PCR-RFLP Analysis of cpDNA in Tea Cultivars (*Camellia sinensis* L.) in Sichuan of China

 Shengxiang Chen, Guinian Qi (Corresponding author), Huan Li, Yao Zou & Hongli Shan Department of Tea Science, College of Horticulture, Sichuan Agricultural University No.46 Xin Kang Road, Ya'an 625014, Sichuan, China Tel: 86-835-288-2584 E-mail: guinian5612@sina.com.cn

Received: November 16, 2011	Accepted: December 1, 2011	Online Published: April 1, 2012
doi:10.5539/jas.v4n5p25	URL: http://dx.doi.org/10.5539/ja	as.v4n5p25

The research is financed by Science & Technology Department Project of Sichuan Province (2006-YZGG-8).

Abstract

The genetic diversity among 30 tea cultivars in Sichuan of China was investigated by PCR-RFLP analysis of cp DNA. 7 sets of chloroplast primers could produce one or more than one distinct bands by direct electrophoresis in 2% agrose gels. After the amplified products were digested by 10 restriction enzymes, a total of 135 bands were detected, among which 98 bands (72.59%) were polymorphic. The cpDNA PCR-RFLP based genetic distance (GD) among 30 tea accessions ranged from 0 to 0.071, with the mean of 0.049.

Keywords: Camellia sinensis, PCR-RFLP, cpDNA

1. Introduction

A great number of genetic resources, including the tea plant and its allied species and varieties in genus *Camellia* have been collected and preserved in Sichuan Province, China. However, Cultivated tea is largely based on selection of yield, quality, biotic and abiotic stress resistance among the existing materials. As a consequence, the widspeard cultivation of clonal tea can diminish genetic diversity if care is not taken to use clones of disperse origin. So it appears necessary to collect and evaluate tea cultivars, which will provide important information on its phylogenetic relationship, and therefore, help to proper conservation and management of its genetic resources. Our preliminary investigations have shown a great deal of interspecific variation at the nuclear genome level (Wang *et al.* 2007). However, the organellar genome variations among them are not yet available.

The availability of universal primers capable of amplifying specific regions of the chloroplast (BADENES and PARFITT, 1995; TSUMURA et al., 1996; Heinze B, 2001) genomes using the polymerase chain reaction (PCR) has made it possible to explore organelle DNA diversity for taxonomic and phylogenetic purposes. Because of its uniparental mode of inheritance and its low mutation rate related to the nuclear genome, the chloroplast DNA (cpDNA) is considered to be an ideal system in phylogeny and in population genetics. Currently, sequence comparison or restriction analysis of fragments amplified with universal primers for organellar DNA has been widely used in species identification, genetic diversity and phylogenetic studies in many different plant species (GIELLY and TABERLET 1994; BADENES and PARFITT et al. 1995; DEMESURE et al. 1996; TSUMURA et al. 1996; PARDUCCI and SZMIDT 1999; HUANG and SUN 2000; PARANI et al. 2000, 2001; WANG et al. 2000; XU et al. 2001; WU et al. 2005).

The objective of this study was to evaluate the interspecific organelle genome variations in tea cultivars using restriction-site polymorphism of cpDNA, and to provide some more molecular data for phylogenetic relationships in *Camellia sinensis*.

2. Materials and Methods

2.1 Plant Material

The whole plant of different accessions were collected from Sichuan, Zhejiang, Fujiang, Hunan, Guangdong and Hainan provinces in China. 30 tea cultivars were transferred to the Tea Plant Garden of Sichuan Agricultural

University in Ya'an of Sichuan province, China. The accession numbers, origins and chromosome numbers are presented in Table 1.

2.2 DNA Extraction

Total genomic DNA was extracted from young leaves following the procedure of CTAB described by Huang (2003) with minor modifications.

2.3 RCR-RFLP Analysis

Seven sets of chloroplast primers were chosen for this investigation. Primer sequences are listed in Table 2. All the primers were synthesized by Shanghai Bioengineering Company. PCR amplification was performed in a 25µL reaction volume, containing 100ng template DNA, 0.2mmolL⁻¹ dNTPs, 1.5 mmol L⁻¹ MgCl₂, 50ng primer, 1×PCR buffer and 3U Taq DNA polymerase, covered with a drop of mineral oil. Amplification was performed in a PTC-220 Thermalcycler. Initial denaturation was for 3 min at 94°C, followed by 40 cycles of 1 min at 94°C, 1 min at 55°C, 3 min at 72°C and a 10 min final extension step at 72°C. The success of each PCR reaction was verified by electrophoresis of 21 of the reaction products on 2% agarose gels in 1×TAE buffer and stained with ethidium bromide. The PCR-amplified DNA fragments were digested with the restriction endonucleases *Hinf* I, *Hae* III, *Hind* III, *Taq* I, *Msp* I, *EcoR* I, *Ssp* I, *Rsa* I, *Xba* I, or *EcoR* V at 37°C for 6 h. The digested DNA fragments were separated by electrophoresis on 2% agarose gels in 1×TAE and stained with ethidium bromide. Images were photographed, captured using ImageMaster VDS (Amersham PharmaciaBiotech).

