1 c-e 5/23 h 39/70 a 4/65 j-p 6/29 a-h 

Roshan 38.5 j-l 48.8 a-d 301.0 op 522.3 cd 63.47 i-p 83.5 c-e 143.6 i-n 172.7 d-g 7/38 g-h 33/23 a-c 5/69 d-k 5/36 e-m 

Azar2 40.4 h-l 47.2 a-g 337.6 m-p 520.1 cd 72.2 f-k 83.3 c-e 141.6 j-n 174.5 d-g 8/52 f-h 28/01 a-e 5/79 c-j 5/47 d-m 

Tabasi 39.3 j-l 46.4 a-h 275.9 p 434.2 f-j 73.7 e-i 71.5 f-k 133.0 l-n 158.7 f-l 9/42 f-h 31/40 a-d 5/21 f-n 3/34 p 

Zarin  41.5 f-k 41.4 g-k 347.8 l-p 398.5 h-m 58.5 n-q 64.2 h-p 127.7 n 151.0 f-n 3/99 h 19/18 d-g 6/03 b-i 4/35 l-p 

Alamot 40.1 h-l 43.9 c-k 338.3 m-p 378.3 i-n 66.9 h-n 68.1 g-n 146.2 g-n 157.3 f-l 4/66 h 18/96 e-g 6/76 a-d 4/01 n-p 

Toos 43.3 d-k 50.9 ab 339.8 m-p 516.4 c-e 69.0 f-n 98.7 a 157.6 f-l 206.8 a-d 5/26 h 27/26 b-e 6/20 a-g 6/27 a-f 

Pishtaz 37.8 kl 44.9 b-j 455.7 d-h 725.2 a 73.6 e-i 94.9 ab 133.4 k-n 211.1 a-d 4/07 h 20/50 d-f 6/60 a-e 5/77 c-j 

Alvand 37.9 kl 42.6 d-k 332.4 m-p 443.7 e-j 78.4 d-g 85.2 b-d 158.1 f-l 175.8 d-f 5/74 h 24/80 b-e 6/44 a-f 4/23 m-p 

Average 39.7 b 46.5 a 345.7 b 500.8 a 65.2 b 79.5 a 143.9 b 179.6 a 5/42 b 27/90 a 5/97 a 4/99 b 

Means of three replicates followed by the same letter in each column and two columns (non-stress and drought 
stress) related to same indicator are not significantly different according to Tukey's test (probability level of %5). 
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Our result clearly indicated efficient role of antioxidant defense machinery in protection of cell systems against 
oxidative damage. The enzymatic antioxidants had a higher correlation than non enzymatic with all oxidative 
stress factors (H2O2, MDA and MSI). It may be reflected more efficient role antioxidant enzymes in compare to 
non-enzymatic in protects cell systems against oxidative damage. These results are similar to works of Amjad et 
al. (2011) and Shao et al. (2005). H2O2 and MSI had the highest correlation with YSI in all the traits. Thus, it can 
be concluded that H2O2 and MSI are more effective indicators for screening drought tolerant genotypes in stress 
condition. Sairam and Sirvastava (2001) had reported that H2O2 and MSI were good indicators of drought 
tolerance.  

4. Conclusion 

The results showed that genotypes respond differentially to oxidative damage as a result of variations in their 
antioxidant defense systems. Under water stress condition, activity of CAT, POD, APX and SOD, proline 
content, H2O2 and LPO significantly (P < 0.01) increased while Car and MSI decreased significantly (P < 0.01). 
Drought tolerant genotypes which had lowest membrane damage (MDI) and H2O2 content and the highest MSI 
also showed the highest enzymatic antioxidants activity (CAT, POD, APX and SOD) and non-enzymatic 
antioxidants (Proline and Car) while drought susceptible genotypes showed the lowest antioxidants defends and 
MSI, and highest H2O2 and MDA content. Intermediate drought tolerant genotypes showed a moderately 
response. Also durum wheat indicated similar behavior of tolerant bread wheat under drought stress. We found 
that enzymatic antioxidants had play more effective role than non-enzymatic antioxidants in protects cell 
systems against oxidative damage.  

