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Abstract 
Entomopathogenic nematodes (EPNs) are worldwide soil-dwelling insect parasitic nematodes. They are potential 
pest bio-control agents a key component of Integrated Pest Management (IPM) programs. This study aimed to 
characterize and evaluate the pathogenicity of an EPN isolate from Kenya. The nematode was isolated from soils 
using insect bait technique and both morphological and molecular identification was performed. Efficacy of the 
isolate was evaluated against Tomato leafminer larvae (Tuta absoluta Meyrick.) using dose-based treatments of 
0-control, 100, 150, 200, and 250 infective juveniles (IJs/ml). Morphological analysis revealed body length (L) of 
835(659-987) µm and 1781 (1297-2097) µm from fresh IJs and males respectively. Males lacked a mucron. The 
isolate was characterized by the partial sequence length of 877 bp of the ITS region. Blastn results indicated the 
EPN isolate had a similarity match of 81-92% with Afro-tropical Steinernema species. It matched with 
Steinernema sp. (AY230186.1) from Kenya at 92% and Sri Lanka (AY230184.1). Phylogenetic analysis placed the 
isolate together with Steinernema sp. (AY230186.1) and (AY230184.1) with a bootstrap value of 100%. Maximum 
mean larval mortality (80%; 96%) was achieved 24 and 48 h post-treatment at concentration 150 IJs/ml. All 
nematode concentrations achieved over 50% mean mortality after 24 h period. There was a significant difference 
(P = 0.001) between doses 150 and 200 IJs/ml. From the study, it was concluded that the nematode isolate was 
Steinernema sp now referred to as Steinernema sp. Kalro (Genebank Accession MW151701). The EPN has the 
potential for development as a biological control agent against T. absoluta.  
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1. Introduction 

Entomopathogenic nematodes (EPNs) in the families’ Steinernematidae and Heterorhabditidae are pathogenic to 
insects (Kalia et al., 2014; Gozel & Kasp, 2015; de Brida et al., 2017), found in most soils worldwide. The EPNs 
free-living non-feeding stage, infective juveniles (IJs) which penetrate the insect host via body orifices or 
through the cuticle. Once in the hemolymph, the IJs release symbiotic bacteria that multiplies as the EPNs 
nourish on them and insect tissue and reproduce, killing the insect host within 24-72 hours (Kaushik & Chaubey, 
2016; Caoili et al., 2018; Yooyangket et al., 2018).  

The released bacteria provide pathogenicity, degrade and breakdown host tissue, and suppress the immunity of 
the host. These bacteria are known to produce toxic proteins (metabolites) that render EPNs lethal to insect hosts. 
They produce antibiotics and enzymes in addition to toxins. The mutualism of bacteria and nematodes is vital as 
it inhibits the development of resistance in the host insect. The nematodes complete their lifecycle within the 
host insect after which they exit into the soil and lie in wait for another suitable host (Poinar Jr., & Grewal, 2012; 
Sternberg & Dillman, 2012; Kalia et al., 2014; Gozel & Kasap, 2015).  

Isolation and identification of indigenous EPNs population from their preferred conditions is a crucial step in the 
development of effective biological pest management. This is because such species are suited to local climatic 
conditions (Salvadori et al., 2012; de Brida et al., 2017; Kalia et al., 2014). Commercial use of EPNs as pest 
bio-agents has triggered a search for new strains and evaluation of their virulence against agricultural pests 
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(Shapiro-Ilan et al., 2012). Most EPN species have not been known taxonomically, but tools for their 
identification have been developed. Nematode characterization is mainly based on morphological and 
morphometric characters which are limited due to a wide range of values/ratios among strains. There is, therefore, 
need for Deoxyribonucleic acid (DNA) sequence analysis for accurate identification (Liu & Berry, 1995). 
Characterization of EPNs requires study of the male tail, size and shape of spicules, body size, presence or 
absence of mucron, and lateral lines of infective juveniles (Nguyen, 2007; Hating et al., 2009). 