2.4 Data Analysis

The digested DNA fragments were scored by presence (1) or absence (0) for each *C.sinensis* accession. Genetics similarities (GS) between each pair of accessions were estimated using the method of NEI and LI (1979), $GS=2N_{XY}/(N_X+N_Y)$, GD=1-GS, where N_X and N_Y are the numbers of DNA fragments observed in accession X and Y, respectively, and N_{XY} is the number of fragments shared by both accessions. All procedures were computed with the computer package NTSYS (ROHLF, 1993).

3. Results

3.1 PCR-RFLP Polymorphisms

All seven primers used in the present study successfully amplified the corresponding cpDNA regions in all the tea accession investigated. Digestion of the amplified products with *Hinf* I, *Hae* III, *Hind* III, *Taq* I, *Msp* I, *EcoR* I, *Ssp* I, *Rsa* I, *Xba* I, or *EcoR* V totally detected 135 fragments (Table 3), of which, 98 fragments (72.59%) were polymorphic. Fig. 1A illustrated the example of amplified products with primer trnL-trnF. Fig. 1B showed the digested products of trnL-trnF/Taq I combinations.

3.2 Distances between Tea Cultivars

The genetic distances (GD) values between 30 tea accessions are presented in Table 4. The GD values among tea accessions varied from 0 to 0.071, with the mean of 0.049. The GD value between Zhe'nong113 and Zhe'nong117, Yingshuang and Jingfeng, Yinghong1 and Yinghong2, Mengshan 9 and Mengshan11 and mengshan23, was found to be the lowest (0). Zhe'nong113 and Zhe'nong117, Yingshuang and Jingfeng have lowest distances. This is because earlier two cultivars were the offspring of the same parents whereas later two have a common ancestral origin. And Yinghong1 and Yinghong2, Mengshan 9 and Mengshan11 and mengshan23, have lowest distances. This may be due to the reason that both the cultivars originated from a single clone (Bai, 2001).

4. Discussion

Interspecific variation could be detected through restriction analysis of fragments amplified with cpDNA universal primers (ZIEGENHAGEN et al. 1995; PARANI et al. 2001). This study showed that amplification of cpDNA with universal primers, followed by electrophoresis of restricted amplified fragments could reveal the interspecific polymorphism as 72.59%. Our previous study showed that the polymorphism of tea cultivars grown in Sichuan was high as 94.61% at the nuclear genome level (Wang et al. 2007). The genetic Distances (GD) of 30 Sicaun tea cultivara ranged from 0 to 0.071, and averaged at 0.049. That of tea cultivars grown in Sichuan ranged from 0.149 to 0.679, averaging at 0.412 (Wang et al. 2007). These suggested that relatively higher level of genetic polymorphism in tea cultivar could be detected by at the nuclear genome level, whereas relatively lower level genetic polymorphism could be estimated by cpDNA PCR-RFLP markers. This is in agreement with the results of investigations on *Cym bidium* (Gan et al. 2007). The reason why the genetic diversity of this study was lower that we can speculate that the chloroplast DNA (cpDNA) is uniparental mode of inheritance and its low mutation rate related to the nuclear genome in tea cultivars.

References

Badenes, M. L. & Parfitt, D. E. (1995). Phylogenetic relationships of cultivated *Prunus* species from an analysis of chloroplast DNA variation. *Theor. Appl. Genet.*, *90*, 1035-1041. http://dx.doi.org/10.1007/BF00222918

Bai F Y. (2001). China tea varieties. Shanghai: Shanghai science & technical publishers.

Demesure, B., Comps, B. & Petit, R. J. (1996). Chloroplast DNA phylogeography of the common beech (Fagus sylvatica L.) in Europe. *Evolution*, *50*, 2515-2520.

