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Abstract 
Recently, deep learning methods are widely used in the rice diseases identification. However, the actual image 
background of rice disease is complex, the classification performance is not ideal. Therefore, this paper proposed 
a multi-scale feature extraction method based on stacked autoencoder, named the multi-scale stacked 
autoencoder (MSSAE), to improve the recognition accuracy of rice diseases. This method extracts the complex 
rice disease image’s features by two steps. In the first step, the images are preprocessed. Then, the MSSAE 
extract the multi-scale features through preprocessed rice diseases data in different scales. Through comparative 
analysis of experiments, the new method achieved greater than 95% precision in the detection of rice diseases. It 
indicated that the MSSAE model has an outstanding identification performance for actual crop disease image 
recognition. 
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1. Introduction 
Rice is one of the important food crops, and nearly half of the world’s population takes rice as the main food 
(Meng, 2014). As a large agricultural country, China is also the country of origin of rice. Rice is one of the three 
major grain crops in China and occupies a large proportion in agricultural output (Chen, 2016). However, due to 
its own characteristics and the impact of its growing environment, rice is often harmed by diseases and insects, 
resulting in a decrease in rice production (Hu, 2017). 

In the process of planting rice in the northern cold region, many diseases often occur. The rice blast and sheath 
blight had the most serious effect on rice yield, followed by bakanae disease, leaf sheath rot and damping off, etc 
(Lu et al., 2018). These diseases occur in every part of rice, such as leaf, neck and ear and the disease spot 
characteristics of the same disease are also different in different growing stages. These diseases caused the 
decline of rice quality and serious economic losses. At present, the main means of disease prevention are using 
pesticides and the development of disease-resistant varieties. However, these methods often fail to play a full 
role because they cannot accurately identify rice diseases, even lead to reduced rice production. Even for 
experienced experts, this is a very subjective and time-consuming task. Therefore, accurate identification of rice 
diseases is the primary task of rice disease control in China.  

In recent years, lots of scholars have used machine learning to identify rice disease. Liang et al. (2019) proposed 
a new method for identification of rice blast based on convolutional neural network (CNN) (Lecun, 1995). Tan et 
al. (2019) according to the map of rice disease control (Sun, 2004) selected eight types of common rice diseases 
as the research objects, used fine-tuned and optimized to achieve a high recognition accuracy with a limited 
number of images. Qiu et al. (2019) proposed a new identification model aiming at the low recognition rate of 
traditional technology, and the identification accuracy reached over 90%. Liu et al. (2014) collected pictures of 
rice leaf diseases, compared their characteristic parameters of color, shape, texture and junction, these parameters 
were used for identification respectively, the recognition accuracy of a single characteristic parameter reached 
96.71%. However, most scholars take pictures of experimental crops in laboratory or crops grown indoors by 
digital cameras. In this case, the background of the rice disease image is single, which cannot truly reflect the 
growing environment of the actual rice in the field. Under such conditions, there will be a large deviation in the 
actual field application.  
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2.2.1 Stacked Autoencoder (SAE) 

Autoencoder, also known as Auto Associator or Diabolo Network, is an unsupervised learning algorithm. In 
practice, the number of hidden layer nodes is very close to or even greater than the number of input (Jia et al., 
2018). Therefore, the number of active neurons in the hidden layer node can be reduced by adding certain 
keeping most neurons in a suppressed state. After adding sparsity limitation, the sparsity autoencoder is formed. 
For a data set containing m samples, the cost function is defined as Equation (1). 

         (1) 

Where, L is the L hidden layer, ߣ is the regular term coefficient. The activation of neurons can be obtained by 
Equation (2). 

                (2) 

Then the average activation degree is expressed by Equation (3). 

                                    (3) 

Join the sparse parameters ρො	=	ρ (usually equal to 0 approximate value) and penalty factor ∑ KL(ρ||ρොj)
s2
j=1 . 

KL(ρ||ρොj) can be expressed by Equation (4). 

                       (4) 

To further minimize the punishment factor. The overall cost function can be expressed as Equations (5). 

                 (5) 

Where, β is the weight of control sparsity penalty factor. Then the partial derivative of the cost function is 
solved by the Equations (6) and (7). 

                           (6) 

                          (7) 

Finally, Softmax classifier was used for supervised training. The accuracy of the classifier was used as the output 
index to evaluate the feature expression ability. The Softmax classifier could be expressed by Equation (8). 

           (8) 

By gradient descent method, J'(θ) is gradually converged to the global optimal solution. 

