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Abstract 
Fire blight, a disease of apple trees caused by Erwinia amylovora, occurs worldwide except in South America, 
South-Central Africa, and most of Oceania. Ecological niche models can determine the potential distribution of 
species and measure the risk of pest invasion. This study aims to develop global climate suitability models using 
MaxEnt software for E. amylovora and to determine the regions in which apple cultivation and the bacterium are 
most likely to co-occur. Most occurrence data for E. amylovora (93%) are from the northern hemisphere, 
distributed between 63.90 to 14.56 degree days in regions of Africa, Central America, North America, Asia, and 
Europe. The only country in the southern hemisphere that this bacteria has been detected is New Zealand 
(Oceania). Apples are cultivated on every continent except Antarctica, between 61.55 to 44.41 degree days. We 
find that regions of South-Eastern Africa, Argentina, Australia, Southern Brazil, Bolivia, Chile, China, the 
United States, Madagascar, Morocco, Mexico, New Zealand, Peru, Tunisia, Uruguay, and the majority of Europe 
are suitable for both E. amylovora and apple cultivation. These results provide information on the potential 
worldwide distribution of E. amylovora in apple production area. 
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1. Introduction 
Erwinia amylovora (Burrill, 1882) Winslow et al. (1920) causes fire blight, a pathogen that affects the apple tree 
Malus domestica Borkh. It is the most severe pathogen affecting this crop, threatening the production in areas 
where it is present (EPPO, 2004). This species belongs to the family Enterobacteriaceae and is classified as a 
gram-negative and facultative anaerobic bacterium (Raymundo & Ries, 1980). Epiphytism occurs without 
parasitizing the host, and its survival depends on weather conditions (Thomson, 2000). Fire blight causes 
damage when it encounters a susceptible host, and when the weather conditions are favourable for disease 
development (Palacio Bielsa & Cambra Alvarez, 2009). First described in the New York State, United States, in 
1780, the disease later spread to the east and west coasts of this country and regions of Canada (Palacio Bielsa & 
Cambra Alvarez, 2009). It is now present in almost all continents, with recorded observations in North and 
Central America, Africa, Europe, Asia, and Oceania, though with no records in South America (European and 
Mediterranean Plant Protection Organization - EPPO) (2019). In the United States, the pathogen causes damages 
over USD 100 million per year (Norelli et al., 2003). Approximately 200 ha of orchards were eradicated in 
Morocco between 2006 and 2010, resulting in losses of around EUR 55 million (Fatmi, 2011).  

Predictive modelling of species distribution using computer programs can provide relevant data on species 
invasion (Jarnevich et al., 2015; Kriticos et al., 2015). The models are useful tools for risk analysis, which is an 
essential instrument for assessing potential impacts on the spread of pest species, such as E. amylovora (Vilela & 
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Callegaro, 2013). MaxEnt is a model that predicts the distribution of probabilities that a species will be present 
in a particular locality, based on the principle of maximum entropy (Phillips et al., 2006). This software requires 
data on locations in which the pest and its host are known to occur (Kumar et al., 2015; Phillips & Dudík, 2008; 
Merow et al., 2013).  

Despite the severe impact that E. amylovora would have if it were introduced into new countries, at present, no 
studies have analyzed the invasion risk of this species. This study, therefore, aims to use MaxEnt modelling to 
predict suitable areas for E. amylovora and open-field cultivation of apples.  

2. Methodology 
2.1 Distribution 

We used species occurrence data from the Centre for Agriculture and Biosciences International-CABI (2019), 
Global Biodiversity Information Facility-GBIF (2019), EPPO (2019), United States Department of Agriculture 
(USDA, 2019), and Food and Agriculture Organization of the Nations (FAO), 2016). Erwinia amylovora and M. 
domestica were recorded in 254 and 295 localities, respectively (Supplementary material). We then performed 
spatial filtering using the spThin package in the R software (Ripley, 2001). Data handling maintains the most 
significant number of occurrence records and checks all possible filter combinations, eliminating outliers and 
using a minimum distance of 10 km (Boria et al., 2014; Team, 2014), ensuring that each cell has only a single 
occurrence record. 

2.2 Climatic Data 

Our analysis considers nineteen bioclimatic variables (Tables S1 and S2) from the WorldClim version 1.4 
dataset (Hijmans et al., 2017) and a spatial resolution of 2.5 min (about 5 km). This resolution is considered 
high-quality for analyses at the global scale (Elith & Leathwick, 2009). WorldClim uses global climate records 
from 1960 to 1990 to estimate air temperature and rainfall (mean, maximum, and minimum), as well as other 
parameters such as seasonal variables and extreme climate indices (Hijmans & Elith, 2013). 