Tomato (Solanum lycopersicum L.), is one of the world’s most commonly and extensively grown edible fruit 
vegetables (Asgedom et al., 2011). Kenya is ranked 6th in tomato production in Africa with a total production of 
397,007 tonnes (FAO, 2012). However, its production is constrained mainly by insect pests among them Tomato 
leafminer (Tuta absoluta Meyrick.) that causes yield losses of up to 100%. The pest is mainly managed by 
chemical pesticides. Chemical pesticides are costly and pose environmental and food safety concerns. Their use 
on T. absoluta is also limited due to the pests’ nature of the damage and its ability to develop insecticide-resistant 
strains (Haddi et al., 2012; Nicolopoulou-Stamati et al., 2016; Bala et al., 2019). Entomopathogenic nematode 
Sternernema feltiae has successfully been used as a biological control agent in the management of pests like leaf 
miner, thrips, and cutworms in carnation flowers in Kenya (PCPB, 2018). This has prompted a search for IPM 
options that are safe for humans, animals, and the environment. The study aimed to isolate, identify, and evaluate 
the potential use of nematode isolate as a biological control against T. absoluta. 

2. Materials and Methods 
2.1 Tuta absoluta Culture  

Tuta absoluta life stages were collected from infested tomato farms to establish insect culture at Kenya 
Agricultural and Livestock Research Organisation (KALRO)-Horticulture Research Institute.  

2.2 Entomopathogenic Nematode Isolate Culture 

The EPN isolate was isolated from soils at KALRO-Thika and reared using the insect-baiting method as described 
by (Bedding & Akhurst, 1975). The soil was collected (250 gm) and 15 pre-pupa stages of Greater wax moth 
(Galleria mellonella) placed on the soil in a bowl. The samples were stored at room temperature of 25±2 °C and 
inspected for larval mortality every 24 hr. The infected G. mellonella cadavers showing typical symptoms of 
EPN infection were collected, cleaned in distilled water, and nematodes harvested according to White (1927). 
The EPN infective juvenile (IJs) were stored at 25±2 °C. The EPN culture was referred to as nematode isolate. 

2.3 Morphological Identification of Nematode Isolate  

The newly collected nematode isolate was reared in vivo in the pre-pupa stage of Galleria mellonella larvae. The 
G. mellonella cadavers were dissected on the 3rd day to obtained 20 males of the nematode. In the 4-6 day, 20 
emerging infective juveniles IJs were picked from G. mellonella cadaver.  

Fresh IJs and males were killed at 50-60 °C in a water bath for 3 minutes and fixed in 2-3 drops of 
Triethanoalamine formalin (TAF) (Courtney et al., 1955). After 48 h, the fixed nematodes were mounted on glass 
slides with coverslips supported by wax to avoid flattening them sealed with nail varnish. Nematode morphology 
was studied according to Nguyen (2007) using a compound microscope, Leica Suit, DM 750 (Leica 
Microsystems Switzerland Ltd.).  

2.4 Molecular Characterization of Nematode Isolate 

Nematode infected G. mellonella cadavers were surface sterilized in 70% alcohol and dissected to get gravid 
females. The females were preserved in 50 µl of 95% alcohol and stored at 4 °C. Genomic DNA was extracted 
according to Razia et al. (2011), Caoili et al. (2017), protocols with modifications. The preserved nematode 
samples of gravid females were rehydrated in distilled water overnight (12 h). The obtained DNA was quantified 
and purified on a spectrophotometer and stored at -40 °C for later use.  

The PCR amplification of the ITS region of the local nematode isolate was performed, in 12.5 µl of 10× of PCR 
master mix (Bio lab, England). The TW81 (5’-GTTTCCAGTAGGTGAACCTGC-3’), forward and AB28 
(5’-ATATGCTTAAGTTCAGCGGGT-3’) reverse primers were used for the partial gene amplification (Joyce et 
al., 1994). Thermocycler (ProFlex PCR System Applied biosystem) conditions were set at 94 °C for 5 min, 94 °C 
for 1min, 55 °C for 1 min, 72 °C for 2 min and 72 °C for 5 min all at 35 cycles per min. Electrophoresis of PCR 
products (5 µl) was run at 100 volts for an hour. The products were sequenced by Microgen, Korea.  

The sequence was edited using BioEdit v 7.0.5 Sequence Alignment Editor Software (Hall, 1999). Correction of 
the alignment was performed manually while multiple sequence alignment was done using MUSCLE on 
SeaView version 4 Alignment and analysis program (Edgar, 2004; Gouy et al., 2010). A similarity search of the 
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deduced consensus sequence of EPN from the NCBI database was then done using Basic Local Alignment 
Search Tool (BLASTn) at (https://blast.ncbi.nlm.nih.gov) (Altschul et al., 1990; Altschul et al., 1997).  