Gan Na, Tan Xianghong, Chen Qibing, et al. (2006). Genetic Diversityin Cymbidium Based on RAPD Markers and PCR-RFLP Analyses of Organellar DNAs. *Acta Horticulturae Sinica*, 33 (2), 349-355.

Gielly, L. & Taberlet, P. (1994). The use of chloroplast DNA to resolve plant phylogenies: noncoding versus *rbc*L sequences. *Mol. Biol. Evol.*, 11(5), 769-777.

Huang JA, Huang YH, Luo JW, et al. (2003). Efficient methods for genomic DNA extraction from tea plant. *Journal of Hunan Agricultural University(National Sciences)*, 29 (5), 403-407.

Huang, J. C. & Sun, M. (2000). Genetic diversity and relationships of sweetpotato and its wild relatives in Ipomoea series Batatas (Convolvulaceae) as revealed by inter-simple sequence repeat (ISSR) and restriction analysis of chloroplast DNA. *Theor. Appl. Genet.*, *100*, 1050-1060. http://dx.doi.org/10.1007/s001220051386

Nei, M. & Li, W. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. *Proc. Natl Acad. Sci. USA*, 76, 5269-5273.

Parducci, L. & Szmidt, A. E. (1999). PCR-RFLP analysis of cpDNA in the genus Abies. *Theor. Appl. Genet.*, 98, 802-808. http://dx.doi.org/10.1007/s001220051137

Parani, M., Lakshmi, M., Ziegenhagen, B. et al. (2000). Molecular phylogeny of mangroves VII. PCR-RFLP of trnS-psbC and rbcL gene regions in 24 mangrove and mangrove-associate species. *Theor. Appl. Genet.*, *100*, 454-460. http://dx.doi.org/10.1007/s001220050059

Parani, M., Rajesh, K., Lakshmi, M. et al. (2001). Species identification in seven small millet species using polymerase chain reaction-restriction fragment length polymorphism of trn S-psb C gene region. *Genome, 44*, 495-499. http://dx.doi.org/10.1139/gen-44-3-495

Rohlf, F. J. (1993). NTSYS-pc version 1.80. -/ Exeter Software, Setauket, NY.

Taberlet P, Gielly L, Pauto G, Bouvet J (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. *Plant Mol. Biol.*, *17*(5), 1105-1109. http://dx.doi.org/10.1007/BF00037152

Tsumura, Y., Kawahara, T., Wickneswari, R. et al. (1996). Molecular phylogeny of Dipterocarpaceae in Southeast Asia using RFLP of PCR-amplified chloroplast genes. *Theor. Appl. Genet.*, *93*, 22-29. http://dx.doi.org/10.1007/BF00225722

Heinze B. (2001). A data base for PCR primers in the chloroplast genome. [Online] Available: http://bfw.ac.at/200/1859.html (July 12-16, 2002)

Wang XP, Ma BT, Qi GN, et al. (2007). RAPD Analysis on the genetic Relationships of Tea Cultivars Grown inSichuan. *Acta Horticulurae Sinica*, 34 (1), 242-244.

Wang, G. Z., Matsuoka, Y. & Tsunewaki, K. (2000). Evolutionary features of chondriome divergence in *Triticum* (wheat) and *Aegilops* shown by RFLP analysis of mitochondrial DNAs. *Theor. Appl. Genet.*, 100, 221-231. http://dx.doi.org/10.1007/s001220050030

Wu Wei, Zheng Youliang, Chen Li, et al. (2005). PCR-RFLP analysis of cpDNA and mtDNA in the genus Houttuynia in some areas of China. *Hereditas*, 142, 24-32. http://dx.doi.org/10.1111/j.1601-5223.2005.01704.x

Xu, D. H., Abe, A., Kanazawa, A. et al. (2001). Identification of sequence variations by PCR-RFLP and its application to the evaluation of cpDNA diversity in wild and cultivated soybeans. *Theor. Appl. Genet.*, *102*, 683-688. http://dx.doi.org/10.1007/s001220051697

Ziegenhagen, B., Kormutak, A., Schauerte, M. et al. (1995). Restriction site polymorphism in chloroplast DNA of silver fir (Abies alba Mill.). *For. Genet.*, *2*, 99-107.

