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Abstract 
High N-NH3 losses are expected when conventional urea is applied to the soil surface. In order to reduce it, urea 
granules could be coated with different materials to decrease fertilizer dissolution rate or to stabilize N-NH4

+ by 
acidification. In this study, we investigated the effect of a polymer-coated urea and powdered S0 added to urea, 
in the presence or absence of a S-oxidizing bacterium (Acidithiobacillus thiooxidans), on soil pH, SO4

2- 
availability, NH4

+, and NH3 volatilization. Applying S0 before urea and the inoculation with bacteria have 
promoted the highest S0 oxidation rates. The greater decrease in soil pH occurred when S0 was applied before 
urea at a higher dose, which also decreased NH3 volatilization by 83% up to 4 days after urea application. 
However, the decrease in soil pH did not increase the concentration of NH4

+, nor did it decrease the accumulated 
amount of volatilized NH3 over time. The inoculation of A. thiooxidans accelerates S0 oxidation process, but it 
was insufficient to counteract the H+ consumption by urea hydrolysis. Therefore, the S0 application with urea did 
not offer chemical protection against NH3 loss, but a physical barrier in the controlled-release urea had less 
dissolved urea in soil and reduced NH3 losses. 
Keywords: N-fertilizer, slow-release, urease, S0, NH3 volatilization 

1. Introduction 
Urea is a solid N-fertilizer with the highest concentration of N (46%) and the lowest cost per unit of nutrient. 
Nevertheless, N losses by ammonia (NH3) volatilization decrease its agronomic efficiency. In soil, urea is 
hydrolyzed to NH3 and CO2 (Sigurdarson et al., 2018), and NH3 can be lost to the atmosphere as a gas. The 
acidity around the granule application region is a key driver of a lower NH3 volatilization (Longo & José De 
Melo, 2005; Viero et al., 2014) because if there is sufficient H+ in the medium, the NH3 is converted to NH4

+ (da 
Costa et al., 2019), which is a more stable N-specie in soil. Hence, the application of acidifying substances 
together with urea might lower the emission of NH3 and temporarily keep a higher NH4

+ concentration in soil 
(Trenkel, 2010).  

Elemental sulfur (S0) is a high-purity S-source (> 98%), and due to this, a small mass of product would be 
required to satisfy the ideal H+ demand for N hydrolysis in urea granules. However, the form of sulfur 
absorbable by plants is sulfate (SO4

2-). Thus, oxidation of S0 is mediated by soil microbes, such as bacteria of the 
genus Acidithiobacillus, which produces H2SO4 that is readily dissociated in soil solution as SO4

2- and 2H+ (Li et 
al., 2005; Kupka et al., 2009). If we consider the hypothetical reaction CO(NH2)2 + S0 + 3/2O2 → 2NH4

+ + 
H2CO3 + SO4

2-, the oxidation of one mole of S should neutralize the alkalinity produced by one mole of urea; 
hence, the ideal mass ratio of S/N is 1.145. In controlled-release urea fertilizers, S0 is used together with 
polymers as a coating on urea granules to retard the granule dissolution due to hydrophobic nature of those 
substances (Wang et al., 2019). However, although the polymer layer improves the granule coating quality, it 
limits the action of microorganisms in the S0 oxidation (Zhao et al., 1996). 

Fine particles of S0 have faster oxidation in soil because of their high specific surface (Chapman, 1989; Friesen, 
1996). However, the application of powdered S0 results in losses by wind and poor distribution, and it might 
irritate the human airway (Boswell & Friesen, 1993). Alternatively, adherent substances are used to protect S0 on 
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urea granules, decreasing the segregation of the mixture and maintaining the large surface of S0 particles, which 
is a condition more favorable to S0 oxidation. Moreover, applying S0 together with urea, rather than separately, 
reduces the costs of fertilizer’s application. However, there is little information about the effect of this 
association in the acidity and stability of NH4

+ in soil. Therefore, the objective of this study was to investigate 
the performance of urea-based fertilizers associated with S0 or polymer application in the presence or absence of 
bacteria Acidithiobacillus on the volatilization of NH3 and stabilization of NH4

+ in soil. 

2. Method 
The experiment was conducted using a forced airflow system adapted to capture volatilized NH3. Powder 
elemental sulfur (S0) was passed through a 320-mesh sieve. We tested the following: urea (45% N) with and 
without application of powdered elemental sulfur, an early application of S0 and Acidithiobacillus thiooxidans, 
and commercially controlled-release urea coated with S0, polyolefins and ethylene-vinyl acetate 
copolymers-EVAC (accounted for 3% of coated fertilizers weight and 37% N and 16% S).  

