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Abstract 
The objective of this study was to evaluate the efficiency of glauconitic siltstone as a multi-nutrient source for 
flooded rice. Two experiments were carried out under greenhouse conditions, one using a Ferralsol and the 
another an Arenosol. Glauconitic siltstone was applied in different doses (0, 5, 20, 40, and 80 mg dm-3 K2O) and 
potassium chloride, wollastonite, and manganese sulfate were respectively used as standard sources, at doses of 
80 mg dm-3 K2O, 270 mg dm-3 Si, and 2 mg dm-3 Mn. The sources were incubated for 90 days on the two soil 
types and, after the incubation period, rice plants were sown, and two consecutive rice growths were performed. 
The application of glauconitic siltstone in tropical soils promotes increases in the plant and grain dry matter of 
rice plants, as well as K, Si and Mn contents in soil samples and accumulated in plants. Greater effects following 
the application of glauconitic siltstone are obtained after the second rice growth due to its gradual release. 
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1. Introduction 
Potassium chloride (KCl) is the most used source of potassium (K) fertilizer in the world (Ernani et al., 2007). 
However, crops fertilized with high KCl doses can present significantt chlorine (Cl) accumulation in leaves, 
which may inhibit some metabolic processes (Geilfus, 2018), as well promoting soil salinity and, as a 
consequence, water stress to plants (Watanabe et al., 2017). 

Moreover, intensive application of KCl may also result in losses of K by leaching, since the K ion has a greater 
hydration radius than most other cations, resulting in a low retention cation-exchange capacity of soil (Dolcater 
et al., 1968). Potassium leaching is often a problem, especially in tropical areas with soil fertility constraints.  

The total amount of K in Brazilian soils ranges from 0.5 to 25 g dm-3 (Ribeiro et al., 2010). Despite being the 
most absorbed element for the majority of crops, the content of soil available K to plants is low.  
Recent investigations suggest that the addition of glauconite-rich rocks may increase the K content in soils (Zörb 
et al., 2014). In Russia, glauconitic sandstone is a K-rich rock used in K fertilizer production. In addition, there 
are reports of the use of glauconitic sandstone as K fertilizer in India and in some African countries, resulting in 
higher soil K contents and superior yields (Karimi et al., 2012). 

In Brazil, especially in Minas Gerais state, the glauconitic siltstone (GS) could allow the country to become 
self-sufficient in K-fertilizing for several decades (Nader & Ackroyd, 2017). GS is a dark-green, fine grained 
siltstone, usually laminated, composed of glauconite (40-80%), quartz (10-20%), K-feldspar (10-15%), 
muscovite (5%), biotite (2%), and traces of titanium oxide, manganese oxide, goethite (< 1%), barium and 
rare-earth elements phosphates (Moreira et al., 2016). The average K2O total is 10% (Nader & Ackroyd, 2017). 
GS provides K2O and no Cl, allowing for use on organic agriculture. In addition, GS has silicon (Si) and 
manganese (Mn), with the potential to be used not only as a K fertilizer, but also as a multi-nutrient fertilizer 
(Violatti et al., 2019).  

In this context, GS could reduce the demand for KCl, which may deplete soils and their microbiota when 
inappropriately managed (Karimi et al., 2012). The objective of this study was to evaluate the efficiency of GS 
as a multi-nutrient source for flooded rice. This crop was chosen since yield responses in rice to soil K, Si and 
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Mn amendments have frequently been recorded on weathered tropical or sub-tropical soils on which they are 
mainly grown. Owing to its capability to supply K, Si and Mn to plants, we expect to promote an innovative and 
sustainable use of GS powder in agricultural areas. 