The evolutionary relationship of the nematode isolate was compared to 16 selected blastn hits. The EPN 
Heterorhabditis safricana (EF88006) was used as an out-group for taxonomic comparison, Phylogenetic analysis 
was performed using Neighbour-Joining, Distance method on SeaView version 4 program (Edgar, 2004; Gouy et 
al., 2010). Branch length was estimated with 1000 bootstrap replications at a 70% threshold for relatedness for 
the automatically generated phylogenic tree.  

2.5 Insecticidal Activity of the Nematode Isolate 

Experimental infections were carried to determine the efficacy of the isolate against Tuta absoluta larvae. 
Nematode infective juveniles (IJs) concentration (0, 100, 150, 200, and 250) in 1 ml of nematode suspension was 
determined. The insect larvae were collected from tomatoes established and maintained in a screen house. On a 
sterile 9 cm, petri dish lined with white cotton cloth Five T. absoluta larvae were singly placed for each treatment. 
The experiment was a completely randomized design (CRD) with five treatments (Control and 100, 150, 200, 
and 250 IJs in 1 ml of distilled water). The Control treatment was 1 ml of distilled water without nematodes. 
Each treatment with five larvae was replicated five times (N = 25). To confirm nematode pathogenicity, T. 
absoluta larvae cadavers were randomly selected from each treatment and dissected under the microscope. Data 
on larval mortality was recorded every 24 hr for two days. 

2.6 Statistical Analysis 

Morphometric data were analyzed using Microsoft Office Excel 2010. Data on larval mortality was subjected to 
analysis of variance using GenStat Software, 15th edition. Means were separated using Fisher's protected least 
significant difference test at 1% significance level.  

3. Results  
3.1 Morphology of Entomopathogenic Nematode 

The length of the IJs body (L) was 835 (658.6-986.9) µm and a maximum body width (MBW) of 47 µm 
(39-55.3). The excretory pore (EP) distance from the anterior end, was 81(62.7-95.6) µm and hyaline tissue (H) 
of 20 (13.5-25.0) µm long. The body of the IJs gradually tapered anteriorly and posteriorly. Males body length 
was 1781 (1296.6-2096.9) µm with a maximum body width (MBW) of 113 (90.2-162.7) µm. Spicule (SPL) was 
82 (57.9-128.3) µm long and golden brown. The posterior end of the male body was strongly ventrally J curved 
almost spiral, gubernaculum (GL) was 45 (34.5-54.9) µm and the testis was ventrally reflexed and monarchic 
(Table 1). 
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Table 1. Morphometrics of entomopathogenic nematode isolate 

Characters Fresh infective juveniles Fresh 1st generation males 

n 

L 

EP 

MBW 

ES 

T 

ABW 

a 

b 

c 

c’ 

H 

SPL 

GL 

SW% 

GS% 

D% 

E% 

H% 

20 

834.5±87.4 (658.6-986.9) 

81.2±7.1 (62.7-95.6) 

47±4.2 (39- 55.3) 

106.57±12.8 (71-118.9) 

53.22±8.4 (40.3-71.5) 

21.9±2.8 (16.5-25.9) 

17.8±1.1 (16.3-19.7) 

8.0±1.57 (5.9-12.2) 

15.9±2.3 (11.86-20.5) 

2.5±0.3 (1.8-3) 

20.5±3.3 (13.5-25.0) 

NA  

NA  

NA  

NA  

77.6±14.0 (61.8-114.1) 

291.2±34.7 (219.0-363.8) 

2.47±0.45 (1.65-3.37) 

20 

1781.3±195.1 (1296.6-2096.9) 

106.37±13.8 (84.5-140.1) 

113.5±20.9 (90.2-162.7) 

119.39±13.8 (93.1-150.8) 

19.97±2.8 (14.2-25.7) 

33.2±4.9 (25.6-45) 

16±2.2 (12.4-19.5) 

15.1±2.2 (10.8-19.4) 

91.4±18.6 (57.8-125.6) 

NA 

NA 

82.1±13.9 (57.9-128.3) 