Through the above method, multi-layer autoencoder is trained, and the output of the first layer is taken as the 
input of the second features of the data are mapped layer by layer, finally abstracted into the activation value of 
the deepest layer network. Finally, input the extracted feature values into the Softmax classifier, and conduct 
supervision training according to the label of the sample. In this way, the stack autoencoder (SAE) is built, the 
training steps of SAE are shown in Figure 2. The concrete algorithm of stacked autoencoder is shown in 
Algorithm 1. 
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Algorithm 2 Multi-scale stacked autoencoder 

1. Begin 

2. Initialize several neighborhood window scales：s(1), s(2), ... s(L) 

3. For each scale from s(1) to s(L) 

4. Compute the weights according to Equation (9) 

5. For each pixel in the image 

6. Cur out the neighborhood to get an image of size s(i) × s(i) × 3 

7. Neighborhood pixel multiplied by corresponding weight 

8. Flatten the pixels into a vector with size 3, s(i)2 × 1 

9. End 

10. Select the training set and input it to the SAE 

11. Train SAE by training set 

12. Extract the features of each pixel using a trained SAE 

13. Constitute the feature map using feature vector of each pixel 

14. End 

15. Extract features of different size and conduct feature fusion through Equation (10) 

16. The fused features are input into the classifier for classification 

17. End 

 
3. Results 
In this section, we discuss the experimental results. All experiments were implemented in MATLAB_R2018a 
under Windows 10, the processor was dual-core I5-8250, 128G SSD, the CPU was Intel core I7-6500U, and the 
main frequency was 2.5 ghz.  

3.1 Images Processing 

Due to the lack of rice diseases data, especially the panicle neck blast and leaf spot of flax, it is easily lead to 
over-fitting problem and reduce the accuracy of rice disease recognition. Therefore, we use two solutions to 
solve these problems: 

The first approach is the data enhancement. We use reflection deformation, the image data for 90 degrees, 180 
degrees, 270 degrees and vertical mirror of rotation (Mairal, 2010). In addition, histogram equalization was used 
to enhance the disease image and highlight the characteristics of disease spots. 

The rotated instance diagram is shown in Figure 4. The enhanced sample information obtained is shown in Table 
1. 
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Table 2. Hyperparameters setting of SSAE 

Hyperparameters Indexes 

First hidden layer Second hidden layer Sparsity parameter Iteration Accuracy (%) Time (s) 

100 50 

0.1 100 92.33 15.05 

0.1 200 92.13 18.59 

0.1 300 93.49 20.36 

0.1 400 93.89 24.35 

0.01 100 93.04 16.67 

0.01 200 93.19 20.73 

0.01 300 93.43 22.68 

0.01 400 93.68 26.73 

200 100 

0.1 100 93.19 20.78 

0.1 200 94.41 28.67 

0.1 300 94.76 32.77 

0.1 400 93.68 38.96 

0.01 100 92.65 23.98 

0.01 200 93.19 29.65 

0.01 300 95.78 34.12 

0.01 400 94.12 38.55 

300 200 

0.1 100 93.57 23.43 

0.1 200 93.66 27.65 

0.1 300 92.87 29.78 

0.1 400 93.45 32.90 

0.01 100 93.06 26.54 

0.01 200 94.67 29.57 

0.01 300 94.79 34.65 

0.01 400 93.28 39.01 

 

As can be seen from Table 2, when the first hidden layer is 200, the second hidden layer is 100, the learning rate 
is 0.01, and the number of iterations is 300, the recognition accuracy is the best, 95.78%, and the required time is 
34.12 seconds. 

3.4 Results of Experimental 

In order to quantitatively analyze and test the network performance, the precision (P), recall (R) and F1 scores 
(F1) were used for objective evaluation. The precision is the percentage of the correct portion of the test results. 
The recall is the percentage of the correct part of the test results to the actual correct part. In addition, the F1 
score was given to evaluate the overall performance of the classifier (Fu et al., 2020). The calculation equations 
are as follow. 

Precision	=	 True Positive

True Positive	+	False Positive
                             (11) 

Recall	=	 True Positive

True Positive	+	False Negative
                              (12) 

F1	=	 2 × Precision × Recall

Precision	+	Recall
                                  (13) 

Where, true positive refers to the number of correctly identified rice disease, false positive refers to the number 
of incorrectly identified rice disease, false negative refers to the numbers of incorrectly identified rice disease as 
other. 

The classification accuracy for every class is presented in Table 3 along with P, R and F1 scores coefficient 
values. The confusion matrix of the MSSAE method is shown in Table 4. 
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There are two reasons for this phenomenon: 

(1) Grain blast and leaf spot of flax are similar in features, point by point, and similar in color, so it is easy to 
confuse leaf spot and grain blast. 

(2) Most of the reasons for misidentification are due to the complex actual field background, which is easy to 
confuse the characteristics of some diseases. 

5. Conclusions 
In this paper, we proposed a multi scale staked autoencoder (MSSAE) method based on the staked autoencoder 
to extract the deep multi-scale features for rice diseases and obtained a high rice diseases recognition accuracy. 
The method preprocesses the image first. Then, extract the multi scale features by different scales images. Finally, 
the feature fusion method is proposed to obtain the feature matrix. It can be seen from the experiment that 
MSSAE has a high recognition accuracy rate for images with complex background, and can effectively 
overcome the noises. From the result, the classification accuracy of the MSSAE achieved as high as 95.78%, the 
computing time was only 34.12 seconds. This indicates that the new model can accurately identify rice diseases, 
prepared for accurate removing disease accurately in the future, and provided reliable support.  
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