The soil used was a Ustox Oxisol, sieved through a 1 mm sieve, containing 190 g kg-1 of clay, 40 g kg-1 of silt, 
770 g kg-1 of sand, 160 g kg-1 of maximum water retention, 12 g kg-1 of organic matter, 12.7 mg dm-3 of S and 
4.8 cmolc dm-3 of cation exchange capacity and pH 5.6.  

The 12 treatments are described in Table 1. Eight treatments were obtained from the combination of two S0 doses 
(0.86 and 2.29 g dm-3) in powder form (< 0.053 mm), early S0 application (12 d), or S0-urea joint application and 
the presence or absence of A. thiooxidans. Two treatments corresponded to a commercial controlled-release urea 
in the presence or absence of A. thiooxidans. In addition, two other treatments corresponding to the application 
of only urea and one control, without the application of S0. The N dose was 2 g kg-1, corresponding to an S/N 
ratio equal to 0.43 and 1.15 for the S0 doses 0.86 and 2.29 g kg-1, respectively. Elemental sulfur and urea were 
applied at 0.5 cm soil depth as well as 140 μL of a suspension containing 109 mL-1 cells of A. thiooxidans. Soil 
samples were collected immediately before N-urea application and 4, 9, 15, and 19 d after that. A completely 
randomized experimental design was used. Sixty experimental units were obtained from the combination of the 
12 treatments (Table 1) with the five sampling times, and we had three replications per experimental unit.  

 

Table 1. Description of treatments 

Treatments  S0 (g dm-3) TI ‡ 

Control 0 Control 

Urea 0 U 

Urea + early S0 application † 0.86 U + S0e 

Urea + early S0 + A. thiooxidans † 0.86 U + S0ei 

Urea + S0 0.86 U + S0 

Urea + S0 + A. thiooxidans 0.86 U + S0i 

Controlled release urea 0.86 CRU 

Controlled release urea + A. thiooxidans 0.86 CRUi 

Urea + early S0 application † 2.29 U + S0e 

Urea + early S0 † + A. thiooxidans 2.29 U + S0ei 

Urea + S0 2.29 U + S0 

Urea + S0 + A. thiooxidans 2.29 U + S0i 

 

The experimental units consisted of Falcon tubes (50 mL) containing 45 cm3 of soil. Five tubes of the same 
treatment were grouped and put into the volatilization chambers. Soil moisture was maintained between 85 and 
100% of the water retention capacity of the soil, by monitoring the weight of experimental units; room 
temperature was 25±2 °C.  

The volatilization chambers were closed glass pots with approximately 1.5 L of internal volume. They were 
connected to an air inlet tube (6.25 cm³ min-1) and an air outlet pipe connected to Erlenmeyer flasks (125 mL) 
containing 25 mL of boric acid (20 g L-1) and methyl red and bromocresol green as a color indicator for 
collecting NH3 (g). To avoid potential contamination with NH3 from the atmosphere, the airflow inlet system 
was filtered through a phosphoric acid solution (pH < 3.6).  

Ammonia collected in the boric acid solution was titrated with HCl 0.005 mol L-1. Volatilization chambers were 
quickly opened to collect one tube at each time of incubation for soil analyses. After the experiment, soil samples 
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were air-dried for pH and electrical conductivity determination in a soil suspension:water (ratio 1:2.5), NH4
+-N 

(Kempers & Zweers, 1986), NO3-N (Cataldo et al., 1975), and SO4
2-S (Hoeft et al., 1973). 

The results were submitted to analysis of variance and the treatments were compared within each time by the 
Tukey test at 5% of probability. We calculated the Pearson linear correlation coefficients for the variables NH4

+, 
pH, SO4

2-, accumulated NH3, and rate of NH3 volatilization using the software R version 3.2.0. We adjusted 
equations through linear and nonlinear models for accumulated NH3 using the Stats package of the software R. 

3. Results 
3.1 NH3-Volatilization 

There were contrasting differences between treatments in terms of NH3 volatilization (Table 2, Figure 1). In fact, 
the accumulated of N-NH3 volatilization for up to 19 d corresponded to 65% of the total N applied as urea, 56% 
for urea combined with the application of powdered S0, regardless of the application time or dose of S0, and 3% 
for the controlled-release urea. On average, NH3 volatilization was 95% lower for the controlled-release urea 
than conventional urea. 