We used the SDMtools package in ArcGIS to remove highly correlated variables with a Pearson correlation 
coefficient of r ≥ 0.75 as a cutoff, following Kumar et al. (2014). We kept one strongly correlated pair of 
variables in the dataset. 

2.3 Determination of Risk Levels 

The maximum test sensitivity plus specificity (MTSPS) was chosen to determine the distribution of suitability 
classes of E. amylovora in apple crops that are at risk of pest invasion. We used a cutoff for both species, with 
values above the cutoff considered unsuitable. The cutoff for E. amylovora and M. domestica was set at 0.3575 
and 0.3457, respectively. 

2.4 Validation 

The global distributions of E. amylovora and apple crops were obtained from the maximum entropy-based model 
using MaxEnt v. 3.3.3k (Phillips et al., 2006). The suitability index generated by MaxEnt ranges from 0 for not 
suitable to 1 for suitable. A total of 50,000 points were randomly selected for each species, representing areas of 
current occurrence. Sampling bias was generated in data collected without sampling from external sources. This 
procedure was made using a kernel density estimate in SDMToolbox (Brown, 2014; Jarnevich et al., 2015). The 
polarization surface compensates for sampling intensity and possible sampling bias (Jarnevich et al., 2015). 

The settings used in the MaxEnt models for E. amylovora and M. domestica were based on specific 
resource-type combinations and the regularization multiplier (RM) (Jarnevich et al., 2015; Merow et al., 2013). 
Combined sets of linear (L), quadratic (Q), product (P), threshold (T), and hinge (H) features were used to 
control the number of parameters, and thus the model complexity for both species. 

The MaxEnt fade-by-clamping option was used to eliminate extrapolations outside the environmental range 
(Owens et al., 2013). The contribution of environmental variables was estimated using the jackknife method. Of 
the response curves generated by MaxEnt, only those representing relationships between the probabilities of 
presence for each species and each environmental predictor were chosen. All response curves were evaluated 
based on biological logic, and those that failed this test were eliminated. 

The omission rate (OR) and the area under the curve (AUCcv) were used to evaluate the models (Kumar et al., 
2015; Liu et al., 2013). The OR measures the extent to which the model omits the existence of localities, where 
the target species occurs. The AUCcv is obtained from the integration of the receiver operating characteristic 
(ROC) curve, which is the relationship of sensitivity with the complement of specificity (1-specificity). 
Sensitivity is defined as the proportion of real presence concerning the total occurrences predicted by the model, 
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Table 1. Environmental variables considered in the niche model for the bacterium Erwinia amylovora and their 
mean percentage contribution to the model, calculated based on ten repeated runs. Statistics were calculated 
using all occurrences (n = 254) 

Description (variables) 
Mean value of the variable  
(minimum-maximum) 

Characteristics of the selected model

Contribution Importance of permutation

Annual mean temperature (bio1; °C) 11.6 (-5.6-25.2) 80.9 80.9 

Annual rainfall (bio12; mm) 777.0 (24.0-2301.0) 8.4 9.5 

Precipitation of the driest month (bio14; mm) 34.9 (0.0-112.0) 5.4 3.0 

Precipitation seasonality (CV) (bio15) 39.6 (7.0-115.0) 2.0 1.1 

Annual temperature range (bio7; °C) 30.5 (14.0-54.2) 1.9 2.2 

Mean diurnal range (bio2; °C) 10.5 (4.5-18.1) 1.4 3.3 

Isothermality (bio3) 35.2 (20.0-72.0) - - 

Temperature seasonality (SD × 100) (bio4) 7060.2 (905.0-15167.0) - - 

Maximum temperature of the warmest month (bio5; °C) 27.4 (14.7-46.0) - - 

Minimum temperature of the coldest month (bio6; °C) -3.1 (-32.3-14.4) - - 

Mean temperature of the wettest quarter (bio8; °C) 13.6 (-3.7-27.2) - - 

Mean temperature of the driest quarter (bio9; °C) 9.8 (-18.6-35.7) - - 

Mean temperature of the warmest quarter (bio10; °C) 20.4 (10.1-35.7) - - 

Mean temperature of the coldest quarter (bio11; °C) 2.3 (-24.2-17.3) - - 

Precipitation of the wettest month (bio13; mm) 104.6 (6.0-358.0) - - 

Precipitation of the wettest quarter (bio16; mm) 281.5 (0-849.0) - - 

Precipitation of the driest quarter (bio17; mm) 117.8 (0-363.0) - - 

Precipitation of the warmest quarter (bio18; mm) 194.9 (0-763.0) - - 

Precipitation of the coldest quarter (bio19; mm) 118 (0-1865) - - 

Note. Variables that were not selected for the model. 