References 

Abedi, T., & Pakniyat, H. (2010). Antioxidant enzyme changes in response to drought stress in ten cultivars of 
Oilseed Rape (Brassica napus L.). Czech Journal of Genetics and Plant Breeding, 46(1), 27-34.  

Ahmadi, A., Emam, Y., & Pessarakli, M. (2010). Biochemical changes in maize seedling exposed to drought 
stress conditions at different nitrogen levels. Journal of Plant Nutrition, 33, 541-556. 

Ahmadizadeh, M., Valizadeh, M., Zaefizadeh, M., & Shahbazi, H. (2011). Antioxidative protection and 
electrolyte leakage in durum wheat under drought stress condition. Journal of Applied Sciences Research, 
7(3), 236-246. 

Alexieva, V., Sergiev, I., Mapelli, S., & Karanov, E. (2001). The effect of drought and ultraviolet radiation on 
growth and stress markers in pea and wheat. Plant Cell Environment, 24, 1337-1344. 
http://dx.doi.org/10.1046/j.1365-3040.2001.00778.x 

Alscher, R. G., Erturk, N., & Heatrh, L. S. (2002). Role of superoxide dismutases (SODs) in controlling 
oxidative stress in plants. Journal of Experimental Botany, 53, 1331-1341. 
http://dx.doi.org/10.1093/jexbot/53.372.1331 

Amjad, H., Noreen, B., Javed, A., & Nayyer, I. (2011). Differential changes in antioxidants, proteases and lipid 
peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions. Plant 
Physiology and Biochemistry, 49, 178-185. http://dx.doi.org/10.1016/j.plaphy.2010.11.009 

Asada, K. (1999). The waterewater cycle in chloroplasts: scavenging of active oxygens and dissipation of excess 
photons. Annual Review. Plant Physiology and Plant Molecular Biology, 50, 601-639. 
http://dx.doi.org/10.1146/annurev.arplant.50.1.601 

Bates, L. S., Waldern, R. P., & Teave, I. D. (1973). Rapid determination of free proline for water stress standies. 
Plant and Soil, 39, 205-107. http://dx.doi.org/10.1007/BF00018060 

Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutases: improved assays and an assay predictable to 
acrylamide gels. Annals of Clinical Biochemistry, 44, 276-287. 
http://dx.doi.org/10.1016/0003-2697(71)90370-8 

Behnamnia, M., Kalantari, Kh. M., & Rezanejad, F. (2009). Exogenous application of brassino steroid alleviates 
drought-induced oxidativestress in Lycopersicon esculentum L. General and Application Plant Physiology, 
35, 22-34. 

Bouslama, M., & Schapaugh, W. T. (1984). Stress tolerance in soybean. Part 1: evaluation of three screening 
techniques for heat and drought tolerance. Crop Science, 24, 933-937. 
http://dx.doi.org/10.2135/cropsci1984.0011183X002400050026x 



www.ccsenet.org/jas Journal of Agricultural Science Vol. 4, No. 8; 2012 

29 
 

Cadenas, S. E. (1989). Biochemistry of oxygen toxicity. Annual Review. Biochemistry, 58, 79-110. 
http://dx.doi.org/10.1146/annurev.bi.58.070189.000455 

Chance, B., & Maehly, A. C. (1995). Assay of catalase and peroxidase. New York, Academic Press. 

Dhindsa, R. S., Plumb-Dhindsa, P., & Thorpe, T. A. (1981). Leaf senescence: correlated with increased levels of 
membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. 
Journal of Experimental Botany, 32, 93-101. http://dx.doi.org/10.1093/jxb/32.1.93 

Dong, B., Liu, M., Shao, H. B., Li, Q., Shi, L., Du, F., & Zhang, Z. (2008). Investigation on the relationship 
between leaf water use efficiency and physio-biochemical traits of winter wheat under rained condition. 
Colloids and Surfaces B: Biointerfaces, 62, 280-287. http://dx.doi.org/10.1016/j.colsurfb.2007.10.023 

Foyer, C. H., Descourvieres, P., & Kunert, K. J. (1994). Protection against oxygen radicals: an important defense 
mechanism studied in transgenic plants. Plant Cell Environment, 17, 507-523. 
http://dx.doi.org/10.1111/j.1365-3040.1994.tb00146.x 