45.3±5.9 (34.5-54.9) 

73.6±13 (50.9-89.5)  

56.3±10.3 (37-86.3)  

89.18±6.5 (77.7-100.8) 

542.7±105.1 (424.4-785.4) 

NA 

Note. NA = Data not available; H% = H/TL × 100; L = body length; MBW = maximum body width, ABW = anal 
body width; a = L/MBW; b = L/ES; c = L/T; c’ = T/ABW; D% = EP/ES × 100; E% = EP/T × 100; GS% = 
GL/SPL × 100; SW% = SPL/ABW × 100; T = tail length; ES = distance from anterior end of end to base of basal 
bulb; EP = distance from anterior end to base of excretory pore; SPL = spicule length, GL = gubernaculum 
length; n = sample number.  

 

3.2 Molecular Characterization 

The nematode sequence partial length of the ITS of the rDNA sequence was 877 base pairs (bp). BLASTn results 
of the ITS region revealed sequence maximum identities of 81-92% with Steinernematidae nematodes. The study 
nematode showed sequence similarity of 92%, with a Steinernema sp. (AY230186.1 from Kenya); 87%, 
Steinernema sp (AY230184.1); from Sri Lanka 85%, Steinernema sp. (KT358812.1); from Tanzania 84% with 
Steinernema. karii (AY230173.1 from Kenya; 83% Steinernema ethiopense (JN651414.1) from Ethiopia and 
85% with Steinernema spp. KT358811.1) from Tanzania. The EPN species with the closest match with the 
isolate were afro-tropical in origin (Table 2). 
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Figure 3. Pathogenicity of entomopathogenic nematode isolate against Tuta absoluta larvae 

 

4. Discussion 
Morphologically, the isolate lacked a mucron as in S. ethiopense, S. jeffrense, S. pwaniensis, Steinernema karii, 
and S. hermophroditum in their first-generation males. The infective juveniles (IJs), had a tail (53 µm), pharynx 
(106 µm), and hyaline (20 µm) length, shorter than the selected close relatives (Waturu et al., 1998; Puza et al., 
2015; Malan et al., 2016). Molecular analysis placed EPN isolate together with other Steinernema sp. accessions 
from gene bank but none gave 100% match, thus the isolate is suspected to be a new spp. According to Nguyen 
(2017), the EPNs Steinernema spp. are in five groups namely; feltiae, glaseri, intermedium, carpocapsae, and 
bicornutum. Based on molecular analysis, most of the “feltiae” group members are found in the “glaseri” group 
including relatives of nematode isolate; the Steinernema karii (Kenya), S. pwaniensis (Tanzania), S. ethiopense 
(Ethiopia), and S. jeffreynse (South Africa) all from Africa (Waturu et al., 1998; Malan et al., 2016; Puza et al., 
2015). Also, the phylogenic analysis revealed close relatives of EPN isolate outside Africa, S. glaseri 
(AF122015.1) Belgium, S. guandlongense (AY170341.1) China, S. longicaudum (AY170337.1) China, S. 
lamjungense (HM000101.1) India, and S. hermaphroditum (MF663703.1) India, are in the “glaseri” group of 
EPNs (Nguyen, 2017).  

The EPN was pathogenic against T. absoluta over time and across all the IJs doses. Pathogenicity of EPNs 
against T. absoluta and other economically important agricultural lepidopteran pests has been documented 
(Salvadori et al., 2012; Kalia et al., 2014; Gozel & Kasap, 2015; Caoili et al., 2018). There was an increase in 
mortality rate with an increase in IJs dose of up to 150. This indicated higher nematode efficiency at a lower 
concentration. The decrease in mortality at higher IJs concentration could be attributable to competition for entry 
points, penetration ability, and virulence of nematode in the petri dish bioassay. According to Gulzar et al. 
(2020), IJs penetration and virulence influence nematode pathogenicity.  

5. Conclusions 
The local nematode isolate was a Steinernema sp. EPNs, based on morphological and molecular analysis. The 
sequence was deposited to Gene-bank as Steinernema sp. Kalro (Accession MW151701). The EPN has 
significant potential as a biological control agent against T. absoluta. Further taxonomic evaluation of 
Steinernema sp. Kalro to species level and field trials on efficacy is recommended.  
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