 

Concerning M. domestica, the mean annual temperature was the most important variable (71.6% contribution) 
(Table 2). It was followed by the mean diurnal range (10.3% contribution), annual temperature range (9.3% 
contribution), annual precipitation (7.1% contribution), precipitation of the driest month (1.0% contribution), and 
precipitation seasonality (0.7% contribution) (Table 2). 
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Table 2. Environmental variables considered in the niche model for apple crops and their mean percentage 
contribution to the model, calculated based on ten repeated runs. Statistics were calculated using all occurrences 
(n = 293) 

Description (variable) 
Mean value of the variable 
(minimum-maximum) 

Characteristics of the selected model

Contribution Importance of permutation

Annual mean temperature (bio1; °C) 13.0 (-1.8-27.0) 71.6 73.9 

Mean diurnal range (bio2; °C) 10.7 (5.6-17.1) 10.3 8.4 

Annual temperature variation (bio7; ° C) 28.1 (9.5-49.5) 9.3 10.4 

Annual rainfall (bio12; mm) 822.3 (7.0-3313.0) 7.1 5.6 

Precipitation of the driest month (bio14; mm) 25.3 (0-123.0) 1.0 1.0 

Precipitation seasonality (CV) (bio15) 52.1 (8.0-153.0) 0.7 0.6 

Isothermality (bio3) 41.0 (19.0-92.0) - - 

Temperature seasonality (SD × 100) (bio4) 6085.8 (198.0-13362.0) - - 

Maximum temperature of the warmest month (bio5; °C) 27.5 (11.1-42.4) - - 

Minimum temperature of the coldest month (bio6; °C) -0.6 (-27.2-21.9) - - 

Mean temperature of the wettest quarter (bio8; °C) 14.9 (-6.5-30.4) - - 

Mean temperature of the driest quarter (bio9; °C) 11.5 (-14.3-28.9) - - 

Mean temperature of the warmest quarter (bio10; °C) 20.5 (4.7-32.6) - - 

Mean temperature of the coldest quarter (bio11; °C) 5.0 (-19.8-26.0) - - 

Precipitation of the wettest month (bio13; mm) 134.9 (1.0-721.0) - - 

Precipitation of the wettest quarter (bio16; mm) 359.0 (3.0-1935.0) - - 

Precipitation of the driest quarter (bio17; mm) 89.6 (0-392.0) - - 

Precipitation of the warmest quarter (bio18; mm) 260.7 (0-1935.0) - - 

Precipitation of the coldest quarter (bio19; mm) 159.6 (0-923.0) - - 

Note. Variables that were not selected for the model. 

 

Of a total of 12 models that use different combinations, the linear, quadratic and hinge (LQH) model showed the 
best performance for E. amylovora, considering six environmental variables (bio1, bio2, bio7, bio12, bio14, and 
bio15). The LQH model resulted in an RM value of 1.5, AUCcv of over 0.9, and the lowest OR values (10% of 
0.1098 and 0% of 0.004) (Table 3). 
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Table 3. Index of the statistical performance of the model generated by MaxEnt for Erwinia amylovora 

No. 
Model features Area below the curve  

(±standard error) 