No	Accession Name	species	source	No	Accession Name	species	source
1	Mengshan 9	C.sinensis	Sichuan	16	Fuding	C.sinensis	Fujiang
2	Mengshan 23	C.sinensis	Sichuan	17	Yuanxiaocha	C.sinensis	Fujiang
3	Mengshan11	C.sinensis	Sichuan	18	Wuniuzao	C.sinensis	Zhejiang
4	Longjing 43	C.sinensis	Zhejiang	19	Zhe'nong117	C.sinensis	Zhejiang
5	Yingshuang	C.sinensis	Zhejiang	20	Donghuzao	C.sinensis	Hunan
6	Fuxuan 9	C.sinensis	Fujiang	21	Zhehedabaicha	C.sinensis	Fujiang
7	Anjibaicha	C.sinensis	Zhejiang	22	Fujiangshuixian	C.sinensis	Fujiang
8	Chunbolv	C.sinensis	Fujiang	23	Huangyeshuixian	C.sinensis	Guangdong
9	Meizhan	C.sinensis	Fujiang	24	Shuyong 307	C.sinensis	Sichuan
10	Zhuyeqi	C.sinensis	Hunan	25	Jingfeng	C.sinensis	Fujian
11	Fudingdahaocha	C.sinensis	Fujiang	26	Yinghong 1	C.sinensis	Guangdong
12	Juhuachun	C.sinensis	Zhejiang	27	Yinghong 2	C.sinensis	Guangdong
13	Longjingchangye	C.sinensis	Zhejiang	28	Qianmei 303	C.sinensis	Guizhong
14	Zhe'nong 113	C.sinensis	Zhejiang	29	Qianmei 419	C.sinensis	Guizhong
15	Pingyangtezao	C.sinensis	Zhejiang	30	Hainandaye	C.sinensis	Hannan

Table 1. The accession name and source of tea cultivars

Table 2. DNA sequence and type of the primer pairs used in the present study

Prime rpair	Sequence	type	References
trnL-trnF	5' -CGAAATCGGTAGACGCTACG-3' 5' -ATTTGAACTGGTGACACGAG-3'	cpDNA	TABERLET et al. 1991
trnT-trnL	5' -CATTACAAATGCGATGCTCT-3' 5' -TCTACCGATTTCGCCATATC-3'	cpDNA	TABERLET et al. 1991
trnD-trnT	5' -ACCAATTGAACTACAATCCC-3' 5' -CTACCACTGAGTTAAAAGGG-3'	cpDNA	DEMESURE et al. 1995
trnH-trnK	5' -ACGGGAATTGAACCCGCGCA-3' 5' -CCGACTAGTTCCGGGTTCGA-3'	cpDNA	DEMESURE et al. 1995
trnS-trnfM	5' -GAGAGAGAGAGGGATTCGAACC-3' 5'-CATAACCTTGAGGTCACGGG-3'	cpDNA	DEMESURE et al. 1995
rbcL	5′ -TGTCACCAAAAACAGAGACT-3′ 5′ -TTCCATACTTCACAAGCAGC-3′	cpDNA	PARANI et al. 2000
trnS-psbC	5' -GGTTCGAATCCCTCTCTC-3' 5' -GGTCGTGACCAAGAAACCAC-3'	cpDNA	PARANI et al. 2000

Table 3. Amplified and digested DNA fragments of 30 tea accessions based on PCR-RFLP technology

Enzyme Hi		Hinf I		HaeIII		<i>Hind</i> III		Taq I		Msp I		EcoR I		Ssp I		Ι	Xba	Ι	<i>EcoR</i> V		
Primer	TF	PF	TF	PF	TF	PF	TF	PF	TF	PF	TF	PF	TF	PF	TF	PF	TF	PF	TF	PF	
trnL-trnF	4	4	2	1	1	1	5	5	1	0	2	1	5	4	4	4	4	3	3	3	
trnT-trnL					2	1			2	1									1	0	
trnD-trnT	3	2	1	1	1	1	1	0			1	0									
trnH-trnK	5	3	2	2	1	1	1	0			1	0	2	1	1	1	4	3			
trnS-trnfM	3	3	2	2	1	1	1	1	1	0	1	0	2	2	1	1	5	4	1	0	
rbcL	6	5	3	2	1	1	2	1	3	1	1	1	6	3	5	5	7	4	6	4	
trnS-psbC	4	4	2	2	2	2			2	1			4	4	1	0			2	1	

Note: TF:Total fragments;PF :Polymorphic fragments.