2. Materials and Methods 
Two experiments were carried out under greenhouse conditions from 02/28/2016 to 10/29/2016, one using a 
clayey soil and the another, a sandy soil. The samples of the two different soil types were collected at 0-20 cm 
soil layer in Uberlândia, Minas Gerais, Brazil, which were classified as Ferralsol (Oxisol in Soil Taxonomy; 
Latossolo Vermelho Distrófico according to Santos et al., 2013) (69% of clay, pH (CaCl2) 4.4, 6.6 mg dm-3 Si, 20 
mg dm-3 K, 0.3 cmolc dm-3 Ca, and 0.02 mg dm-3 Mn) and Arenosol (Entisol in Soil Taxonomy; Typical 
Neossolo Quartzarênico Órtico according Santos et al., 2013) (9% clay, pH (CaCl2) 4.4, 3.3 mg dm-3 Si, 20 mg 
dm-3 K, 0.2 cmolc dm-3 Ca, and 0.12 mg dm-3 Mn) (FAO, 2015).  

GS used in the experiment was characterized according to macro and micronutrient contents, determined on a 
flame photometer according to the method described by MAPA (2017), 10 g kg-1 total K2O, 270 g kg-1 total Si, 
and 0.5 g kg-1 total Mn. Wollastonite (230 g kg-1 Si, 303 g kg-1 Ca, and 110 g kg-1 Mg), KCl (600 g kg-1 K2O) and 
manganese sulfate (MnSO4) (310 g kg-1 Mn) were used as standard sources for comparison purposes. The 
chemical characteristics of nutrient sources used in this study were determined according to methodology 
described by Teixeira et al. (2017) and Korndörfer et al. (2004) (Si analysis). The treatments were applied to 
soils as a < 2 mm powder.  

Both experiments were arranged in randomized blocks, design with four replications. Four GS rates were used 
according to the total K2O content (10 g kg-1 K2O—resulting in the following doses: 0, 5, 20, 40, and 80 mg dm-3 
K2O), which resulted in four Si (270, 1080, 2160, and 4320 mg dm-3 Si) and Mn doses (0.5, 2, 4, and 8 mg dm-3 
Mn). Standard treatments were also used as checks: KCl (80 mg dm-3 K2O), wollastonite + KCl (270 mg dm-3 Si 
+ 80 mg dm-3 K2O), manganese sulfate (MnSO4) + KCl (2 mg dm-3 Mn + 80 mg dm-3 K2O), which resulted in 32 
pots for each soil type. 

Since wollastonite supplies Ca and Mg to plants, different rates of CaCO3 and MgCO3 were added to adjust the 
amounts of Ca and Mg in all treatments and increase soil base saturation to 70% and 90% in clayey and sandy 
soil, respectively. 

The products were incubated for 90 days in 8 dm-3 of the two different soil types. In order to maintain humidity, 
around 80% of the field capacity value for each soil, deionized water was added to pots. Soil moisture was 
rigorously controlled by daily weighing of the plastic containers, replacing the volume lost through 
evapotranspiration with deionized water. 

After the incubation period, 200 mg kg-1 N and 400 mg kg-1 P2O5 were added to samples through ammonium 
sulfate and triple superphosphate, respectively. The micronutrients were supplied via solution at the rates of 1.5; 
5.0; 0.5, and 0.05 mg dm-3 Cu, Zn, B, and Mo, through the sources CuSO4·5H2O; ZnSO4·7H2O; H3BO3 and 
(NH4)6Mo7O24·4H2O, respectively. Then, BRS Atalanta irrigated cycle rice cultivar was sown, which presents 
smooth grains and leaves, high tillering capacity, and strong stalks (Embrapa, 2007). Fifteen seeds were sown 
per pot, at a depth of 2 cm. After the emergence, thinning was carried out, maintaining 6 plants per pot. At this 
time, a 2 cm water irrigation level was also added, which was maintained until 15 days before harvesting. 