Omission rate 

Selected variables † Type§ RM∞ 0% 10% 

1* bio1, bio2, bio7, bio12, bio14, bio15 LQH 1.5 0.9077±0.0225 0.004 0.1098 

2 bio1, bio2, bio7, bio12, bio14, bio15 LH 1.5 0.9039±0.0233 0.008 0.11 

3 bio1, bio2, bio7, bio12, bio14, bio15 LQPH 2 0.9088±0.0209 0.004 0.121 

4 bio1, bio2, bio7, bio12, bio14, bio15 LH 1 0.9065±0.0229 0.004 0.126 

5 bio1, bio2, bio7, bio12, bio14, bio15 LQPH 1 0.9093±0.0232 0.012 0.126 

6 bio1, bio2, bio7, bio12, bio14, bio15 LQH 2 0.9044±0.0226 0.004 0.126 

7 bio1, bio2, bio7, bio12, bio14, bio15 LQH 1 0.9082±0.0214 0.004 0.134 

8 bio1, bio2, bio7, bio12, bio14, bio15 LQPH 1.5 0.9093±0.0227 0.004 0.142 

9 bio1, bio2, bio7, bio12, bio14, bio15 LQPTH 1 0.9119±0.0215 0.016 0.142 

10 bio1, bio2, bio7, bio12, bio14, bio15 LQPT 1.5 0.9102±0.0222 0.004 0.15 

11 bio1, bio2, bio7, bio12, bio14, bio15 LQPT 2 0.9092±0.0224 0.0042 0.151 

12 bio1, bio2, bio7, bio12, bio14, bio15 LQPTH 1.5 0.9084±0.0221 0.004 0.154 

Note. * Selected model; † The names of the variables are described in Table 1; § L = linear component, Q = 
quadratic component, P = product, T = threshold, and H = hinge; ∞ RM = regularization multiplier.  

 

Out of the various combinations of the 12 models analyzed, the linear and hinge (LH) model had the best 
performance for M. domestica, with six environmental variables (bio1, bio2, bio7, bio12, bio14, and bio15). The 
LH model resulted in an RM value of 1.0, AUCcv of over 0.9, and the lowest OR values (10% of 0.1199, and 
0% of 0.0048) (Table 4). 

 

Table 4. Index of the statistical performance of the model generated by MaxEnt for apple crops 

No. 
Model features Area below the curve  

(±standard error) 

Omission rate

Selected variables † Type§ RM∞ 0% 10% 

1* bio1, bio2, bio7, bio12, bio14, bio15 LH 1 0.9001±0.026 0.0048 0.1199

2 bio1, bio2, bio7, bio12, bio14, bio15 LQH 1 0.9001±0.0242 0.0095 0.1208

3 bio1, bio2, bio7, bio12, bio14, bio15 LQPH 1 0.9004±0.0254 0.0046 0.1247

4 bio1,bio2, bio7, bio12, bio14, bio15 LQP 1 0.8871±0.0238 0.0091 0.1247

5 bio1, bio2, bio7, bio12, bio14, bio15 LQPTH 1.5 0.8959±0.0273 0.0093 0.1249

6 bio1, bio2, bio7, bio12, bio14, bio15 LQPT 2 0.8938±0.0256 0.0091 0.1251

7 bio1, bio2, bio7, bio12, bio14, bio15 LQH 2 0.8951±0.0246 0.0093 0.1251

8 bio1, bio2, bio7, bio12, bio14, bio15 LQPT 1.5 0.8948±0.0266 0.0093 0.1288

9 bio1, bio2, bio7, bio12, bio14, bio15 LQP 1.5 0.8855±0.0242 0.0046 0.129 

10 bio1, bio2, bio7, bio12, bio14, bio15 LQPTH 2 0.8943±0.0257 0.0139 0.1292

11 bio1, bio2, bio7, bio12, bio14, bio15 LQPH 2 0.8961±0.0254 0.0137 0.1295

12 bio1, bio2, bio7, bio12, bio14, bio15 LQPH 1.5 0.8983±0.0254 0.0046 0.1299

Note. * Selected model; † The names of the variables are described in Table 1; § L = linear component, Q = 
quadratic component, P = product, T = threshold, and H = hinge; ∞ RM= regularization multiplier. 
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The MaxEnt model indicated suitability for E. amylovora in several regions of the world, mainly in the 
southeastern United States, southern South America, Africa, Oceania, Europe, and southeastern Asia (Figure 
2A). 

The model indicated suitability for M. domestica in regions of Brazil, Uruguay, Argentina, Chile, Bolivia, and 
Peru in South America, and Mexico, the United States, and Canada in North America (Figure 2B). The entire 
European continent, except for Norway, presented suitability for crops, besides Tunisia, Algeria, Morocco, and 
some regions of southeastern Africa. In Asia, the suitability was detected mainly in areas of Japan, South Korea, 
and North Korea, besides some border regions of southeastern Asia. In Oceania, New Zealand and some areas of 
Australia also showed suitability for M. domestica. The model also indicated suitability in some areas of 
Madagascar and northeastern Brazil, in which M. domestica is not yet cultivated (Figure 2B). 

The model detected areas that are suitable for both species in all continents except Antarctica. In the Americas, 
appropriate areas were found in southern Brazil, Uruguay, mainly southeastern Argentina, southern Chile, 
south-central Bolivia, southwestern Peru, central Ecuador, some regions of Colombia, western Mexico, 
northeastern United States, and some points in extreme southern Canada (Figure 2C). 