						r			-	-		—		r—						-					_	_	r—		—	<u> </u>
30																														0000
29																													0000	0062
82																												0000	0054	0.035
27																											0000	0041	800	0033
97																										0000	0000	1100	0.048	0083
22																									0000	300	0062	0062	9002	0064
24																								0000	800	0500	0500	0052	0025	0068
23																							0000	0064	0063	1900	1900	2900	0900	0037
2																						0000	0066	0071	0064	9900	0066	8900	0000	0062
21																					0000	0063	0055	0055	0.048	8900	800	8500	6400	0062
20																				0000	1900	8000	9600	0057	0054	0034	0034	2000	0020	0045
61																			0000	6003	2400	1900	0056	6003	0000	0000	0000	2900	0087	0060
18																		0000	0054	0057	0042	8500	8500	8500	6300	6900	6600	0026	800	8900
17																	0000	0045	8600	9900	0000	0063	0066	0090	0900	0000	0000	0065	0063	0064
16																0000	90092	800	9300	1500	0034	0900	8000	9500	1400	6000	6600	0062	0054	1900
15															0000	8000	2300	0042	£k00	0084	6100	9500	1900	9500	2300	1900	1900	0064	0500	0900
14														0000	800	0083	<i>19</i> 00	60054	0000	5300	<i>1</i> #00	1900	9900	6900	0600	0000	0900	1900	1900	0900
в													0000	2000	8000	0013	1400	6600	2000	6600	8000	6900	1900	0057	0900	10054	0054	9900	1900	0062
21												0000	8100	0054	1900	0045	6900	8100	1500	2500	1900	\$900	1500	£100	84010	6400	6400	6400	004S	0065
п											0000	90026	1400	0062	0048	0033	0032	0045	2100	1900	0035	9900	0062	2900	0900	800	0063	9900	8900	0063
01										0000	9900	800	6004	99070	0.062	0.064	0.062	6500	9900	8000	0000	6900	6600	0.054	0900	6600	6000	OLBS	0.054	0.035
6									0000	0052	0038	600	004	0.048	000	0038	0032	0042	8100	0052	0000	0068	0003	8500	1900	0052	0062	0055	1900	0062
8								0000	0041	89010	0037	90046	0045	1800	0000	0005	8000	9400	1600	800	0082	6500	60054	0057	6600	0002	0062	19010	8500	500
7							0000	2400	91010	8500	0900	0500	0100	2500	1500	0046	2005	6600	2500	0055	1100	6500	0062	6900	1500	0061	1900	8500	800	0062
6						0000	0044	0600	9009	0057	0041	0600	0047	9600	6047	0037	0047	0600	9600	0.048	0034	0052	8500	0020	0047	0057	0057	0056	0048	0039
5					0000	2400	1900	6600	1500	0900	0500	0048	0900	0040	0052	0041	0900	6003	01010	0054	0048	9900	6900	0057	0000	0062	0062	6500	0055	0064
4				0000	0064	6003	0044	008	400	9008	9100	0053	9009	6400	0002	0047	0046	0045	6600	1900	000	0064	9900	1900	0064	800	8500	0900	1900	0061
3			0000	9100	8500	0053	1900	0045	1900	90055	8000	0042	003	0900	6#010	0044	2400	9500	0900	0054	3100	9900	9500	0037	8500	90055	0055	6400	0037	1900
2		0000	0000	9100	8500	0063	1900	0045	0041	90065	8300	0042	0043	0900	6#00	0.044	0047	9500	0900	0054	3100	9900	9300	0037	8500	90055	0065	6#00	0037	1900
1	0000	0000	0000	91010	8500	6003	0057	0045	1100	9900	8900	0042	6003	0000	6400	0044	2400	9900	0900	0054	3100	9900	9900	0037	8900	0065	0055	6400	0087	1900
	1	2	3	4	5	9	7	8	6	0	Π	1	ß	14	IS	9I	11	8	61	8	21	я	33	24	я	8	z	*	ନ	R

Table 4. The genetic Distances (GD) of 30 tea cultivars

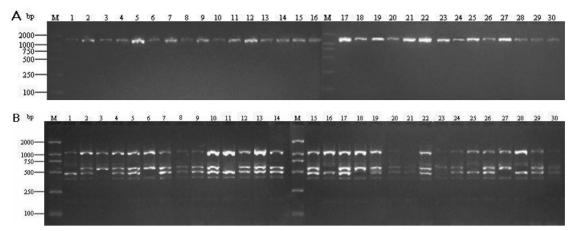


Figure 1. A-B. (A) Amplified products of primer pairs trnL-trnF of genomic DNA from 30 tea accessions. 1-30 indicate the number in Table 1. (B) Amplified and digested products of primer/enzyme combination trnL-trnF/Taq I of genomic DNA from 30 tea accessions. 1-30 indicate the number in Table 1, M indicates DL2000 marker