Geravandi, M., Farshadfar, E., & Kahrizi, D. (2011) Evaluation of some physiological traits as indicators of 
drought tolerance in bread wheat genotypes. Russ Journal of Plant Physiology, 58(1), 69-75. 
http://dx.doi.org/10.1134/S1021443711010067 

Golestani, S., & Assad, M. T. (1998). Evaluation of four screening techniques for drought resistance and their 
relationship to yield reduction ratio in wheat. Euphytica, 103, 293-299. 
http://dx.doi.org/10.1023/A:1018307111569 

Heath, R. L., & Packer, L. (1969). Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of 
fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189-198. 
http://dx.doi.org/10.1016/0003-9861(68)90654-1 

Lichtenthaler, H., & Wellburn, A. R. (1983). Determination of total carotenoids and chlorophyll a and 
chlorophyll b leaf extracts in different solvents. Biochemical Society Transactions, 603, 591-592. 

Micheal, A. M., & Oija, T. P. (1987). Principles of agricultural engineering. New Delhi Jain Brothers Publisher. 
Delhi. 

Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405-410. 
http://dx.doi.org/10.1016/S1360-1385(02)02312-9 

Mohammadi, R., Haghparast, R., Aghaee-Sarbarze, M., & Abdollahi, A. V. (2006). An evaluation of drought 
tolerance in advanced durum wheat genotypes based on physiologic characteristics and other related 
indices. Iranian Journal of Agricultural Sciences, 37, 561-567.  

Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach 
chloroplasts. Plant Cell Physiology, 22, 867-880. 

Pireivatloum, J., Qasimov, N., & Maralian, H. (2010). Effect of soil water stress on yield and proline content of 
four wheat lines. African Journal of Biotechnology, 9, 036-040. 

Ramachandra, A. R., Chaitanya, K. V., Jutur, P. P., & Sumithra, K. (2004). Differential antioxidative responses 
to water stress among five mulberry (Morus alba L.) cultivars. Environmental and Experimental Botany, 
52, 33-42 

Renu, K. C., & Devarshi, S. (2007). Acclimation to drought stress generates oxidative stress tolerance in 
drought-resistant than susceptible wheat cultivar under field conditions. Environmental and Experimental 
Botany, 60, 276-283. http://dx.doi.org/10.1016/j.envexpbot.2006.11.004 

Sairam, R. K. (1994). Effect of moisture stress on physiological activities of two contrasting wheat genotypes. 
Indian Journal of Experimental Biology, 32, 584-593. 

Sairam, R. K., & Srivastava, G. C. (2001). Water stress tolerance of wheat (Triticum aestivum L.): variations in 
hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. Journal of 
Agronomy and Crop Science, 186, 63-70. http://dx.doi.org/10.1046/j.1439-037x.2001.00461.x 

Salekjalali, M., Haddad, R., & Jafari, B. (2012). Effects of soil water shortages on the activity of antioxidant 
enzymes and the contents of chlorophylls and proteins in barley. American-Eurasian Journal of 
Agricultural & Environmental Science, 12(1), 57-63. 

Sarvajeet, S. G., & Narendra, T. (2010). Reactive oxygen species and antioxidant machinery in a biotic stress 
tolerance in crop plants. Annual Review. Plant Physiology and Biochemistry, 3, 1-22. 



www.ccsenet.org/jas Journal of Agricultural Science Vol. 4, No. 8; 2012 

30 
 

Shao, H. B., Liang, Z. S., & Shao, M. A. (2005). Changes of some anti-oxidative enzymes under soil water 
deficits among 10 wheat genotypes at maturation stage. Colloids and Surfaces B: Biointerfaces, 45, 7-13. 
http://dx.doi.org/10.1016/j.colsurfb.2005.06.016 

Turkan, I., Bor, M., Ozdemir, F., & Koca, H. (2005). Differential responses of lipid peroxidation and 
antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. 
subjected to polyethylene glycol mediated water stress. Plant Science, 168, 223-231. 
http://dx.doi.org/10.1016/j.plantsci.2004.07.032 

Zlatev, Z. S., Lidon, F. C., Ramalho, J. C., & Yordanov, I. T. (2006). Comparison of resistance to drought of 
three bean cultivars. Biologia Plantarum, 50(3), 389-394. http://dx.doi.org/10.1007/s10535-006-0054-9 

 