Almost the entire Europe showed suitability for the two species studied, including Albania, Austria, Belarus, 
Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, 
France, Georgia, Germany, Greece, Netherlands, Hungary, Ireland, Italy, Kosovo, Latvia, Lithuania, 
Luxembourg, Macedonia, Malta, Moldova, Montenegro, Poland, Portugal, Romania, Russia, Serbia, Slovakia, 
Slovenia, Spain, Sweden, Switzerland, Ukraine, and the United Kingdom (England, Northern Ireland, Scotland, 
and Wales) (Figure 2C). 

In the Asian continent, the suitability for both species was found in Japan, South Korea, southeastern China, and 
border regions with Bhutan, Nepal, India, and Pakistan. Some points were also detected in Indonesia, 
Afghanistan, Iran, Turkmenistan, Kazakhstan, Syria, Yemen, Kyrgyzstan, and Tajikistan (Figure 2C). 

In Africa, suitability was higher in the southern region of the continent, including South Africa and some areas 
of Namibia, Angola, Zimbabwe, Tanzania, Kenya, Ethiopia, Madagascar, Tunisia, Algeria, and Morocco (Figure 
2C). 

In Oceania, New Zealand and the southern and southwestern regions of Australia were the most suitable regions 
for E. amylovora and M. domestica (Figure 2C). 
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material from fruit trees and ornamental plants is an important dispersion factor of E. amylovora over long 
distances. Therefore, the source regions of this bacterium should be monitored since even asymptomatic plants 
can spread the bacteria if ideal conditions occur among the host, pathogen, and environment (Cambra et al., 
2002). 

According to Rodoni et al. (1998), E. amylovora was detected in Melbourne, Australia, in 1997, an area that our 
study indicates as suitable for the propagation of this pathogen. In the following years, the Australian authorities 
carried out quarantine actions, leading to the country to become the only one in the world to eradicate this 
species (Rondoni et al. 2001), in 1999. However, since our model indicated that the range of M. domestica in the 
country overlapped with the potential range of E. amylovora, defence actions are imperative in order to avoid a 
possible reentry of the disease. 

In the United States, the distribution area of E. amylovora is larger than the cultivation areas of M. domestica. 
Since other host species (pears and quinces) are cultivated in the United States, measures to contain and suppress 
the pest are necessary to minimize its damage. For the cultivation of apples in these regions, the use of resistant 
varieties, healthy propagating material, biological control, monitoring, and use of disease prediction models is 
recommended (Aćimović et al., 2015). The model indicated many regions that are suitable for E. amylovora and 
that have M. domestica plantations, though the pathogen has not yet been found. One such area is southern Brazil, 
where E. amylovora is not subject to a quarantine status according to Normative Instruction No. 39/2018 of 
Brazil’s Ministry of Agriculture, Livestock and Supply (MAPA, 2018). Because it is a highly aggressive, 
rapidly-spreading disease, and since there are currently no effective chemical treatments to control it, rapid 
diagnostic tests for early detection in areas that are free of the disease allow the destruction of infested material, 
which is essential for the control and eradication of the species (DGADR, 2011; Powney et al., 2011). 
Accordingly, it is important to carry out more detailed studies on the entry risk of this bacterium in Brazil, 
mainly because the southern region, where the production areas of M. domestica are concentrated, were 
demonstrated to be suitable for E. amylovora.  

In contrast, the countries belonging to Mercosur that have shown suitability for E. amylovora in some regions, 
such as Argentina, Chile, Uruguay, Bolivia, Ecuador, Peru, and Colombia, have restrictions on the entry of fruits 
that are hosts to E. amylovora, as described in Mercosur Resolution No. 50/05 GMC (Mercosul, 2019). We 
observed in this study that all countries in South America that have suitability for the pest also have 
phytosanitary restrictions to prevent its entry, mainly through commercial relations with countries currently 
infested by E. amylovora. This work considered temperature and precipitation to determine suitability for E. 
amylovora and M. domestica. Thus, further studies considering other variables are necessary, such as the 
presence of other host species (pear and quince), the presence of natural enemies and antagonistic 
microorganisms, and the resistance of cultivars, among others. 

Suitability maps are important tools for pest risk analyses, quarantine strategies, and to support phytosanitary 
actions. These results can help to develop strategies to prevent the introduction, dispersion, and establishment of 
E. amylovora, in addition to supporting future research and supporting biosafety practices. 

This study presents relevant information about the potential risk of the worldwide distribution of E. amylovora in 
apple crops and the suitability of both species using the MaxEnt model. The maps can serve to support 
monitoring programs in countries where the species already occurs and to determine guidelines and measures to 
prevent the risk of invasion of E. amylovora in other regions. 
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