Rice plants were harvested at 89 days after sowing (DAS), and at the same time, the soil samples were collected. 
Plants samples were dried in an oven and weighed to obtain the plant dry matter (DM) and grain DM values. 
Afterwards, the samples were ground and submitted to nitric-perchloric digestion. The K and Mn concentrations 
were analyzed by flame spectrophotometry and atomic absorption spectrophotometry (Teixeira et al., 2017), 
respectively, whereas Si concentrations were measured at 630 nm using an ultraviolet (UV) visible 
spectrophotometer (Korndörfer et al., 2004). The product of the plant DM and nutrient concentration in plant 
samples resulted in the values of K, Si, and Mn accumulated in rice plants. 

Soil chemical analyses were performed according to Korndörfer et al. (2004) (soil available Si content) and 
Teixeira et al. (2017) (soil available K-Resin extraction and Mn contents).  

Using the nutrient accumulated values, relative agronomic efficiency (RAE) of GS relative to KCl was 
calculated using the following equation as proposed by Fageria et al. (2010): 

100
DMcontrolDMKCl

DMcontrolDMGS
(%)AER 




                             (1) 
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After the second growth, these values ranged from 12 to 26 g pot-1 in clayey soil and from 5 to 12 g pot-1 in 
sandy soil (Figure 1). Linear increases of plant DM after the second growth were observed following the 
increase of GS dose to the soil; for every 10 mg dm-3 applied to the clayey and sandy soil, there was an increase 
in plant DM of 1.9 and 1.0 g pot-1, respectively (Figures 1a and 1b). In general, higher response to GS 
application was observed in clayey soil, since the soil type affects the availability of K to plants. Potassium 
leaching is frequently related to the soil texture, being the most easily leached cation, especially in sandy soils, 
due to its displacement to the solution and to its percolation (Mendes et al., 2016), making it less available to 
plants.  

After the first rice growth, the application of GS resulted in an increase in plant and grain DM, compared to the 
check, without K2O, yet the effects were not comparable with the KCl application (Figure 1). The greater yields 
provided by the standard source were due to the greater solubility, which is mostly water-soluble and readily 
available to plants (Prakash & Verma, 2016). However, in the second rice growth, GS promoted higher plant and 
grain DM values than the KCl application.  

In general, relative agronomic efficiency (RAE) values following GS application were smaller than KCl values 
(values minor than 100%) after the first rice growth (Figure 2). In contrast, after the second rice growth, GS 
sources presented greater agronomic efficiency (values higher than 100%), indicating a good prospect for 
gradual release use, as previously discussed. 

 

 
Figure 2. Relative Agronomic efficiency (RAE) (%) of glauconitic siltstone in relation to KCl in clayey and 

sandy soils after two consecutive rice growths 

 

The application of increased doses of GS improved the contents of K in soil and accumulated in rice plants 
(Figure 3).  
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In addition to GS application, flooded conditions also directly influenced the Mn availability to rice plants. 
Under flooded conditions, soils show low redox potential, thus Mn deficiency has decreased in lowland (Tanaka 
& Navasero, 1966). As Mn is an essential element for plants and its deficiency decreased growth and yield, as 
well as making plants more susceptible to pathogens (Socha & Guerinot, 2014), the use of GS associated to 
flooded rice cultivation may be a good alternative to increase Mn availability for plant uptake. 

In general, GS efficiency to supply K, Si and Mn to rice plants shows an innovative and sustainable use of 
nutrient-rich rock to improve tropical soil fertility and rice yields, especially after consecutive crop cycles. 

4. Conclusions 
(1) Results described in this study provide an important understanding of the use of glauconitic siltstone not only 
as a K fertilizer, but as source of silicon (Si) and manganese (Mn) in tropical soils, being an efficient alternative 
to improve tropical soil fertility and increase rice yields.  

(2) The application of glauconitic siltstone in tropical soils promoted increases in plant and grain dry matter of 
flooded rice, as well as K, Si, and Mn contents in soil samples and accumulated in plants.  

(3) Greater effects following the application of glauconitic siltstone are obtained after the second rice growth due 
to its gradual release.  
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