 

Table 2. Adjustment of sigmoidal and linear equations for the percentage of accumulated NH3-N (g) as a function 
of incubation time (t). 

Treatment Dose of S0 (g dm-³) Equation 
Estimated parameters 

R2 
n b t50% 

U 0 

yො	=	 n

1	+	ቀ 1

10
ቁ 

1
b(t	–	t50%)

  

62.78 2.513 6.5 0.98 
U + S0ei 0.86 57.63 2.072 6.8 0.99 
U + S0e 0.86 49.38 2.007 6.0 0.99 
U + S0i 0.86 54.62 2.022 5.2 0.98 
U + S0  0.86 57.09 2.297 6.3 0.99 

CRUi 0.86 
yො	=	bt  

0.04235(0.10) 0.72 
CRU 0.86 0.10758** 0.69 

U + S0ei 2.29 

yො	=	 n

1 + ቀ 1

10
ቁ 

1
b(t	–	t50%)

  

55.76 1.365 7.8 0.99 
U + S0e 2.29 53.99 1.947 6.6 0.99 
U + S0i 2.29 52.38 2.149 6.0 0.96 
U + v 2.29 54.87 1.971 6.0 0.98 

Note. For sigmoidal equations: NH3-N maximum (n); maximum rate of NH3 volatilization (1/b), dag kg-1 d-1; 
days for 50% of NH3-N maximum (t50%). For linear equations: (**) and (0.10) indicate significance at 1 or 10% 
by t-test. U = Urea; U + S0ei = Urea + early S0 + A. thiooxidans; U + S0e = Urea + early application; U + S0i = 
Urea + S0 + A. thiooxidans; U + S0 = Urea + S0; CRUi = Controlled release urea + A. thiooxidans; CRU = 
Controlled-release urea.  
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3.6 Correlation 

There was a significant positive correlation between NH4
+ and accumulated NH3 (0.64**), volatilization rate of 

NH3 (0.59**) or pH (0.74**), but not with SO4
2--S (0.15ns) (Table 3). Between pH and accumulated NH3, the 

correlation was 0.55***. Furthermore, there was no correlation between SO4
2- and accumulated NH3 (0.10ns). 

 

Table 3. Coefficients for Pearson's correlation test 

NH3 (mg/dm³/day) NH3 (mg/dm³-accumulated) NH4
+ NO3

- SO4
2- CE (μS/cm²) pH 

NH3 (mg/dm³/day) 1 

NH3 (mg/dm³-accumulated) 0.33*** 1 

NH4
+ 0.59*** 0.64*** 1 

NO3
- - 0.08ns 0.67*** 0.25** 1 

SO4
2- - 0.09ns 0.1ns 0.15° 0.08ns 1 

CE (μS/cm²) 0.37** 0.41*** 0.65*** 0.11ns 0.73*** 1 

pH 0.57** 0.55*** 0.74*** 0.19* - 0.33*** 0.22** 1 

 
4. Discussion 
The oxidation of S0 in fact induces soil acidification, but it was overall demonstrated not to be enough to reduce 
ammonia volatilization from urea fertilizer. Our results showed that even with the previous application of 
powdered S0 (2.29 g dm-3) in soil and inoculation with A. thiooxidans, the time was delayed by only one day to 
reach 50% of the maximum NH3 volatilization. Moreover, there were no differences between powered S0-urea 
treatments on NH3 accumulated up to day 19. It was clear that S0 oxidation is a slow process in the soil, while 
the dissolution and hydrolysis of the urea granules are very fast reactions in the soil. Therefore, both processes 
occur without close synchrony in the soil. 

We hypothesize that the kinetic of H+ production by S0 oxidation (Equation 1) was below the requirement to 
stabilize N-NH4

+ (Equation 4), due to the fast hydrolysis of urea and the resulting N-NH3 volatilization (de 
Oliveira et al., 2014) (Equations 3 and 4) associated with the low rate of S0 oxidation in soil. Consequently, the 
NH3 volatilization was reduced only up to day 9 after the application of urea, even under suitable conditions for 
S0 oxidation, such as a higher S/N ratio (1.1:1), early S0 application, and inoculation with A. thiooxidans. 
Although S0 is a hydrophobic substance, the simple mixture with urea does not change urea granule dissolution 
and the dynamics of N in the soil. On the other hand, controlled-release urea, coated by S0 and polymers, had a 
slowed dissolution and reduced N volatilization over time. 

S0 + 1.5O2 + H2O (Microorganism) → SO4
2− + 2H+                     (1) 

CO(NH2)2 + 3H2O (Urease) → CO2 + 2NH4
+ + 2OH                     (2) 

H+ + 2OH-↔ H2O                                   (3) 

NH3 + H+ ↔ NH4
+                                   (4) 

Nitrogen fertilizers such as (NH4)2SO4 or NH4NO3 have less NH3 volatilization (de Oliveira et al., 2014; Cabezas 
et al., 2008) because of their acid reaction in soil. On the other hand, urea hydrolysis causes the formation of 
CO2, water, and NH3 (Zavaschi et al., 2014). Such reaction tends to increase soil pH (less H+ to convert NH3 to 
NH4

+) around the point of its application and the losses by volatilization are intensified (Longo & José De Melo, 
2005; Behera et al., 2013). Subsequently, H+ is produced again in the soil by nitrification under oxidic conditions 
(Equations 5 and 6). 

NH4
+ + 1.5O2 → NO2

- + 2H+ + CO2                           (5) 

NO2
- + 0.5O2 → NO3

-                                 (6) 

The previous S0 application and inoculation with A. thiooxidans, especially in the higher proportion of S0:N 
(1.1:1), increased the SO4

2- concentration in the soil. Even though the increased concentration of SO4
2--S is an 

indicator of S0 oxidation, the extractable S in the soil may underestimate the total oxidation, as our results 
suggest, because of both the immobilization of SO4

2--S and adsorption by soil colloids (Zhao et al., 2016). The S0 
oxidation rate in the soil is influenced by the particle size and S0 dose (Lucheta & Lambais, 2012; 
López-Mosquera et al., 2015); consequently, the use of the higher dose (2.29 g dm-3) powdered S0 produced 
more H+ compared to the dose of 0.86 g dm-3, as was demonstrated here.  
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Like already demonstrated, even though inoculating S0 with A. thiooxidans suspension may accelerate the S0 
oxidation in soil, the amount of produced H+ was insufficient to counteract the urea hydrolysis reactions in terms 
of H+ consumption. Moreover, we obtained low correlation coefficients between SO4

2- concentrations and NH3 
volatilization rates. Interestingly, NH4

+ and pH were positively correlated, suggesting that the effect of hydrolysis 
on the increase of soil pH is more predominant than the acidity due to S0 oxidation. 

From an analysis of nitrate concentration in the soil during the evaluation time, data showed that nitrification did 
not have important contributions to soil acidification. However, controlled-release urea treatments had more 
nitrate in soil compared to other fertilizer treatments, possibly because nitrification was inhibited under high NH3 
concentration and low acidity in soil (pH > 7.7) (Maharjan & Venterea, 2013; Katipoglu-Yazan et al., 2015). 
Hydrolysis reactions tend to be less intense with CRU because of the controlled release of urea from granules, 
leading to lower pH around the fertilizer application point compared to fast release urea fertilizers. The 
controlled-release urea has a double physical barrier that temporarily prevents the dissolution of the granule 
(Trenkel, 2010). Less dissolved urea in the soil solution reduces the urease activity and consequently, both the 
NH4

+ concentration in soil and NH3 volatilization are reduced. 

Elemental sulfur composing controlled-release urea is less accessible for S-oxidizing microorganisms (Yasmin et 
al., 2007; Zhao et al., 2016) and therefore, these fertilizers have little value as a source of SO4

2- in the first year 
of application (Boswell & Friesen, 1993; Solberg et al., 2007). In addition, our data support that inoculating A. 
thiooxidans in controlled-release urea has no influence on S0 oxidation during the experimental time.  

This study demonstrates that the chemical effects from the oxidation of S0 in the soil are negligible in terms of 
stabilization of NH4

+ when S0 is applied in a mixture with urea or as a coating of controlled-release urea. 
However, applying S0 in N fertilizers can be an inexpensive strategy to supply sulfur to plants in the medium and 
long term, because of its slow oxidation in soil.  

5. Conclusions 
Our results support that application of S0 with urea has little effect on the chemical stability of the NH4

+-N in the 
soil due to the asynchrony between the reactions of S0 oxidation and hydrolysis of urea. Although the application 
of Acidithiobacillus thiooxidans accelerates the acidity production through S0 oxidation, the extra H+ was 
consumed by urea hydrolysis when applied in a localized manner. On the other hand, the physical barrier in 
controlled-release urea had less dissolved urea in soil and reduced NH3 volatilization losses. 
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